9 research outputs found

    Virtual Medical Board: A Distributed Bayesian Agent Based Approach

    Get PDF
    Distributed Decision Making has become of increasing importance to get solution of different real life problems, where decision makers are in geographically dispersed locations. Application of agent and multi agent system in this Distributed Decision Support System is an evolving paradigm. One of such real life problem is medical diagnosis. For critical medical diagnosis, medical board is formed which is a coordinative discussion mechanism between a group of expert physicians to diagnose a patient. But always forming a medical board with a group of expert physicians may not be possible due to lack of infrastructure, availability, time etc. In that situation the role of multi agent based distributed decision making can comes into play. In this paper we develop a Virtual Medical Board System in which a number of software agents (expert agents) act as a group of expert physician with knowledge base(KB), reasoning capability. They coordinatively discuss with each other to diagnose a patieh each other to diagnose a patient. We represent the discussion module of the system in the form of Bayesian Network of Bayesian Agent (BNBA). In BNBA each BA is the expert software agent whose Knowledge Base (KB) is represented in the form of Bayesian Network (BN). Also the BDI (Belief, Desire, Intention) model of each BA is represented in this paper

    Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust

    Get PDF
    In situ hybridization based on the mechanism of the hybridization chain reaction (HCR) has addressed multi-decade challenges that impeded imaging of mRNA expression in diverse organisms, offering a unique combination of multiplexing, quantitation, sensitivity, resolution and versatility. Here, with third-generation in situ HCR, we augment these capabilities using probes and amplifiers that combine to provide automatic background suppression throughout the protocol, ensuring that reagents will not generate amplified background even if they bind non-specifically within the sample. Automatic background suppression dramatically enhances performance and robustness, combining the benefits of a higher signal-to-background ratio with the convenience of using unoptimized probe sets for new targets and organisms. In situ HCR v3.0 enables three multiplexed quantitative analysis modes: (1) qHCR imaging – analog mRNA relative quantitation with subcellular resolution in the anatomical context of whole-mount vertebrate embryos; (2) qHCR flow cytometry – analog mRNA relative quantitation for high-throughput expression profiling of mammalian and bacterial cells; and (3) dHCR imaging – digital mRNA absolute quantitation via single-molecule imaging in thick autofluorescent samples

    Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust

    Get PDF
    In situ hybridization based on the mechanism of the hybridization chain reaction (HCR) has addressed multi-decade challenges that impeded imaging of mRNA expression in diverse organisms, offering a unique combination of multiplexing, quantitation, sensitivity, resolution and versatility. Here, with third-generation in situ HCR, we augment these capabilities using probes and amplifiers that combine to provide automatic background suppression throughout the protocol, ensuring that reagents will not generate amplified background even if they bind non-specifically within the sample. Automatic background suppression dramatically enhances performance and robustness, combining the benefits of a higher signal-to-background ratio with the convenience of using unoptimized probe sets for new targets and organisms. In situ HCR v3.0 enables three multiplexed quantitative analysis modes: (1) qHCR imaging – analog mRNA relative quantitation with subcellular resolution in the anatomical context of whole-mount vertebrate embryos; (2) qHCR flow cytometry – analog mRNA relative quantitation for high-throughput expression profiling of mammalian and bacterial cells; and (3) dHCR imaging – digital mRNA absolute quantitation via single-molecule imaging in thick autofluorescent samples

    Multiplexed Analysis of Diverse RNA Classes via Hybridization Chain Reaction

    Get PDF
    Gene circuits are complex biological networks composed of numerous regulatory elements, including transcription factors, mRNAs, and microRNAs. Fluorescent in situ hybridization (FISH) is a powerful method for spatially mapping expression levels of RNA elements within an intact organism, but traditional methods exhibit at least one of the following drawbacks: low signal-to-background, arduous and/or destructive multiplexing, and non-quantitative signal. These issues are all overcome using in situ amplification based on the mechanism of hybridization chain reaction (HCR). With this approach, nucleic acid probes complementary to RNA targets trigger the self-assembly of fluorophore-labeled nucleic acid hairpins into tethered fluorescent amplification polymers. In situ HCR enables straightforward multiplexing, high signal-to-background, and quantitative signal. Here, we address three key scenarios in which HCR enables novel applications for in situ hybridization. First, we address the challenge of sorting cell subpopulations based on mRNA abundance using flow cytometry to enable high-throughput measurement of the signal intensity from individual cells. High signal is required to overcome the background autofluorescence integrated over the volume of each cell. Quantitative HCR signal amplification enables multi-dimensional sorting of mammalian cell lines based on expression levels of multiple target mRNAs. Second, we address the challenge of mapping multiple microRNA and mRNA targets simultaneously. Traditional methods enable mapping of single microRNA targets in isolation and use costly LNA probes with proprietary compositions that differ for each target. Here we develop in situ HCR for multiplexed mapping not only of microRNAs, but of microRNAs and mRNAs together, using non-proprietary 2'OMe-RNA probes for miRNA targets and DNA probes for mRNA targets. Third, to enable studies of gut flora, we address the challenge of mapping spatial relationships between different bacterial species within the intact mouse colon. In situ HCR enables multiplexed discrimination of multiple closely-related Bacteroides species with rRNAs that differ by only a few nucleotides. In summary, this thesis presents in situ HCR as a tool for multiplexed analysis of diverse RNA classes and expands the range of gene circuit regulatory elements that can be spatially and quantitatively mapped

    SiegeBreaker: An SDN Based Practical Decoy Routing System

    No full text
    Decoy Routing (DR), a promising approach to censorship circumvention, uses routers (rather than end hosts) as proxy servers. Users of censored networks, who wish to use DR, send specially crafted packets, nominally addressed to an uncensored website. Once safely out of the censored network, the packets encounter a special router (the Decoy Router) which identifies them using a secret handshake, and proxies them to their true destination (a censored site). However, DR has implementation problems: it is infeasible to reprogram routers for the complex operations required. Existing DR solutions fall back on using commodity servers as a Decoy Router. But as servers are not efficient at routing, most web applications show poor performance when accessed over DR. A further concern is that the Decoy Router has to inspect all flows in order to identify the ones that need DR. This may itself be a breach of privacy for other users (who neither require DR nor want to be monitored). In this paper, we present a novel DR system, Siege- Breaker (SB), which solves the aforementioned problems using an SDN-based architecture. Previous proposals involve a single unit which performs all major operations (inspecting all flows, identifying the DR requests and proxying them). In contrast, SB distributes the tasks for DR among three independent modules. (1) The SDN controller identifies DR requests via a covert, privacy preserving scheme, and does not need to inspect all flows. (2) The reconfigurable SDN switch intercepts packets, and forwards them to a secret proxy efficiently. (3) The secret proxy server proxies the client’s traffic to the censored site. Our modular, lightweight design achieves performance comparable to direct TCP downloads, for both in-lab setups, and Internet based tests involving commercial SDN switches

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research
    corecore