350 research outputs found

    A Direct Distance to the LMC Cepheid HV 12198 from the Infrared Surface Brightness Technique

    Get PDF
    We report on a first application of the infrared surface brightness technique on a Cepheid in the Large Magellanic Cloud, the variable HV 12198 in the young globular cluster NGC 1866. From this one star, we determine a distance modulus of 18.42 +- 0.10 (random and systematic uncertainty) to the cluster. When the results on further member Cepheids in NGC 1866 become available, we expect to derive the distance to the LMC with a +- 3-4 percent accuracy, including systematic errors, from this technique.Comment: 4 pages, 4 figures, accepted in ApJ Letter

    The Baade-Wesselink p-factor applicable to LMC Cepheids

    Full text link
    Context. Recent observations of LMC Cepheids bring new constraints on the slope of the period-projection factor relation (hereafter Pp relation) that is currently used in the Baade-Wesselink (hereafter BW) method of distance determination. The discrepancy between observations and theoretical analysis is particularly significant for short period Cepheids Aims. We investigate three physical effects that might possibly explain this discrepancy: (1) the spectroscopic S/N that is systematically lower for LMC Cepheids (around 10) compared to Galactic ones (up to 300), (2) the impact of the metallicity on the dynamical structure of LMC Cepheids, and (3) the combination of infrared photometry/interferometry with optical spectroscopy. Methods. To study the S/N we use a very simple toy model of Cepheids. The impact of metallicity on the projection factor is based on the hydrodynamical model of delta Cep already described in previous studies. This model is also used to derive the position of the optical versus infrared photospheric layers. Results. We find no significant effect of S/N, metallicity, and optical-versus-infrared observations on the Pp relation. Conclusions. The Pp relation of Cepheids in the LMC does not differ from the Galactic relation. This allows its universal application to determine distances to extragalactic Cepheids via BW analysis.Comment: accepted in A&A LETTER

    The long-period Galactic Cepheid RS Puppis - III. A geometric distance from HST polarimetric imaging of its light echoes

    Full text link
    As one of the most luminous Cepheids in the Milky Way, the 41.5-day RS Puppis is an analog of the long-period Cepheids used to measure extragalactic distances. An accurate distance to this star would therefore help anchor the zero-point of the bright end of the period-luminosity relation. But, at a distance of about 2 kpc, RS Pup is too far away for measuring a direct trigonometric parallax with a precision of a few percent with existing instrumentation. RS Pup is unique in being surrounded by a reflection nebula, whose brightness varies as pulses of light from the Cepheid propagate outwards. We present new polarimetric imaging of the nebula obtained with HST/ACS. The derived map of the degree of linear polarization pL allows us to reconstruct the three-dimensional structure of the dust distribution. To retrieve the scattering angle from the pL value, we consider two different polarization models, one based on a Milky Way dust mixture and one assuming Rayleigh scattering. Considering the derived dust distribution in the nebula, we adjust a model of the phase lag of the photometric variations over selected nebular features to retrieve the distance of RS Pup. We obtain a distance of 1910 +/- 80 pc (4.2%), corresponding to a parallax of 0.524 +/- 0.022 mas. The agreement between the two polarization models we considered is good, but the final uncertainty is dominated by systematics in the adopted model parameters. The distance we obtain is consistent with existing measurements from the literature, but light echoes provide a distance estimate that is not subject to the same systematic uncertainties as other estimators (e.g. the Baade-Wesselink technique). RS Pup therefore provides an important fiducial for the calibration of systematic uncertainties of the long-period Cepheid distance scale.Comment: 14 pages, 14 figures, accepted for publication in Astronomy & Astrophysic

    The Araucaria Project. An improved distance to the Sculptor spiral galaxy NGC 300 from its Cepheid variables

