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KATIONAL ADVISCRY COEMITTEE FOR AERONAUTIOS. .
TECHNICAL MEMORANDUM NO. 543.

CONTRIBUTION TO THE AILERON THEORY.*

By A. Betz and E., Petersehn.

In an attempt to treat theoretically the effect of ailer-
ons, difficulty arises because an aileron may begin at any
point of the wing. Since the deflection of an aileron has the
same effect on the wing as increasing or decreasing the angle
of attack, a wing with aileron in action behaves like a wing
with irregularly varying angle of attack. From the wing theory
it is known, however, that the 1ift at such a point with irreg-
ularly varying angle of attack does not vary irregularly. Hence
the question arises as to de the transition #f the 1ift dié—
triwution proceeds at such a point, since the effect of the
aileron (i.e., the moment generated about the longitudinal axis)
depends largzely on_this distribution.

In order to answer this question regarding the 1ift distri-
bution during irregular variations in the angle of attack at
first independently of other influences, especially those of the
wing tips, we have taken as the basis of the following theoret-
ical discussion a wing of infinite span and constant chord which

exhibits at one point an irregular variation in the angle of

*"7ur Theorie der Querruder" from Zeitschrift fur angewandte
Mathematik und Mechanik, Volume VIII, 19238, ppe. 353-357.
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attack.* As regards the mathematical treatment, we will first

. . . @ . . . . -
consider a wing with periocdically recurring irregular angle of
attack (upper part of Fig. 1). Ultimately we can let the period

or an

1

extend to infinity and then obtain the desired result
infinitely long wing with a single point of irregular variation
in the angle of attack. The treatment of a periodically varia-
ble wing offers the advantage that the functions involved can
be expressed in a.Fourier series, which gilves éspecially simple
relations in the .present case.

In crder to express the 1ift distribution, we will seek the
circulation I' in terms of the distance x <from the point of
disturbance. Between the circulation I' and the 1ift per unit

length %%, there is known to be the relation

dA - 1
O pvrT (1)

in which p is the air density and v the flight speed. Ac-

cordingly the 1ift coefficient at the given point is

*The application of the results to wings of finite span is dis=
cussed by E. Petersohn, "Theoretische uné experimentelle Unter-
suchungen der unter Einwirkung von Querrudern an Tragflugeln auf-
tretenden Momente," Luftfahrtforschung, Vol. II, No. 3.

Another treatmen%, based on an elliptical wing, was accorded
the aileron problem by Dr. Max M. Hunk (N.A.C.A. Technical Report
No..191: "Elements of the Wing Section Theory and of the Wing
Theory," 1924). - ]

While the present artic]le was in press, another article, "The-
oretische Untersuchungen uber die Querruderwirkung beim Trag-
flugel,! by C. Wieselsberger, appeared on this subdbject (Report
No. 30 of the Aeronautical Research Institute, Tokyo Imperial
University). In this article the 1ift distribution over a wing
is approximately represented by a finite series of only eight
terms.
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— d A = al (2)

‘/p\vg.dx vt
\2

Ca

in which t represents the wing chord.
The 1ift coefficient of a wing section or profile in an un-
disturbed two-dimensional flow, can, with sufficient accuracy, be

assumed to be,a linear function of the angle of attack a .*

cg=c¢ (a - apg) - - - (3).
Th b = a Ca
Thereby c=—5

a characteristic constant of the wing section. For flat plates
the theoretical value is ¢ = 837 ; for thicker wing sections it
is-somewhat greater. -The actual values are somewhat smailer
than the theoretical.

From equations (2) and (3) we obtain the relation between

I' and a
P = c % (a- ao) (5)
where Gq is the angle of attack at which ¢, = O.- The angle

of attack of .the wing may vary 1rregu1arly from a, to a, (upper
part of Fig. 1). The circulations corresponding to these angles
of attack in undisturbed flow (i.e., for an infinitely long wing

with constant angle of attack) are then

r, = c 3 (@ -ao) (6)
and ‘ ’
Pg = C ij';‘ (aa - G'O) ) (7)

*Naturarly this does not hold itrue in the vicinity of the buf-
ble point or after the flow has separated from the wing.
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- L ) ) . L. L+ 1 .
For reasons of symmetTry a mean circulaition — g will

prevail at the point of irregularity. The circulation from
there on will approach asyumptotically the value [J on one side

and I'y, on the other side. We can therefore write

L + L IL - T
g T f | (8)

D=

in which € 1is a temporarily unknown function of x.' Our task
is to determine the function ¢ (x).

Tﬁe process of calculation is as follows. We develop «
in a Fourier series and put I' likewise in the form of a Fourier
series with temporarily unknown coefficients. Ffom this distri-
butioﬁ of I' we can calculate, by the well-known wing theory
method, the vertical induced velocities w on the wing, which

alter the effective angle of attack by the amount
‘Aoa=-2% . (9)
so that the effective angle of attack is

Q = o -

<l=

The circulation at every point x of the wing is calculated

from this effective angle of attack according to equation (5).

Since all functions are represented in the form Qf Fourier series,

the circulation distribution thus calculated is in the form of

a Fourier series. The still undetermined coefficients of this

'series cen be found by comparing the calculated circulation disf
7

AN

tribution with that originally assumed.
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The series for sn irregularly varying angle of attack is

2nx 1 - AMX 1 anx

a +G2 a. _a, a . i . .
—_ 1 + 1 2 = in —— + — = 4+ —_— e v e
5 5 TT(s , 5 sin 3 == = sin 5 - )
~ 1 ’ (10)
(Cf. Butte, 35th edition, Volume I, p.169.) For the dis- _
tribution of I' we write \
L+, T -T 2rx 2mx am
(11).

