45 research outputs found

    Molecular cloning and characterization of a highly selective chemokine-binding protein from the tick Rhipicephalus sanguineus.

    Get PDF
    Abstract Ticks are blood-feeding parasites that secrete a number of immuno-modulatory factors to evade the host immune response. Saliva isolated from different species of ticks has recently been shown to contain chemokine neutralizing activity. To characterize this activity, we constructed a cDNA library from the salivary glands of the common brown dog tick, Rhipicephalus sanguineus. Pools of cDNA clones from the library were transfected into HEK293 cells, and the conditioned media from the transfected cells were tested for chemokine binding activity by chemical cross-linking to radiolabeled CCL3 followed by SDS-PAGE. By de-convolution of a single positive pool of 270 clones, we identified a full-length cDNA encoding a protein of 114 amino acids, which after signal peptide cleavage was predicted to yield a mature protein of 94 amino acids that we called Evasin-1. Recombinant Evasin-1 was produced in HEK293 cells and in insect cells. Using surface plasmon resonance we were able to show that Evasin-1 was exquisitely selective for 3 CC chemokines, CCL3 and CCL4 and the closely related chemokine CCL18, with KD values of 0.16, 0.81, and 3.21 nm, respectively. The affinities for CCL3 and CCL4 were confirmed in competition receptor binding assays. Analysis by size exclusion chromatography demonstrated that Evasin-1 was monomeric and formed a 1:1 complex with CCL3. Thus, unlike the other chemokine-binding proteins identified to date from viruses and from the parasitic worm Schistosoma mansoni, Evasin-1 is highly specific for a subgroup of CC chemokines, which may reflect a specific role for these chemokines in host defense against parasites

    Ticks produce highly selective chemokine binding proteins with antiinflammatory activity

    Get PDF
    Bloodsucking parasites such as ticks have evolved a wide variety of immunomodulatory proteins that are secreted in their saliva, allowing them to feed for long periods of time without being detected by the host immune system. One possible strategy used by ticks to evade the host immune response is to produce proteins that selectively bind and neutralize the chemokines that normally recruit cells of the innate immune system that protect the host from parasites. We have identified distinct cDNAs encoding novel chemokine binding proteins (CHPBs), which we have termed Evasins, using an expression cloning approach. These CHBPs have unusually stringent chemokine selectivity, differentiating them from broader spectrum viral CHBPs. Evasin-1 binds to CCL3, CCL4, and CCL18; Evasin-3 binds to CXCL8 and CXCL1; and Evasin-4 binds to CCL5 and CCL11. We report the characterization of Evasin-1 and -3, which are unrelated in primary sequence and tertiary structure, and reveal novel folds. Administration of recombinant Evasin-1 and -3 in animal models of disease demonstrates that they have potent antiinflammatory properties. These novel CHBPs designed by nature are even smaller than the recently described single-domain antibodies (Hollinger, P., and P.J. Hudson. 2005. Nat. Biotechnol. 23:1126–1136), and may be therapeutically useful as novel antiinflammatory agents in the future

    An in vitro model to assess the immunosuppressive effect of tick saliva on the mobilization of inflammatory monocyte-derived cells

    Get PDF
    Tick-borne pathogens cause potent infections. These pathogens benefit from molecules contained in tick saliva that have evolved to modulate host innate and adaptive immune responses. This is called "saliva-activated transmission" and enables tick-borne pathogens to evade host immune responses. Ticks feed on their host for relatively long periods; thus, mechanisms counteracting the inflammation-driven recruitment and activation of innate effector cells at the bite site, are an effective strategy to escape the immune response. Here, we developed an original in vitro model to evaluate and to characterize the immunomodulatory effects of tick saliva that prevent the establishment of a local inflammatory immune response. This model mimics the tick bite and enables the assessment of the effect of saliva on the inflammatory-associated dynamic recruitment of cells from the mononuclear phagocyte system. Using this model, we were able to recapitulate the dual effect of tick saliva on the mobilization of inflammatory monocyte-derived cells, i.e. (i) impaired recruitment of monocytes from the blood to the bite wound; and (ii) poor mobilization of monocyte-derived cells from the skin to the draining lymph node. This simple tool reconstitutes the effect of tick saliva in vivo, which we characterized in the mouse, and should enable the identification of important factors facilitating pathogen infection. Furthermore, this model may be applied to the characterization of any pathogen-derived immunosuppressive molecule affecting the establishment of the inflammatory immune response

    Statins Disrupt CCR5 and RANTES Expression Levels in CD4(+) T Lymphocytes In Vitro and Preferentially Decrease Infection of R5 Versus X4 HIV-1

