199 research outputs found
Synchronization in Networks of Identical Systems via Pinning: Application to Distributed Secondary Control of Microgrids
Motivated by the need for fast synchronized operation of power microgrids, we
analyze the problem of single and multiple pinning in networked systems. We
derive lower and upper bounds on the algebraic connectivity of the network with
respect to the reference signal. These bounds are utilized to devise a
suboptimal algorithm with polynomial complexity to find a suitable set of nodes
to pin the network effectively and efficiently. The results are applied to
secondary voltage pinning control design for a microgrid in islanded operation
mode. Comparisons with existing single and multiple pinning strategies clearly
demonstrates the efficacy of the obtained results.Comment: 11 pages, 9 figures, submitted to Transactions on Control Systems
Technolog
Comparison of Adaptive Control Architectures for Flutter Suppression
A study is conducted to derive and implement a state feedback model reference adaptive control (MRAC) solutions for a 2-D aeroelastic nonlinear system and in evaluating the robustness of different control strategies to damage leading to the deterioration of the structural stiffness characteristics. The standard MRAC, a modified MRAC and the adaptive controller are the three model reference adaptive control solutions analyzed. The standard direct MRAC solution serves as the threshold to assess whether or not the more complex algorithms are an effective improvement to it
Money on the Bookshelf: Using Children\u27s Books to Reach Limited Resource Families with Money Management Education
Helping families develop financial management skills and improve their communications about money is the goal of Money on the Bookshelf, a program built around children\u27s books and used by Nevada Cooperative Extension to target limited resource audiences. Results showed significant improvements in how often parents: (1) talked with their children about things that relate to money, (2) included their children in talks about how family money is used, and (3) used everyday events as opportunities to talk with their children about money
AI-aided holographic flow cytometry for label-free identification of ovarian cancer cells in the presence of unbalanced datasets
Liquid biopsy is a valuable emerging alternative to tissue biopsy with great potential in the noninvasive early diagnostics of cancer. Liquid biopsy based on single cell analysis can be a powerful approach to identify circulating tumor cells (CTCs) in the bloodstream and could provide new opportunities to be implemented in routine screening programs. Since CTCs are very rare, the accurate classification based on high-throughput and highly informative microscopy methods should minimize the false negative rates. Here, we show that holographic flow cytometry is a valuable instrument to obtain quantitative phase-contrast maps as input data for artificial intelligence (AI)-based classifiers. We tackle the problem of discriminating between A2780 ovarian cancer cells and THP1 monocyte cells based on the phase-contrast images obtained in flow cytometry mode. We compare conventional machine learning analysis and deep learning architectures in the non-ideal case of having a dataset with unbalanced populations for the AI training step. The results show the capacity of AI-aided holographic flow cytometry to discriminate between the two cell lines and highlight the important role played by the phase-contrast signature of the cells to guarantee accurate classification
“I Want That”: Human-in-the-Loop Control of a Wheelchair-Mounted Robotic Arm
Wheelchair-mounted robotic arms have been commercially available for a decade. In order to operate these robotic arms, a user must have a high level of cognitive function. Our research focuses on replacing a manufacturer-provided, menu-based interface with a vision-based system while adding autonomy to reduce the cognitive load. Instead of manual task decomposition and execution, the user explicitly designates the end goal, and the system autonomously retrieves the object. In this paper, we present the complete system which can autonomously retrieve a desired object from a shelf. We also present the results of a 15-week study in which 12 participants from our target population used our system, totaling 198 trials
Multiple metabolomics of uropathogenic E. coli reveal different information content in terms of metabolic potential compared to virulence factors.
No single analytical method can cover the whole metabolome and the choice of which platform to use may inadvertently introduce chemical selectivity. In order to investigate this we analysed a collection of uropathogenic Escherichia coli. The selected strains had previously undergone extensive characterisation using classical microbiological methods for a variety of metabolic tests and virulence factors. These bacteria were analysed using Fourier transform infrared (FT-IR) spectroscopy; gas chromatography mass spectrometry (GC-MS) after derivatisation of polar non-volatile analytes; as well as reversed-phase liquid chromatography mass spectrometry in both positive (LC-MS(+ve)) and negative (LC-MS(-ve)) electrospray ionisation modes. A comparison of the discriminatory ability of these four methods with the metabolic test and virulence factors was made using Procrustes transformations to ascertain which methods produce congruent results. We found that FT-IR and LC-MS(-ve), but not LC-MS(+ve), were comparable with each other and gave highly similar clustering compared with the virulence factors tests. By contrast, FT-IR and LC-MS(-ve) were not comparable to the metabolic tests, and we found that the GC-MS profiles were significantly more congruent with the metabolic tests than the virulence determinants. We conclude that metabolomics investigations may be biased to the analytical platform that is used and reflects the chemistry employed by the methods. We therefore consider that multiple platforms should be employed where possible and that the analyst should consider that there is a danger of false correlations between the analytical data and the biological characteristics of interest if the full metabolome has not been measured
Role of Pyruvate Dehydrogenase Kinase 4 in Regulation of Blood Glucose Levels
In the well-fed state a relatively high activity of the pyruvate dehydrogenase complex (PDC) reduces blood glucose levels by directing the carbon of pyruvate into the citric acid cycle. In the fasted state a relatively low activity of the PDC helps maintain blood glucose levels by conserving pyruvate and other three carbon compounds for gluconeogenesis. The relative activities of the pyruvate dehydrogenase kinases (PDKs) and the opposing pyruvate dehydrogenase phosphatases determine the activity of PDC in the fed and fasted states. Up regulation of PDK4 is largely responsible for inactivation of PDC in the fasted state. PDK4 knockout mice have lower fasting blood glucose levels than wild type mice, proving that up regulation of PDK4 is important for normal glucose homeostasis. In type 2 diabetes, up regulation of PDK4 also inactivates PDC, which promotes gluconeogenesis and thereby contributes to the hyperglycemia characteristic of this disease. When fed a high fat diet, wild type mice develop fasting hyperglycemia but PDK4 knockout mice remain euglycemic, proving that up regulation of PDK4 contributes to hyperglycemia in diabetes. These finding suggest PDK4 inhibitors might prove useful in the treatment of type 2 diabetes
The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function
The maintenance of flagellar length is believed to require both anterograde and retrograde intraflagellar transport (IFT). However, it is difficult to uncouple the functions of retrograde transport from anterograde, as null mutants in dynein heavy chain 1b (DHC1b) have stumpy flagella, demonstrating solely that retrograde IFT is required for flagellar assembly. We isolated a Chlamydomonas reinhardtii mutant (dhc1b-3) with a temperature-sensitive defect in DHC1b, enabling inducible inhibition of retrograde IFT in full-length flagella. Although dhc1b-3 flagella at the nonpermissive temperature (34 degrees C) showed a dramatic reduction of retrograde IFT, they remained nearly full-length for many hours. However, dhc1b-3 cells at 34 degrees C had strong defects in flagellar assembly after cell division or pH shock. Furthermore, dhc1b-3 cells displayed altered phototaxis and flagellar beat. Thus, robust retrograde IFT is required for flagellar assembly and function but is dispensable for the maintenance of flagellar length. Proteomic analysis of dhc1b-3 flagella revealed distinct classes of proteins that change in abundance when retrograde IFT is inhibited
- …