    Full text link
    In a previous paper, we reported on the discovery of more than a hundred new Cepheid variables in the Sculptor Group spiral NGC 300 from wide-field images taken in the B and V photometric bands at ESO/La Silla. In this paper, we present additional VI data, derive improved periods and mean magnitudes for the variables, and construct period-luminosity relations in the V, I and the reddening-independent (V-I) Wesenheit bands using 58 Cepheid variables with periods between 11 and 90 days. We obtain tightly defined relations, and by fitting the slopes determined for the LMC Cepheids by the OGLE II Project we obtain reddening-corrected distances to the galaxy in all bands. We adopt as our best value the distance derived from the reddening-free Wesenheit magnitudes, which is 26.43 ±\pm 0.04 (random) ±\pm 0.05 (systematic) mag. We argue that our current distance result for NGC 300 is the most accurate which has so far been obtained using Cepheid variables, and that it is largely free from systematic effects due to metallicity, blending, and sample selection. It agrees very well with the recent distance determination from the tip of the red giant branch method obtained from HST data by Butler et al. (2004), and it is consistent with the Cepheid distance to NGC 300 which was derived by Freedman et al. (2001) from CCD photometry of a smaller sample of stars.Comment: Latex, Astronomical Journal in pres

    The long-period Galactic Cepheid RS Puppis - II. 3D structure and mass of the nebula from VLT/FORS polarimetry

    Full text link
    The long-period Cepheid RS Pup is surrounded by a large dusty nebula reflecting the light from the central star. Due to the changing luminosity of the central source, light echoes propagate into the nebula. This remarkable phenomenon was the subject of Paper I.The origin and physical properties of the nebula are however uncertain: it may have been created through mass loss from the star itself, or it could be the remnant of a pre-existing interstellar cloud. Our goal is to determine the 3D structure of the nebula, and estimate its mass. Knowing the geometrical shape of the nebula will also allow us to retrieve the distance of RS Pup in an unambiguous manner using a model of its light echoes (in a forthcoming work). The scattering angle of the Cepheid light in the circumstellar nebula can be recovered from its degree of linear polarization. We thus observed the nebula surrounding RS Pup using the polarimetric imaging mode of the VLT/FORS instrument, and obtained a map of the degree and position angle of linear polarization. From our FORS observations, we derive a 3D map of the distribution of the dust, whose overall geometry is an irregular and thin layer. The nebula does not present a well-defined symmetry. Using a simple model, we derive a total dust mass of M(dust) = 2.9 +/- 0.9 Msun for the dust within 1.8 arcmin of the Cepheid. This translates into a total mass of M(gas+dust) = 290 +/- 120 Msun, assuming a dust-to-gas ratio of 1.0 +/- 0.3 %. The high mass of the dusty nebula excludes that it was created by mass-loss from the star. However, the thinness nebula is an indication that the Cepheid participated to its shaping, e.g. through its radiation pressure or stellar wind. RS Pup therefore appears as a regular long-period Cepheid located in an exceptionally dense interstellar environment.Comment: 14 pages, 21 figures. Accepted for publication in A&

    Improved Baade-Wesselink surface-brightness relations

    Full text link
    Recent, and older accurate, data on (limb-darkened) angular diameters is compiled for 221 stars, as well as BVRIJK[12][25] magnitudes for those objects, when available. Nine stars (all M-giants or supergiants) showing excess in the [12-25] colour are excluded in the analysis as this may indicate the present of dust influencing the optical and near-infrared colours as well. Based on this large sample, Baade-Wesselink surface-brightness (SB) relations are presented for dwarfs, giants, supergiants and dwarfs in the optical and near-infrared. M-giants are found to follow different SB-relations from non-M giants, in particular in V-(V-R). The preferred relation for non-M giants are compared to earlier relation by Fouque & Gieren (1997, based on 10 stars) and Nordgren et al. (2002, based on 57 stars). Increasing the sample size does not lead to a lower rms value. It is shown that the residuals do not correlate with metallicity at a significant level. The finally adopted observed angular diameters are compared to those predicted by Cohen et al. (1999) for 45 stars in common, and there is reasonable overall, to good agreement when \theta <6 mas. Finally, I comment on the common practice in the literature to average, and then fix, the zero point of the V-(V-K), V-(V-R) and K-(J-K) relations, and then re-derive the slopes. Such a common zero point at zero colour is not expected from model atmospheres for the (V-R) colour and depends on gravity. Relations derived in this way may be biased.Comment: accepted for publication in the MNRA

