412 research outputs found

    Cancer-Stimulated Mesenchymal Stem Cells Create a Carcinoma Stem Cell Niche via Prostaglandin E

    Get PDF
    Mesenchymal cells of the tumor-associated stroma are critical determinants of carcinoma cell behavior. We focus here on interactions of carcinoma cells with mesenchymal stem cells (MSC), which are recruited to the tumor stroma and, once present, are able to influence the phenotype of the carcinoma cells. We find that carcinoma cell–derived interleukin-1 (IL-1) induces prostaglandin E₂(PGE₂) secretion by MSCs. The resulting PGE₂ operates in an autocrine manner, cooperating with ongoing paracrine IL-1 signaling, to induce expression of a group of cytokines by the MSCs. The PGE₂ and cytokines then proceed to act in a paracrine fashion on the carcinoma cells to induce activation of β-catenin signaling and formation of cancer stem cells. These observations indicate that MSCs and derived cell types create a cancer stem cell niche to enable tumor progression via release of PGE₂ and cytokines. SIGNIFICANCE: Although PGE₂ has been implicated time and again in fostering tumorigenesis, its effects on carcinoma cells that contribute specifically to tumor formation are poorly understood. Here we show that tumor cells are able to elicit a strong induction of the COX-2/microsomal prostaglandin-E synthase-1 (mPGES-1)/PGE₂ axis in MSCs recruited to the tumor-associated stroma by releasing IL-1, which in turn elicits a mesenchymal/stem cell–like phenotype in the carcinoma cells.Breast Cancer Research FoundationNational Institutes of Health (U.S.) (U54CA163109)Massachusetts Institute of Technology. Ludwig Center for Cancer Researc

    Endothelial cyclooxygenase-1 paradoxically drives local vasoconstriction and atherogenesis despite underpinning prostacyclin generation

    Get PDF
    Endothelial cyclooxygenase-1–derived prostanoids, including prostacyclin, have clear cardioprotective roles associated with their anti-thrombotic potential but have also been suggested to have paradoxical pathological activities within arteries. To date it has not been possible to test the importance of this because no models have been available that separate vascular cyclooxygenase-1 products from those generated elsewhere. Here, we have used unique endothelial-specific cyclooxygenase-1 knockout mice to show that endothelial cyclooxygenase-1 produces both protective and pathological products. Functionally, however, the overall effect of these was to drive pathological responses in the context of both vasoconstriction in vitro and the development of atherosclerosis and vascular inflammation in vivo. These data provide the first demonstration of a pathological role for the vascular cyclooxygenase-1 pathway, highlighting its potential as a therapeutic target. They also emphasize that, across biology, the role of prostanoids is not always predictable due to unique balances of context, products, and receptors

    Reversible Suppression of Cyclooxygenase 2 (COX-2) Expression In Vivo by Inducible RNA Interference

    Get PDF
    Prostaglandin-endoperoxide synthase 2 (PTGS2), also known as cyclooxygenase 2 (COX-2), plays a critical role in many normal physiological functions and modulates a variety of pathological conditions. The ability to turn endogenous COX-2 on and off in a reversible fashion, at specific times and in specific cell types, would be a powerful tool in determining its role in many contexts. To achieve this goal, we took advantage of a recently developed RNA interference system in mice. An shRNA targeting the Cox2 mRNA 3'untranslated region was inserted into a microRNA expression cassette, under the control of a tetracycline response element (TRE) promoter. Transgenic mice containing the COX-2-shRNA were crossed with mice encoding a CAG promoter-driven reverse tetracycline transactivator, which activates the TRE promoter in the presence of tetracycline/doxycycline. To facilitate testing the system, we generated a knockin reporter mouse in which the firefly luciferase gene replaces the Cox2 coding region. Cox2 promoter activation in cultured cells from triple transgenic mice containing the luciferase allele, the shRNA and the transactivator transgene resulted in robust luciferase and COX-2 expression that was reversibly down-regulated by doxycycline administration. In vivo, using a skin inflammation-model, both luciferase and COX-2 expression were inhibited over 80% in mice that received doxycycline in their diet, leading to a significant reduction of infiltrating leukocytes. In summary, using inducible RNA interference to target COX-2 expression, we demonstrate potent, reversible Cox2 gene silencing in vivo. This system should provide a valuable tool to analyze cell type-specific roles for COX-2