    Get PDF
    BACKGROUND: Statins have previously been shown to reduce the in vitro infection of human immunodeficiency virus type 1 (HIV-1) through modulation of Rho GTPase activity and lipid raft formation at the cell surface, as well as by disrupting LFA-1 incorporation into viral particles. PRINCIPLE FINDINGS: Here we demonstrate that treatment of an enriched CD4(+) lymphocyte population with lovastatin (Lov), mevastatin (Mev) and simvastatin (activated and non-activated, Sim(A) and Sim(N), respectively) can reduce the cell surface expression of the CC-chemokine receptor CCR5 (P<0.01 for Sim(A) and Lov). The lowered CCR5 expression was associated with down-regulation of CCR5 mRNA expression. The CC-chemokine RANTES protein and mRNA expression levels were slightly increased in CD4(+) enriched lymphocytes treated with statins. Both R5 and X4 HIV-1 were reduced for their infection of statin-treated cells; however, in cultures where statins were removed and where a decrease in CCR5 expression was observed, there was a preferential inhibition of infection with an R5 versus X4 virus. CONCLUSIONS: The results indicate that the modulation of CC-chemokine receptor (CCR5) and CC-chemokine (RANTES) expression levels should be considered as contributing to the anti-viral effects of statins, preferentially inhibiting R5 viruses. This observation, in combination with the immunomodulatory activity exerted by statins, suggests they may possess more potent anti-HIV-1 activity when applied during the early stages of infection or in lowering viral transmission. Alternatively, statin treatment could be considered as a way to modulate immune induction such as during vaccination protocols

    Structural Basis of Chemokine Sequestration by CrmD, a Poxvirus-Encoded Tumor Necrosis Factor Receptor

    Get PDF
    Pathogens have evolved sophisticated mechanisms to evade detection and destruction by the host immune system. Large DNA viruses encode homologues of chemokines and their receptors, as well as chemokine-binding proteins (CKBPs) to modulate the chemokine network in host response. The SECRET domain (smallpox virus-encoded chemokine receptor) represents a new family of viral CKBPs that binds a subset of chemokines from different classes to inhibit their activities, either independently or fused with viral tumor necrosis factor receptors (vTNFRs). Here we present the crystal structures of the SECRET domain of vTNFR CrmD encoded by ectromelia virus and its complex with chemokine CX3CL1. The SECRET domain adopts a β-sandwich fold and utilizes its β-sheet I surface to interact with CX3CL1, representing a new chemokine-binding manner of viral CKBPs. Structure-based mutagenesis and biochemical analysis identified important basic residues in the 40s loop of CX3CL1 for the interaction. Mutation of corresponding acidic residues in the SECRET domain also affected the binding for other chemokines, indicating that the SECRET domain binds different chemokines in a similar manner. We further showed that heparin inhibited the binding of CX3CL1 by the SECRET domain and the SECRET domain inhibited RAW264.7 cell migration induced by CX3CL1. These results together shed light on the structural basis for the SECRET domain to inhibit chemokine activities by interfering with both chemokine-GAG and chemokine-receptor interactions

    Long-Term Programming of Antigen-Specific Immunity from Gene Expression Signatures in the PBMC of Rhesus Macaques Immunized with an SIV DNA Vaccine

    Get PDF
    While HIV-1-specific cellular immunity is thought to be critical for the suppression of viral replication, the correlates of protection have not yet been determined. Rhesus macaques (RM) are an important animal model for the study and development of vaccines against HIV/AIDS. Our laboratory has helped to develop and study DNA-based vaccines in which recent technological advances, including genetic optimization and in vivo electroporation (EP), have helped to dramatically boost their immunogenicity. In this study, RMs were immunized with a DNA vaccine including individual plasmids encoding SIV gag, env, and pol alone, or in combination with a molecular adjuvant, plasmid DNA expressing the chemokine ligand 5 (RANTES), followed by EP. Along with standard immunological assays, flow-based activation analysis without ex vivo restimulation and high-throughput gene expression analysis was performed. Strong cellular immunity was induced by vaccination which was supported by all assays including PBMC microarray analysis that identified the up-regulation of 563 gene sequences including those involved in interferon signaling. Furthermore, 699 gene sequences were differentially regulated in these groups at peak viremia following SIVmac251 challenge. We observed that the RANTES-adjuvanted animals were significantly better at suppressing viral replication during chronic infection and exhibited a distinct pattern of gene expression which included immune cell-trafficking and cell cycle genes. Furthermore, a greater percentage of vaccine-induced central memory CD8+ T-cells capable of an activated phenotype were detected in these animals as measured by activation analysis. Thus, co-immunization with the RANTES molecular adjuvant followed by EP led to the generation of cellular immunity that was transcriptionally distinct and had a greater protective efficacy than its DNA alone counterpart. Furthermore, activation analysis and high-throughput gene expression data may provide better insight into mechanisms of viral control than may be observed using standard immunological assays

