183 research outputs found

    Contribution to the aileron theory

    Get PDF
    In an attempt to treat theoretically the effect of ailerons, difficulty arises because an aileron may begin at any point of the wing. Hence the question arises as to how the transition of the lift distribution proceeds at such a point, since the effect of the aileron (i.e., the moment generated about the longitudinal axis) depends largely on this distribution. In order to answer this question regarding the lift distribution during irregular variations in the angle of attack at first independently of other influences, especially those of the wing tips, we have taken as the basis of the following theoretical discussion a wing of infinite span and constant chord which exhibits at one point an irregular variation in the angle of attack. As regards the mathematical treatment, we will first consider a wing with periodically recurring angle of attack

    Definition of the σW regulon of Bacillus subtilis in the absence of stress

    Get PDF
    Bacteria employ extracytoplasmic function (ECF) sigma factors for their responses to environmental stresses. Despite intensive research, the molecular dissection of ECF sigma factor regulons has remained a major challenge due to overlaps in the ECF sigma factor-regulated genes and the stimuli that activate the different ECF sigma factors. Here we have employed tiling arrays to single out the ECF σW regulon of the Gram-positive bacterium Bacillus subtilis from the overlapping ECF σX, σY, and σM regulons. For this purpose, we profiled the transcriptome of a B. subtilis sigW mutant under non-stress conditions to select candidate genes that are strictly σW-regulated. Under these conditions, σW exhibits a basal level of activity. Subsequently, we verified the σW-dependency of candidate genes by comparing their transcript profiles to transcriptome data obtained with the parental B. subtilis strain 168 grown under 104 different conditions, including relevant stress conditions, such as salt shock. In addition, we investigated the transcriptomes of rasP or prsW mutant strains that lack the proteases involved in the degradation of the σW anti-sigma factor RsiW and subsequent activation of the σW-regulon. Taken together, our studies identify 89 genes as being strictly σW-regulated, including several genes for non-coding RNAs. The effects of rasP or prsW mutations on the expression of σW-dependent genes were relatively mild, which implies that σW-dependent transcription under non-stress conditions is not strictly related to RasP and PrsW. Lastly, we show that the pleiotropic phenotype of rasP mutant cells, which have defects in competence development, protein secretion and membrane protein production, is not mirrored in the transcript profile of these cells. This implies that RasP is not only important for transcriptional regulation via σW, but that this membrane protease also exerts other important post-transcriptional regulatory functions

    State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology.

    Get PDF
    Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing

    Exploring the Cost Effectiveness of Shared Decision Making for Choosing between Disease-Modifying Drugs for Relapsing-Remitting Multiple Sclerosis in the Netherlands:A State Transition Model

    Get PDF
    Background Up to 31% of patients with relapsing-remitting multiple sclerosis (RRMS) discontinue treatment with disease-modifying drug (DMD) within the first year, and of the patients who do continue, about 40% are nonadherent. Shared decision making may decrease nonadherence and discontinuation rates, but evidence in the context of RRMS is limited. Shared decision making may, however, come at additional costs. This study aimed to explore the potential cost-effectiveness of shared decision making for RRMS in comparison with usual care, from a (limited) societal perspective over a lifetime. Methods An exploratory economic evaluation was conducted by adapting a previously developed state transition model that evaluates the cost-effectiveness of a range of DMDs for RRMS in comparison with the best supportive care. Three potential effects of shared decision making were explored: 1) a change in the initial DMD chosen, 2) a decrease in the patient's discontinuation in using the DMD, and 3) an increase in adherence to the DMD. One-way and probabilistic sensitivity analyses of a scenario that combined the 3 effects were conducted. Results Each effect separately and the 3 effects combined resulted in higher quality-adjusted life years (QALYs) and costs due to the increased utilization of DMD. A decrease in discontinuation of DMDs influenced the incremental cost-effectiveness ratio (ICER) most. The combined scenario resulted in an ICER of euro17,875 per QALY gained. The ICER was sensitive to changes in several parameters. Conclusion This study suggests that shared decision making for DMDs could potentially be cost-effective, especially if shared decision making would help to decrease treatment discontinuation. Our results, however, may depend on the assumed effects on treatment choice, persistence, and adherence, which are actually largely unknown

