33,859,488 research outputs found

    Calculation of statistical entropic measures in a model of solids

    Full text link
    In this work, a one-dimensional model of crystalline solids based on the Dirac comb limit of the Kronig-Penney model is considered. From the wave functions of the valence electrons, we calculate a statistical measure of complexity and the Fisher-Shannon information for the lower energy electronic bands appearing in the system. All these magnitudes present an extremal value for the case of solids having half-filled bands, a configuration where in general a high conductivity is attained in real solids, such as it happens with the monovalent metals.Comment: 9 pages, 4 figure

    Microlensing induced spectral variability in Q2237+0305

    Full text link
    We present both photometry and spectra of the individual images of the quadruple gravitational lens system Q2237+0305. Comparison of spectra obtained at two epochs, separated by  3\sim~3\,years, shows evidence for significant changes in the emission line to continuum ratio of the strong ultraviolet CIV~λ\lambda1549, CIII]~λ\lambda1909 and MgII~λ\lambda2798 lines. The short,  1\sim~1\,day, light--travel time differences between the sight lines to the four individual quasar images rule out any explanation based on intrinsic variability of the source. The spectroscopic differences thus represent direct detection of microlensing--induced spectroscopic differences in a quasar. The observations allow constraints to be placed on the relative spatial scales in the nucleus of the quasar, with the ultra--violet continuum arising in a region of \la~0.05~{\rm pc} in extent, while the broad emission line material is distributed on scales much greater than this.Comment: Accepted for Publication in MNRAS. Paper with 11 figure

    Gamma-Rays and the Far-Infrared-Radio Continuum Correlation Reveal a Powerful Galactic Centre Wind

    Get PDF
    We consider the thermal and non-thermal emission from the inner 200 pc of the Galaxy. The radiation from this almost star-burst-like region is ultimately driven dominantly by on-going massive star formation. We show that this region's radio continuum (RC) emission is in relative deficit with respect to the expectation afforded by the Far- infrared-Radio Continuum Correlation (FRC). Likewise we show that the region's gamma-ray emission falls short of that expected given its star formation and resultant supernova rates. These facts are compellingly explained by positing that a powerful (400-1200 km/s) wind is launched from the region. This wind probably plays a number of important roles including advecting positrons into the Galactic bulge thus explaining the observed ~kpc extension of the 511 keV positron annihilation signal around the GC. We also show that the large-scale GC magnetic field falls in the range ~100-300 microG and that - in the time they remain in the region - GC cosmic rays do not penetrate into the region's densest molecular material.Comment: Version accepted for publication in MNRAS Letters. Discussion extended and references adde

    Structure of Protocluster Galaxies: Accelerated Structural Evolution in Overdense Environments?

    Full text link
    We present a high spatial-resolution HST/NICMOS imaging survey in the field of a known protocluster surrounding the powerful radio galaxy MRC1138-262 at z=2.16. Previously, we have shown that this field exhibits a substantial surface overdensity of red J-H galaxies. Here we focus on the stellar masses and galaxy effective radii in an effort to compare and contrast the properties of likely protocluster galaxies with their field counterparts and to look for correlations between galaxy structure and (projected) distance relative to the radio galaxy. We find a hint that quiescent, cluster galaxies are on average less dense than quiescent field galaxies of similar stellar mass and redshift. In fact, we find only two (of nine) quiescent protocluster galaxies are of simliar density to the majority of the massive, quiescent compact galaxies (SEEDs) found in several field surveys. Furthermore, there is some indication that the structural Sersic n parameter is higher (n ~ 3-4) on average for cluster galaxies compared to the field SEEDs (n ~ 1-2) This result may imply that the accelerated galaxy evolution expected (and observed) in overdense regions also extends to structural evolution presuming that massive galaxies began as dense (low n) SEEDs and have already evolved to be more in line with local galaxies of the same stellar mass.Comment: 11 pages, 7 figures, 1 table, Accepted for publication in Ap

    A solution to the problems of cusps and rotation curves in dark matter halos in the cosmological standard model

    Full text link
    We discuss various aspects of the inner structure formation in virialized dark matter (DM) halos that form as primordial density inhomogeneities evolve in the cosmological standard model. The main focus is on the study of central cusps/cores and of the profiles of DM halo rotation curves, problems that reveal disagreements among the theory, numerical simulations, and observations. A method that was developed by the authors to describe equilibrium DM systems is presented, which allows investigating these complex nonlinear structures analytically and relating density distribution profiles within a halo both to the parameters of the initial small-scale inhomogeneity field and to the nonlinear relaxation characteristics of gravitationally compressed matter. It is shown that cosmological random motions of matter `heat up' the DM particles in collapsing halos, suppressing cusp-like density profiles within developing halos, facilitating the formation of DM cores in galaxies, and providing an explanation for the difference between observed and simulated galactic rotation curves. The analytic conclusions obtained within this approach can be confirmed by the N-body model simulation once improved spatial resolution is achieved for central halo regions.Comment: 44 pages, 16 figures, 1 tabl