    Paradoxical decrease in norepinephrine content of adult mouse spleen and heart after neonatal nerve growth factor treatment

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/21945/1/0000352.pd

    Cell-Specific Gene Deletion Reveals the Antithrombotic Function of COX1 and Explains the Vascular COX1/Prostacyclin Paradox.

    Get PDF
    Rationale: Endothelial cells (ECs) and platelets, which respectively produce antithrombotic prostacyclin and prothrombotic thromboxane A2, both express COX1 (cyclooxygenase1). Consequently, there has been no way to delineate any antithrombotic role for COX1-derived prostacyclin from the prothrombotic effects of platelet COX1. By contrast, an antithrombotic role for COX2, which is absent in platelets, is straightforward to demonstrate. This has resulted in an incomplete understanding of the relative importance of COX1 versus COX2 in prostacyclin production and antithrombotic protection in vivo. Objective: We sought to identify the role, if any, of COX1-derived prostacyclin in antithrombotic protection in vivo and compare this to the established protective role of COX2. Methods and Results: We developed vascular-specific COX1 knockout mice and studied them alongside endothelial-specific COX2 knockout mice. COX1 immunoreactivity and prostacyclin production were primarily associated with the endothelial layer of aortae; freshly isolated aortic ECs released >10-fold more prostacyclin than smooth muscle cells. Moreover, aortic prostacyclin production, the ability of aortic rings to inhibit platelet aggregation and plasma prostacyclin levels were reduced when COX1 was knocked out in ECs but not in smooth muscle cells. When thrombosis was measured in vivo after FeCl3 carotid artery injury, endothelial COX1 deletion accelerated thrombosis to a similar extent as prostacyclin receptor blockade. However, this effect was lost when COX1 was deleted from both ECs and platelets. Deletion of COX2 from ECs also resulted in a prothrombotic phenotype that was independent of local vascular prostacyclin production. Conclusions: These data demonstrate for the first time that, in healthy animals, endothelial COX1 provides an essential antithrombotic tone, which is masked when COX1 activity is lost in both ECs and platelets. These results help us define a new 2-component paradigm wherein thrombotic tone is regulated by both COX1 and COX2 through complementary but mechanistically distinct pathways

    Reduction in the risk of human breast cancer by selective cyclooxygenase-2 (COX-2) inhibitors

    Get PDF
    BACKGROUND: Epidemiologic and laboratory investigations suggest that nonsteroidal anti-inflammatory drugs (NSAIDs) have chemopreventive effects against breast cancer due to their activity against cyclooxygenase-2 (COX-2), the rate-limiting enzyme of the prostaglandin cascade. METHODS: We conducted a case control study of breast cancer designed to compare effects of selective and non-selective COX-2 inhibitors. A total of 323 incident breast cancer patients were ascertained from the James Cancer Hospital, Columbus, Ohio, during 2003–2004 and compared with 649 cancer free controls matched to the cases at a 2:1 ratio on age, race, and county of residence. Data on the past and current use of prescription and over the counter medications and breast cancer risk factors were ascertained using a standardized risk factor questionnaire. Effects of COX-2 inhibiting agents were quantified by calculating odds ratios (OR) and 95% confidence intervals. RESULTS: Results showed significant risk reductions for selective COX-2 inhibitors as a group (OR = 0.29, 95% CI = 0.14–0.59), regular aspirin (OR = 0.49, 95% CI = 0.26–0.94), and ibuprofen or naproxen (0.36, 95% CI = 0.18–0.72). Acetaminophen, a compound with negligible COX-2 activity and low dose aspirin (81 mg) produced no significant change in the risk of breast cancer. CONCLUSION: Selective COX-2 inhibitors (celecoxib and rofecoxib) were only recently approved for use in 1999, and rofecoxib (Vioxx) was withdrawn from the marketplace in 2004. Nevertheless, even in the short window of exposure to these compounds, the selective COX-2 inhibitors produced a significant (71%) reduction in the risk of breast cancer, underscoring their strong potential for breast cancer chemoprevention

