56 research outputs found

    Inclusive pion double charge exchange on Oxygen(16) at 0.6-1.1 GeV

    Get PDF
    The inclusive pion double charge exchange (DCX) on oxygen nuclei has been measured in the region where additional pion production is kinematically forbidden. The experiment was performed at ITEP PS at incident pi- kinetic energies T_0= 0.59, 0.75 and 1.1 GeV. The integrated forward differential cross section was found to decrease with energy slowly. At 1.1 GeV it exceeds the theoretical prediction within the conventional sequential single charge exchange mechanism with a neutral pion in the intermediate state (Glauber elastic rescattering) by about half an order of magnitude. The sequential mechanism with two pions in the intermediate state (Glauber inelastic rescatterings), which was proposed recently, seems to be able to explain the observed slow energy dependence and allows to predict the DCX cross section for higher energies.Comment: 27 pages, 13 figures. Minor corrections, one figure added. Accepted in NP

    Phase transitions for suspension flows

    Full text link
    This paper is devoted to study thermodynamic formalism for suspension flows defined over countable alphabets. We are mostly interested in the regularity properties of the pressure function. We establish conditions for the pressure function to be real analytic or to exhibit a phase transition. We also construct an example of a potential for which the pressure has countably many phase transitions.Comment: Example 5.2 expanded. Typos corrected. Section 6.1 superced the note "Thermodynamic formalism for the positive geodesic flow on the modular surface" arXiv:1009.462

    Small-angle fragmentation of carbon ions at 0.6 GeV/n: a comparison with models of ion-ion interactions

    Get PDF
    Momentum distributions of hydrogen and helium isotopes from 12C fragmentation at 3.5° were measured at 0.6 GeV/nucleon in the FRAGM experiment at ITEP TWA heavy ion accelerator. The fragments were selected by correlated time of flight and dE/dx measurements with a magnetic spectrometer with scintillation counters. The main attention was drawn to the high momentum region where the fragment velocity exceeds the velocity of the projectile nucleus. The momentum spectra of fragments span the region of the fragmentation peak as well as the cumulative region. The differential cross sections cover six orders of magnitude. The distributions measured are compared to the predictions of three ion-ion interaction models: BC, QMD and LAQGSM03.03. The kinetic energy spectra of fragments in the projectile rest frame have an exponential shape with two temperatures, being defined by their slope parameters

    Exact asymptotic form of the exchange interactions between shallow centers in doped semiconductors

    Full text link
    The method developed in [L. P. Gor'kov and L. P. Pitaevskii, Sov. Phys. Dokl. 8, 788 (1964); C. Herring and M. Flicker, Phys. Rev. 134, A362 (1964)] to calculate the asymptotic form of exchange interactions between hydrogen atoms in the ground state is extended to excited states. The approach is then applied to shallow centers in semiconductors. The problem of the asymptotic dependence of the exchange interactions in semiconductors is complicated by the multiple degeneracy of the ground state of an impurity (donor or acceptor) center in valley or band indices, crystalline anisotropy and strong spin-orbital interactions, especially for acceptor centers in III-V and II-VI groups semiconductors. Properties of two coupled centers in the dilute limit can be accessed experimentally, and the knowledge of the exact asymptotic expressions, in addition to being of fundamental interest, must be very helpful for numerical calculations and for interpolation of exchange forces in the case of intermediate concentrations. Our main conclusion concerns the sign of the magnetic interaction -- the ground state of a pair is always non-magnetic. Behavior of the exchange interactions in applied magnetic fields is also discussed

    Evidence for a backward peak in the gamma+d->pi^0+d cross section near the eta threshold

    Full text link
    High-quality cross sections for the reaction gamma+d->pi^0+d have been measured using the CLAS at Jefferson Lab over a wide energy range near and above the eta-meson photoproduction threshold. At backward c.m. angles for the outgoing pions, we observe a resonance-like structure near E_gamma=700 MeV. Our model analysis shows that it can be explained by eta excitation in the intermediate state. The effect is the result of the contribution of the N(1535)S_11 resonance to the amplitudes of the subprocesses occurring between the two nucleons and of a two-step process in which the excitation of an intermediate eta meson dominates.Comment: slightly modified title, additional paragraph and a table (Table 2) added on p. 5; to be submitted to EPJA, 6 pages, 3 figure

    Helicity of the W Boson in Lepton+Jets ttbar Events

    Get PDF
    We examine properties of ttbar candidates events in lepton+jets final states to establish the helicities of the W bosons in t->W+b decays. Our analysis is based on a direct calculation of a probability that each event corresponds to a ttbar final state, as a function of the helicity of the W boson. We use the 125 events/pb sample of data collected by the DO experiment during Run I of the Fermilab Tevatron collider at sqrt{s}=1.8 TeV, and obtain a longitudinal helicity fraction of F_0=0.56+/-0.31, which is consistent with the prediction of F_0=0.70 from the standard model

    Hard Single Diffraction in pbarp Collisions at root-s = 630 and 1800 GeV

    Get PDF
    Using the D0 detector, we have studied events produced in proton-antiproton collisions that contain large forward regions with very little energy deposition (``rapidity gaps'') and concurrent jet production at center-of-mass energies of root-s = 630 and 1800 Gev. The fractions of forward and central jet events associated with such rapidity gaps are measured and compared to predictions from Monte Carlo models. For hard diffractive candidate events, we use the calorimeter to extract the fractional momentum loss of the scattered protons.Comment: 11 pages 4 figures. submitted to PR
    • 

    corecore