    Maternal diet and human milk composition: an updated systematic review

    Get PDF
    CONTEXT: Exclusive breastfeeding for 6 months after birth provides infants with the best start for life. A review by Bravi et al. summarized the importance of maternal diet as a determinant of human milk composition based on data up to 2015, but evidence on nutrient intake level was limited. OBJECTIVE: We updated the review by Bravi et al., critically assessed differences in study designs and sampling methods, and graphically visualized trends and associations. DATA SOURCES: PubMed was systematically searched for articles published between January 2015 and March 2021. DATA EXTRACTION: Article screening, selection, and data extraction was done by two independent researchers, including a risk of bias assessment based on 11 criteria. Articles were eligible when including: quantitative information, commonly used effect estimates, healthy mother-infant dyads. RESULTS: Twenty seven observational and five intervention studies were identified ( n  = 7,138) and combined with results of Bravi et al. Fatty acids were still the most studied human milk components in relation to maternal diet ( n  = 17 studies) with maternal fish intake being predominantly positively associated with milk ALA ( r  = 0.28-0.42), DHA ( r  = 0.24-0.46), and EPA ( r  = 0.25-0.28) content. PUFAs from diet were generally positively correlated with their concentrations in milk, while SFA intake was negatively associated with several fatty acids in milk. Studies on associations with maternal diet and milk carbohydrates, proteins, vitamins and minerals were limited in number and varied in methods and results. CONCLUSION: This updated review shows that evidence on the association between maternal diet and human milk fatty acids is rapidly increasing, but still diversified in methodology and results. Further studies, preferably intervention studies, assessing diet and milk carbohydrates, proteins, vitamins and minerals are needed to be able draw conclusions on the importance of maternal diet for human milk composition as a whole

    Systematic evaluation of non-animal test methods for skin sensitisation safety assessment

    Get PDF
    The need for non-animal data to assess skin sensitisation properties of substances, especially cosmetics ingredients, has spawned the development of many in vitro methods. As it is widely believed that no single method can provide a solution, the Cosmetics Europe Skin Tolerance Task Force has defined a three-phase framework for the development of a non-animal testing strategy for skin sensitisation potency prediction. The results of the first phase - systematic evaluation of 16 test methods - are presented here. This evaluation involved generation of data on a common set of ten substances in all methods and systematic collation of information including the level of standardisation, existing test data, potential for throughput, transferability and accessibility in cooperation with the test method developers. A workshop was held with the test method developers to review the outcome of this evaluation and to discuss the results. The evaluation informed the prioritisation of test methods for the next phase of the non-animal testing strategy development framework. Ultimately, the testing strategy - combined with bioavailability and skin metabolism data and exposure consideration - is envisaged to allow establishment of a data integration approach for skin sensitisation safety assessment of cosmetic ingredients

    Permeability of cellulose pulp membranes with nanocellulose.

    Get PDF
    In the quest to enhance filtration system performance and remove microscopic particles, researchers are increasingly interested in affordable materials made from renewable sources with low environmental impact. Cellulose stands out as one of the most promising materials due to its abundance in nature. In this study, we present a simple approach to manufacture cellulose foam with a microfibrillated cellulose (MFC) interface, intended to be used as a filter to capture airborne microparticles. Four different methods were employed to produce the membranes, aiming to analyze and compare the effectiveness of each process, including two distinct solvent exchange approaches and two solvent filtration techniques. Specifically, two membrane production methods were explored: (i) using water as a solvent, and (ii) employing acetone as a solvent. Regarding the solvent filtration process, two modalities were investigated: (i) natural filtration, and (ii) vacuum filtration. The MFC acted as reinforcement, promoting the formation of cross-links between the cellulose pulp fibers, thereby enhancing cellulose interfibrillar cohesion. An experimental system was utilized to assess pressure drop in a gas flow, and filter permeability was calculated. Overall, the membranes exhibited high permeability constants, emerging as a promising material for filtration processes

    Synapsin II Is Involved in the Molecular Pathway of Lithium Treatment in Bipolar Disorder

    Get PDF
    Bipolar disorder (BD) is a debilitating psychiatric condition with a prevalence of 1–2% in the general population that is characterized by severe episodic shifts in mood ranging from depressive to manic episodes. One of the most common treatments is lithium (Li), with successful response in 30–60% of patients. Synapsin II (SYN2) is a neuronal phosphoprotein that we have previously identified as a possible candidate gene for the etiology of BD and/or response to Li treatment in a genome-wide linkage study focusing on BD patients characterized for excellent response to Li prophylaxis. In the present study we investigated the role of this gene in BD, particularly as it pertains to Li treatment. We investigated the effect of lithium treatment on the expression of SYN2 in lymphoblastoid cell lines from patients characterized as excellent Li-responders, non-responders, as well as non-psychiatric controls. Finally, we sought to determine if Li has a cell-type-specific effect on gene expression in neuronal-derived cell lines. In both in vitro models, we found SYN2 to be modulated by the presence of Li. By focusing on Li-responsive BD we have identified a potential mechanism for Li response in some patients
    corecore