From the distribution of I' and according to the well-known cal-
culation method of the wing theory the induced velocity w be-
comes

wile 37 (12)

at a point on the wing x, distant from the point of disturb-

ance. The summation of I' according to equation (11)* gives

L T _— , \om
W:__?_E-Cl(gn_l_l) —S—l(:?,n+l) sin (21’1‘*‘1)—7—}2 (13)

Since this caloulation naturally holds good for any distance x,
and not simply foi a certain fized distance, the subscript 1 |
may be omitted and equation (13) would then represent in geﬁeral
the Telation between the induced velocity w and the distance
x from the point of disturbance.

We may express the effective angle of attack a, = a - w/v

as a function of x and from it calculate the circulation T

*L,, Prandtl, "Tragflugeltheorie} Fart I, Vier Abhandlungen zur
Bydrodynamik und Aerodynamik, Gottingen, 1937, published by J.
Springer, Berlin. _Under No. 14 it is shown that a circulation
distribution I' =T cos u x gives an induced velocity

_ B =
W_4I‘cosux 41'7

il

4

AN




. N .
: . . . . . .
) . B .
N 1. . ‘ : .
. . . o . 3 . Lo R :
.
A . E .~ - . N

. L3 . , R .
. . ’ B :
. - .
N ! ! '




N.A.CsA. Technical Memorandum Ko. 543

_ . vt w _ vt St %
P—Ca(a—ao—v/\—c—g—'li_—z—"—‘-—ao'i‘

al_%-4m 1 : Ny 2x

2

L - % -
1 T . anx
2 g @(gn+1) w7 (8n + 1) sin (2n + 1) 5= (14)

i
o)
olet

If we consider that, according to equations (6) and (7),

vty % F Q2 \ Y '+ I vt o - 0p I -T,
_ - | = ————— a — =
o T (3 %o, 2 ane ¢ 3 2 2

we obtain, by comparing the last equation with the original

equation for I' (equation 11), the following relation

-
w
N

oM 8

A(gns1) Sin (2n + 1) EfE

[ oL = 4 ct m
! 2 . anx
=58 [m - 7 O(ane) g@m)] sinzmil) 52 (25,

Since the coefficients of the corresponding terms of the two
Fourier series must be the same, we obtain, for the coefficients

a(gp+1) ©of the original summatiom for I', the expressiop

~ 4 _ ctnm
a(2n+1)_ = (zn m 1) il C(.(gn_*_l) (2n+ l)?
i 4 1 (16)
*(3n+l) " W {(gn + 1) 1 4 23% (2n + 1)
o, + 1,

For the desired function ¢ in equation (8) we therefore obtain

sin (2n + 1) 3Tx (17).

N

oM 8

4
T (2n + 1) 1 + Eg% (2n + 1)
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Thus we have solved the prcblem for periodical alternations
in the angle of attack. 1In ofder to adapt the results to the
case of a single point of disturbance, we must let the period
1 extend to infinity. For very large values of 1 and small
values of x all the terms in the above series having small
values of n approcach zero as a limit. For large values of ' n,
however, since n and n + 1 differ but little, we can replace
Z by an integral by introducing a uniformly varying quantity
A in place of the whole numbers n, so that 3n + 1 = 2A.

The series (equation 17) then becomes

= .
¢ - 4 I, sin 2 A & (18)
mTe 23A (1L +2vAN)
where, for brevity, we put
and : .
b = C tom (20)
41

This integral can be reduced to the well-known functions* sine

integral
g1t = b sz g, (21)
S z
and cosine integral
o)
C it = { £CS 2 g g4 (23)
: z

By partial fractional resolution the integral of equation

(18) can be transformed into

*E, Jahnke and F. Emde, "Funktionentafeln mit Formeln und Xurven,'

Leipzig, B. G. Teubner, 1923.
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o

s sin 2 A p
e 2 AN{(1L+23VN)

(o] ) e R
dN = sin 3 M M an - [ v sin 2 A U an
0 3 A

6 l+2u>\

By the introduction of 2 N u = z the first integral of the

right—-hand member of the above equation becomes
mn
Ly sinz gy =%
2 %

and by the introduction of % (1L +29v \) = y the second inte—'

gral becomes

oo

1 Bog _ ain M \Nay o 1 B T ; M
5 ﬁ/u (cos 5 sin y - sin v cos ¥} 5 005 (~ 5 - Si G) +
+ 4 sin B o1 B .»
2 ) )
By the further introduction of % = %% (eqﬁations 19 and 20)

we obtain

- 8x . 8x o BX _ 4ip 8% gy 8X
{ 3 ES 5 cos ot + Cco8 ot Si ot sin o Ci pvs

m
]
Aloo

C

]
7N
i+
.
!

3 gin 8% g1 8%\ 8x /+ 1 _ 3 gy 8%
= sin s Ci ct> cos Y ( 1 = gi ot)'

The behavior of the function ¢ for positi&e values of x is
shown in Figure 2. Negative values of x give the same curve
but with the opposite sign. For largg values of x the function

c¢(x) can be represented by the semiconvergent series

% %
3 2! 4! \
=‘_‘L’ — —— l-—-———+-—--'—o-o
€ 1 -7z < Z z Y,
into which =z = %% has been introduced for brevity. For small

values of x the function is Tepresented by the expression

*The positive sign corresponds to positive p and x; the nega-
tive sign to negative p and x.

+*The series can be used only so long as the terms decrease.
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(1 - C=1n 2) gz

m
Il
b= FaV]

(for z<« 1), 4in which € 1is the Euler canstant = 0.577.

Translation by
National Advisory Oommlttee
for Aeronautics.
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