166 research outputs found

    Molecular beam epitaxy as a growth technique for achieving free-standing zinc-blende GaN and wurtzite AlxGa1-xN

    Get PDF
    Currently there is a high level of interest in the development of ultraviolet (UV) light sources for solid state lighting, optical sensors, surface decontamination and water purification. III-V semiconductor UV LEDs are now successfully manufactured using the AlGaN material system; however, their efficiency is still low. The majority of UV LEDs require AlxGa1-xN layers with compositions in the mid-range between AlN and GaN. Because there is a significant difference in the lattice parameters of GaN and AlN, AlxGa1-xN substrates would be preferable to those of either GaN or AlN for many ultraviolet device applications. However, the growth of AlxGa1-xN bulk crystals by any standard bulk growth techniques has not been developed so far. There are very strong electric polarization fields inside the wurtzite (hexagonal) group III-nitride structures. The charge separation within quantum wells leads to a significant reduction in the efficiency of optoelectronic device structures. Therefore, the growth of non-polar and semi-polar group III-nitride structures has been the subject of considerable interest recently. A direct way to eliminate polarization effects is to use non-polar (001) zinc-blende (cubic) III-nitride layers. However, attempts to grow zinc-blende GaN bulk crystals by anystandard bulk growth techniques were not successful. Molecular beam epitaxy (MBE) is normally regarded as an epitaxial technique for the growth of very thin layers with monolayer control of their thickness. In this study we have used plasma-assisted molecular beam epitaxy (PA MBE) and have produced for the first time free-standing layers of zinc-blende GaN up to 100 μm in thickness and up to 3-inch in diameter. We have shown that our newly developed PA-MBE process for the growth of zinc-blende GaN layers can also be used to achieve free-standing wurtzite AlxGa1-xN wafers. Zinc-blende and wurtzite AlxGa1-xN polytypes can be grown on different orientations of GaAs substrates - (001) and (111)B respectively. We have subsequently removed the GaAs using a chemical etch in order to produce free-standing GaN and AlxGa1-xN wafers. At a thickness of ∼30 μm, free-standing GaN and AlxGa1-xN wafers can easily be handled without cracking. Therefore, free-standing GaN and AlxGa1-xN wafers with thicknesses in the 30–100 μm range may be used as substrates for further growth of GaN and AlxGa1 xN-based structures and devices. We have compared different RF nitrogen plasma sources for the growth of thick nitride AlxGa1-xN films including a standard HD25 source from Oxford Applied Research and a novel high efficiency source from Riber. We have investigated a wide range of the growth rates from 0.2 to 3 μm/h. The use of highly efficient nitrogen RF plasma sources makes PA-MBE a potentially viable commercial process, since free-standing films can be achieved in a single day. Our results have demonstrated that MBE may be competitive with the other group III-nitrides bulk growth techniques in several important areas including production of free-standing zinc-blende (cubic) (Al)GaN and of free-standing wurtzite (hexagonal) AlGaN

    An Exact Formula for the Average Run Length to False Alarm of the Generalized Shiryaev-Roberts Procedure for Change-Point Detection under Exponential Observations

    Full text link
    We derive analytically an exact closed-form formula for the standard minimax Average Run Length (ARL) to false alarm delivered by the Generalized Shiryaev-Roberts (GSR) change-point detection procedure devised to detect a shift in the baseline mean of a sequence of independent exponentially distributed observations. Specifically, the formula is found through direct solution of the respective integral (renewal) equation, and is a general result in that the GSR procedure's headstart is not restricted to a bounded range, nor is there a "ceiling" value for the detection threshold. Apart from the theoretical significance (in change-point detection, exact closed-form performance formulae are typically either difficult or impossible to get, especially for the GSR procedure), the obtained formula is also useful to a practitioner: in cases of practical interest, the formula is a function linear in both the detection threshold and the headstart, and, therefore, the ARL to false alarm of the GSR procedure can be easily computed.Comment: 9 pages; Accepted for publication in Proceedings of the 12-th German-Polish Workshop on Stochastic Models, Statistics and Their Application

    Accretion, Primordial Black Holes and Standard Cosmology

    Full text link
    Primordial Black Holes evaporate due to Hawking radiation. We find that the evaporation time of primordial black holes increase when accretion of radiation is included.Thus depending on accretion efficiency more and more number of primordial black holes are existing today, which strengthens the idea that the primordial black holes are the proper candidate for dark matter.Comment: 11 pages, 3 figure

