21 research outputs found

    Mapping land-use fluxes for 2001–2020 from global models to national inventories

    Get PDF
    With the focus of climate policy shifting from pledges to implementation, there is an increasing need to track progress on climate change mitigation at country level, especially for the land-use sector. Despite new tools and models offering unprecedented monitoring opportunities, striking differences remain in estimations of anthropogenic land-use CO2 fluxes between the national greenhouse gas inventories (NGHGIs) used to assess compliance with the Paris Agreement, and the Global Carbon Budget and IPCC assessment reports, both based on global bookkeeping models (BMs).G.G. acknowledges funding from the EU’s Horizon 2020 VERIFY project (no. 776810). J.G.C. acknowledges the support of the Australian National Environmental Science Program - Climate Systems Hub. T.G. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under grant agreement #101003536 (ESM2025 project), and by the Austrian Science Fund (FWF) under grant agreement P31796-N29 (ERM project). The authors thank Peter Anthoni and Almut Arneth (LPJ-GUESS model) and Sebastian Lienert (LPX model

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    The role of forests in the EU climate policy: are we on the right track?

    No full text
    Background: The European Union (EU) has committed to achieve climate neutrality by 2050. This requires a rapid reduction of greenhouse gas (GHG) emissions and ensuring that any remaining emissions are balanced through CO2 removals. Forests play a crucial role in this plan: they are currently the main option for removing CO2 from the atmosphere and additionally, wood use can store carbon durably and help reduce fossil emissions. To stop and reverse the decline of the forest carbon sink, the EU has recently revised the regulation on land use, land-use change and forestry (LULUCF), and set a target of − 310 Mt CO2e net removals for the LULUCF sector in 2030. Results: In this study, we clarify the role of common concepts in forest management – net annual increment, harvest and mortality – in determining the forest sink. We then evaluate to what extent the forest sink is on track to meet the climate goals of the EU. For this assessment we use data from the latest national GHG inventories and a forest model (Carbon Budget Model). Our findings indicate that on the EU level, the recent decrease in increment and the increase in harvest and mortality are causing a rapid drop in the forest sink. Furthermore, continuing the past forest management practices is projected to further decrease the sink. Finally, we discuss options for enhancing the sinks through forest management while taking into account adaptation and resilience. Conclusions: Our findings show that the EU forest sink is quickly developing away from the EU climate targets. Stopping and reversing this trend requires rapid implementation of climate-smart forest management, with improved and more timely monitoring of GHG fluxes. This enhancement is crucial for tracking progress towards the EU’s climate targets, where the role of forests has become – and is expected to remain – more prominent than ever before. © 2023, The Author(s).The authors thank Simon Kay, Greet Maenhout and Peter Iversen for their insightful feedback and suggestions on a draft version of the manuscript, and two anonymous reviewers for their useful comments. The views expressed are purely those of the authors and may not under any circumstances be regarded as stating an official position of the European Commission or any other institution
    corecore