    EUCLID : Dark Universe Probe and Microlensing planet Hunter

    Full text link
    There is a remarkable synergy between requirements for Dark Energy probes by cosmic shear measurements and planet hunting by microlensing. Employing weak and strong gravitational lensing to trace and detect the distribution of matter on cosmic and Galactic scales, but as well as to the very small scales of exoplanets is a unique meeting point from cosmology to exoplanets. It will use gravity as the tool to explore the full range of masses not accessible by any other means. EUCLID is a 1.2m telescope with optical and IR wide field imagers and slitless spectroscopy, proposed to ESA Cosmic Vision to probe for Dark Energy, Baryonic acoustic oscillation, galaxy evolution, and an exoplanet hunt via microlensing. A 3 months microlensing program will already efficiently probe for planets down to the mass of Mars at the snow line, for free floating terrestrial or gaseous planets and habitable super Earth. A 12+ months survey would give a census on habitable Earth planets around solar like stars. This is the perfect complement to the statistics that will be provided by the KEPLER satellite, and these missions combined will provide a full census of extrasolar planets from hot, warm, habitable, frozen to free floating.Comment: 6 pages 3 figures, invited talk in Pathways towards habitable planets, Barcelona, Sept 200

    V371 Per - A Thick-Disk, Short-Period F/1O Cepheid

    Get PDF
    V371 Per was found to be a double-mode Cepheid with a fundamental mode period of 1.738 days, the shortest among Galactic beat Cepheids, and an unusually high period ratio of 0.731, while the other Galactic beat Cepheids have period ratios between 0.697 and 0.713. The latter suggests that the star has a metallicity [Fe/H] between -1 and -0.7. The derived distance from the Galactic Plane places it in the Thick Disk or the Halo, while all other Galactic beat Cepheids belong to the Thin Disk. There are indications from historical data that both the fundamental and first overtone periods have lengthened.Comment: Accepted for publication in MNRA

    Towards A Census of Earth-mass Exo-planets with Gravitational Microlensing

    Full text link
    Thirteen exo-planets have been discovered using the gravitational microlensing technique (out of which 7 have been published). These planets already demonstrate that super-Earths (with mass up to ~10 Earth masses) beyond the snow line are common and multiple planet systems are not rare. In this White Paper we introduce the basic concepts of the gravitational microlensing technique, summarise the current mode of discovery and outline future steps towards a complete census of planets including Earth-mass planets. In the near-term (over the next 5 years) we advocate a strategy of automated follow-up with existing and upgraded telescopes which will significantly increase the current planet detection efficiency. In the medium 5-10 year term, we envision an international network of wide-field 2m class telescopes to discover Earth-mass and free-floating exo-planets. In the long (10-15 year) term, we strongly advocate a space microlensing telescope which, when combined with Kepler, will provide a complete census of planets down to Earth mass at almost all separations. Such a survey could be undertaken as a science programme on Euclid, a dark energy probe with a wide-field imager which has been proposed to ESA's Cosmic Vision Programme.Comment: 10 pages. White Paper submission to the ESA Exo-Planet Roadmap Advisory Team. See also "Inferring statistics of planet populations by means of automated microlensing searches" by M. Dominik et al. (arXiv:0808.0004

    Pinning down the ram-pressure-induced halt of star formation in the Virgo cluster spiral galaxy NGC 4388. A joint inversion of spectroscopic and photometric data

    Full text link
    In a galaxy cluster, the evolution of spiral galaxies depends on their cluster environment. Ram pressure due to the rapid motion of a spiral galaxy within the hot intracluster medium removes the galaxy's interstellar medium from the outer disk. Once the gas has left the disk, star formation stops. The passive evolution of the stellar populations should be detectable in optical spectroscopy and multi-wavelength photometry. The goal of our study is to recover the stripping age of the Virgo spiral galaxy NGC 4388, i.e. the time elapsed since the halt of star formation in the outer galactic disk using a combined analysis of optical spectra and photometry. We performed VLT FORS2 long-slit spectroscopy of the inner star-forming and outer gas-free disk of NGC 4388. We developed a non-parametric inversion tool that allows us to reconstruct the star formation history of a galaxy from spectroscopy and photometry. The tool was tested on a series of mock data using Monte Carlo simulations. The results from the non-parametric inversion were refined by applying a parametric inversion method. The star formation history of the unperturbed galactic disk is flat. The non-parametric method yields a rapid decline of star formation < 200 Myr ago in the outer disk. The parametric method is not able to distinguish between an instantaneous and a long-lasting star formation truncation. The time since the star formation has dropped by a factor of two from its pre-stripping value is 190 +- 30 Myr. We are able to give a precise stripping age that is consistent with revised dynamical models.Comment: 12 pages, 10 figures, accepted for publication in A&
    • …
    corecore