    Gross-Neveu Models, Nonlinear Dirac Equations, Surfaces and Strings

    Full text link
    Recent studies of the thermodynamic phase diagrams of the Gross-Neveu model (GN2), and its chiral cousin, the NJL2 model, have shown that there are phases with inhomogeneous crystalline condensates. These (static) condensates can be found analytically because the relevant Hartree-Fock and gap equations can be reduced to the nonlinear Schr\"odinger equation, whose deformations are governed by the mKdV and AKNS integrable hierarchies, respectively. Recently, Thies et al have shown that time-dependent Hartree-Fock solutions describing baryon scattering in the massless GN2 model satisfy the Sinh-Gordon equation, and can be mapped directly to classical string solutions in AdS3. Here we propose a geometric perspective for this result, based on the generalized Weierstrass spinor representation for the embedding of 2d surfaces into 3d spaces, which explains why these well-known integrable systems underlie these various Gross-Neveu gap equations, and why there should be a connection to classical string theory solutions. This geometric viewpoint may be useful for higher dimensional models, where the relevant integrable hierarchies include the Davey-Stewartson and Novikov-Veselov systems.Comment: 27 pages, 1 figur

    Measurement of 222Rn dissolved in water at the Sudbury Neutrino Observatory

    Full text link
    The technique used at the Sudbury Neutrino Observatory (SNO) to measure the concentration of 222Rn in water is described. Water from the SNO detector is passed through a vacuum degasser (in the light water system) or a membrane contact degasser (in the heavy water system) where dissolved gases, including radon, are liberated. The degasser is connected to a vacuum system which collects the radon on a cold trap and removes most other gases, such as water vapor and nitrogen. After roughly 0.5 tonnes of H2O or 6 tonnes of D2O have been sampled, the accumulated radon is transferred to a Lucas cell. The cell is mounted on a photomultiplier tube which detects the alpha particles from the decay of 222Rn and its daughters. The overall degassing and concentration efficiency is about 38% and the single-alpha counting efficiency is approximately 75%. The sensitivity of the radon assay system for D2O is equivalent to ~3 E(-15) g U/g water. The radon concentration in both the H2O and D2O is sufficiently low that the rate of background events from U-chain elements is a small fraction of the interaction rate of solar neutrinos by the neutral current reaction.Comment: 14 pages, 6 figures; v2 has very minor change

    Structures and waves in a nonlinear heat-conducting medium

    Full text link
    The paper is an overview of the main contributions of a Bulgarian team of researchers to the problem of finding the possible structures and waves in the open nonlinear heat conducting medium, described by a reaction-diffusion equation. Being posed and actively worked out by the Russian school of A. A. Samarskii and S.P. Kurdyumov since the seventies of the last century, this problem still contains open and challenging questions.Comment: 23 pages, 13 figures, the final publication will appear in Springer Proceedings in Mathematics and Statistics, Numerical Methods for PDEs: Theory, Algorithms and their Application

    A fourth generation, anomalous like-sign dimuon charge asymmetry and the LHC

    Get PDF
    A fourth chiral generation, with mt′m_{t^\prime} in the range ∼(300−500)\sim (300 - 500) GeV and a moderate value of the CP-violating phase can explain the anomalous like-sign dimuon charge asymmetry observed recently by the D0 collaboration. The required parameters are found to be consistent with constraints from other BB and KK decays. The presence of such quarks, apart from being detectable in the early stages of the LHC, would also have important consequences in the electroweak symmetry breaking sector.Comment: 18 pages, 9 figures, Figure 1 is modified, more discussions are added in section 2. new references adde

    Theory of disk accretion onto supermassive black holes

    Full text link
    Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and observational appearance of the accretion flow. Ongoing investigations into the dynamics of the plunging region, the origin of variability in the accretion process, and the evolution of warped, twisted, or eccentric disks are summarized.Comment: Mostly introductory review, to appear in "Supermassive black holes in the distant Universe", ed. A.J. Barger, Kluwer Academic Publishers, in pres

    Large-order NSPT for lattice gauge theories with fermions:the plaquette in massless QCD

    Get PDF
    Numerical Stochastic Perturbation Theory (NSPT) allows for perturbative computations in quantum field theory. We present an implementation of NSPT that yields results for high orders in the perturbative expansion of lattice gauge theories coupled to fermions. The zero-momentum mode is removed by imposing twisted boundary conditions; in turn, twisted boundary conditions require us to introduce a smell degree of freedom in order to include fermions in the fundamental representation. As a first application, we compute the critical mass of two flavours of Wilson fermions up to order O(β−7)O(\beta^{-7}) in a SU(3){\mathrm{SU}}(3) gauge theory. We also implement, for the first time, staggered fermions in NSPT. The residual chiral symmetry of staggered fermions protects the theory from an additive mass renormalisation. We compute the perturbative expansion of the plaquette with two flavours of massless staggered fermions up to order O(β−35)O(\beta^{-35}) in a SU(3){\mathrm{SU}}(3) gauge theory, and investigate the renormalon behaviour of such series. We are able to subtract the power divergence in the Operator Product Expansion (OPE) for the plaquette and estimate the gluon condensate in massless QCD. Our results confirm that NSPT provides a viable way to probe systematically the asymptotic behaviour of perturbative series in QCD and, eventually, gauge theories with fermions in higher representations.Comment: 49 pages, 28 figures. Revised version, to be published in EPJC. Some references added, typos corrected, and improved discussion on finite-volume effect
    • …
    corecore