    Increased Lysis of Stem Cells but Not Their Differentiated Cells by Natural Killer Cells; De-Differentiation or Reprogramming Activates NK Cells

    Get PDF
    The aims of this study are to demonstrate the increased lysis of stem cells but not their differentiated counterparts by the NK cells and to determine whether disturbance in cell differentiation is a cause for increased sensitivity to NK cell mediated cytotoxicity. Increased cytotoxicity and augmented secretion of IFN-Îł were both observed when PBMCs or NK cells were co-incubated with primary UCLA oral squamous carcinoma stem cells (UCLA-OSCSCs) when compared to differentiated UCLA oral squamous carcinoma cells (UCLA-OSCCs). In addition, human embryonic stem cells (hESCs) were also lysed greatly by the NK cells. Moreover, NK cells were found to lyse human Mesenchymal Stem Cells (hMSCs), human dental pulp stem cells (hDPSCs) and human induced pluripotent stem cells (hiPSCs) significantly more than their differentiated counterparts or parental lines from which they were derived. It was also found that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFÎşB or targeted knock down of COX2 in monocytes significantly augmented NK cell cytotoxicity and secretion of IFN-Îł. Taken together, these results suggest that stem cells are significant targets of the NK cell cytotoxicity. However, to support differentiation of a subset of tumor or healthy untransformed primary stem cells, NK cells may be required to lyse a number of stem cells and/or those which are either defective or incapable of full differentiation in order to lose their cytotoxic function and gain the ability to secrete cytokines (split anergy). Therefore, patients with cancer may benefit from repeated allogeneic NK cell transplantation for specific elimination of cancer stem cells

    NGF and proNGF Regulate Functionally Distinct mRNAs in PC12 Cells: An Early Gene Expression Profiling

    Get PDF
    The biological activities of NGF and of its precursor proNGF are quite distinct, due to different receptor binding profiles, but little is known about how proNGF regulates gene expression. Whether proNGF is a purely pro-apoptotic molecule and/or simply a “less potent NGF” is still a matter of debate. We performed experiments to address this question, by verifying whether a proNGF specific transcriptional signature, distinct from that of NGF, could be identified. To this aim, we studied gene expression regulation by proNGF and NGF in PC12 cells incubated for 1 and 4 hours with recombinant NGF and proNGF, in its wild-type or in a furin-cleavage resistant form. mRNA expression profiles were analyzed by whole genome microarrays at early time points, in order to identify specific profiles of NGF and proNGF. Clear differences between the mRNA profiles modulated by the three neurotrophin forms were identified. NGF and proNGF modulate remarkably distinct mRNA expression patterns, with the gene expression profile regulated by NGF being significantly more complex than that by proNGF, both in terms of the total number of differentially expressed mRNAs and of the gene families involved. Moreover, while the total number of genes modulated by NGF increases dramatically with time, that by proNGFs is unchanged or reduced. We identified a subset of regulated genes that could be ascribed to a “pure proNGF” signalling, distinct from the “pure NGF” one. We also conclude that the composition of mixed NGF and proNGF samples, when the two proteins coexist, influences the profile of gene expression. Based on this comparison of the gene expression profiles regulated by NGF and its proNGF precursor, we conclude that the two proteins activate largely distinct transcriptional programs and that the ratio of NGF to proNGF in vivo can profoundly influence the pattern of regulated mRNAs
    • …
    corecore