    Culture of human mesenchymal stem cells on microcarriers in a 5 l stirred-tank bioreactor

    Get PDF
    This article was published in the journal, Biotechnology Letters [© Springer Science+Business Media] and the definitive version is available at: http://dx.doi.org/10.1007/s10529-013-1211-9For the first time, fully functional human mesenchymal stem cells (hMSCs) have been cultured at the litre-scale on microcarriers in a stirred-tank 5 l bioreactor, (2.5 l working volume) and were harvested via a potentially scalable detachment protocol that allowed for the successful detachment of hMSCs from the cell-microcarrier suspension. Over 12 days, the dissolved O2 concentration was >45 % of saturation and the pH between 7.2 and 6.7 giving a maximum cell density in the 5 l bioreactor of 1.7 × 105 cells/ml; this represents >sixfold expansion of the hMSCs, equivalent to that achievable from 65 fully-confluent T-175 flasks. During this time, the average specific O2 uptake of the cells in the 5 l bioreactor was 8.1 fmol/cell h and, in all cases, the 5 l bioreactors outperformed the equivalent 100 ml spinner-flasks run in parallel with respect to cell yields and growth rates. In addition, yield coefficients, specific growth rates and doubling times were calculated for all systems. Neither the upstream nor downstream bioprocessing unit operations had a discernible effect on cell quality with the harvested cells retaining their immunophenotypic markers, key morphological features and differentiation capacity

    A Deep Insight into the Sialotranscriptome of the Gulf Coast Tick, Amblyomma maculatum

    Get PDF
    Background: Saliva of blood sucking arthropods contains compounds that antagonize their hosts ’ hemostasis, which include platelet aggregation, vasoconstriction and blood clotting; saliva of these organisms also has anti-inflammatory and immunomodullatory properties. Perhaps because hosts mount an active immune response against these compounds, the diversity of these compounds is large even among related blood sucking species. Because of these properties, saliva helps blood feeding as well as help the establishment of pathogens that can be transmitted during blood feeding. Methodology/Principal Findings: We have obtained 1,626,969 reads by pyrosequencing a salivary gland cDNA library from adult females Amblyomma maculatum ticks at different times of feeding. Assembly of this data produced 72,441 sequences larger than 149 nucleotides from which 15,914 coding sequences were extracted. Of these, 5,353 had.75 % coverage to their best match in the non-redundant database from the National Center for Biotechnology information, allowing for the deposition of 4,850 sequences to GenBank. The annotated data sets are available as hyperlinked spreadsheets. Putative secreted proteins were classified in 133 families, most of which have no known function. Conclusions/Significance: This data set of proteins constitutes a mining platform for novel pharmacologically activ

    Towards a new phenotype for tick resistance in beef and dairy cattle:a review

    Get PDF
    About 80% of the world's cattle are affected by ticks and tick-borne diseases, both of which cause significant production losses. Cattle host resistance to ticks is the most important factor affecting the economics of tick control, but it is largely neglected in tick-control programs due to technical difficulties and costs associated with identifying individual-animal variation in resistance. The present paper reviews the scientific literature to identify factors affecting resistance of cattle to ticks and the biological mechanisms of host tick resistance, to develop alternative phenotype(s) for tick resistance. If new cost-effective phenotype(s) can be developed and validated, then tick resistance of cattle could be genetically improved using genomic selection, and incorporated into breeding objectives to simultaneously improve cattle productive attributes and tick resistance. The phenotype(s) could also be used to improve tick control by using cattle management. On the basis of the present review, it is recommended that three possible phenotypes (haemolytic analysis measures of skin hypersensitivity reactions simplified artificial tick infestations) be further developed to determine their practical feasibility for consistently, cost-effectively and reliably measuring cattle tick resistance in thousands of individual animals in commercial and smallholder farmer herds in tropical and subtropical areas globally. During evaluation of these potential new phenotypes, additional measurements should be included to determine the possibility of developing a volatile-based resistance phenotype, to simultaneously improve cattle resistance to both ticks and biting flies. Because the current measurements of volatile chemistry do not satisfy the requirements of a simple, cost-effective phenotype for use in commercial cattle herds, consideration should also be given to inclusion of potentially simpler measures to enable indirect genetic selection for volatile-based resistance to ticks
    corecore