    Oscillatory Finite-Time Singularities in Finance, Population and Rupture

    Full text link
    We present a simple two-dimensional dynamical system where two nonlinear terms, exerting respectively positive feedback and reversal, compete to create a singularity in finite time decorated by accelerating oscillations. The power law singularity results from the increasing growth rate. The oscillations result from the restoring mechanism. As a function of the order of the nonlinearity of the growth rate and of the restoring term, a rich variety of behavior is documented analytically and numerically. The dynamical behavior is traced back fundamentally to the self-similar spiral structure of trajectories in phase space unfolding around an unstable spiral point at the origin. The interplay between the restoring mechanism and the nonlinear growth rate leads to approximately log-periodic oscillations with remarkable scaling properties. Three domains of applications are discussed: (1) the stock market with a competition between nonlinear trend-followers and nonlinear value investors; (2) the world human population with a competition between a population-dependent growth rate and a nonlinear dependence on a finite carrying capacity; (3) the failure of a material subjected to a time-varying stress with a competition between positive geometrical feedback on the damage variable and nonlinear healing.Comment: Latex document of 59 pages including 20 eps figure

    Infinite dimensional non-positively curved symmetric spaces of finite rank

    Get PDF
    This paper concerns a study of three families of non-compact type symmetric spaces of infinite dimension. Although they have infinite dimension they have finite rank. More precisely, we show they have finite telescopic dimension. We also show the existence of Furstenberg maps for some group actions on these spaces. Such maps appear as a first step toward superrigidity results.Comment: Some references have been adde

    HST, radio and infrared observations of 28 3CR radio galaxies at redshift z ~ 1: I. Old stellar populations in central cluster galaxies

    Full text link
    Hubble Space Telescope images of 3CR radio galaxies at redshifts 0.6 < z < 1.8 have shown a remarkable variety of structures, generally aligned along the radio axis, indicating that the radio source strongly influences the optical appearance of these galaxies. In this paper we investigate the host galaxies underlying this aligned emission, combining the HST data with ground-based infrared images. An investigation of the spectral energy distributions of the galaxies shows that the contribution of the aligned blue component to the K--band light is generally small (about 10%). The radial intensity profiles of the galaxies are well matched at radii <~ 35 kpc by de Vaucouleurs' law, demonstrating that the K--band light is dominated by that of an elliptical galaxy. There is no evidence for a nuclear point source, in addition to the de Vaucouleurs profile, with a contribution >~15% of the total K--band flux density, except in two cases, 3C22 and 3C41. Large characteristic radii are derived, indicating that the 3CR galaxies must be highly evolved dynamically, even at a redshift of one. At radii > 35 kpc, a combined galaxy profile clearly shows an excess of emission reminiscent of cD--type halos. This supports other independent evidence for the hypothesis that the distant 3CR galaxies lie in moderately rich (proto--)clusters. Since the nearby FR II galaxies in the 3CR catalogue lie in more diffuse environments and do not possess cD halos, the galactic environments of the 3CR galaxies must change with redshift. The K-z relation of the 3CR galaxies cannot, therefore, be interpreted using a standard `closed-box, passive stellar evolution' model. We offer a new interpretation, and compare the model with the K-z relations of lower power radio galaxies and brightest cluster galaxies. (abridged)Comment: 21 pages including 13 figures, LaTeX. To appear in MNRA

    Synaptobrevin cleavage by the tetanus toxin light chain is linked to the inhibition of exocytosis in chromaffin cells

    Get PDF
    Exocytosis of secretory granules by adrenal chromaffin cells is blocked by the tetanus toxin light chain in a zinc specific manner. Here we show that cellular synaptobrevin is almost completely degraded by the tetanus toxin light chain within 15 min. We used highly purified adrenal secretory granules to show that synaptobrevin, which can be cleaved by the tetanus toxin light chain, is localized in the vesicular membrane. Proteolysis of synaptobrevin in cells and in secretory granules is reversibly inhibited by the zinc chelating agent dipicolinic acid. Moreover, cleavage of synaptobrevin present in secretory granules by the tetanus toxin light chain is blocked by the zinc peptidase inhibitor captopril and by synaptobrevin derived peptides. Our data indicate that the tetanus toxin light chain acts as a zinc dependent protease that cleaves synaptobrevin of secretory granules, an essential component of the exocytosis machinery in adrenal chromaffin cells

    Star Formation and Gas Dynamics in Galactic Disks: Physical Processes and Numerical Models

    Full text link
    Star formation depends on the available gaseous "fuel" as well as galactic environment, with higher specific star formation rates where gas is predominantly molecular and where stellar (and dark matter) densities are higher. The partition of gas into different thermal components must itself depend on the star formation rate, since a steady state distribution requires a balance between heating (largely from stellar UV for the atomic component) and cooling. In this presentation, I discuss a simple thermal and dynamical equilibrium model for the star formation rate in disk galaxies, where the basic inputs are the total surface density of gas and the volume density of stars and dark matter, averaged over ~kpc scales. Galactic environment is important because the vertical gravity of the stars and dark matter compress gas toward the midplane, helping to establish the pressure, and hence the cooling rate. In equilibrium, the star formation rate must evolve until the gas heating rate is high enough to balance this cooling rate and maintain the pressure imposed by the local gravitational field. In addition to discussing the formulation of this equilibrium model, I review the current status of numerical simulations of multiphase disks, focusing on measurements of quantities that characterize the mean properties of the diffuse ISM. Based on simulations, turbulence levels in the diffuse ISM appear relatively insensitive to local disk conditions and energetic driving rates, consistent with observations. It remains to be determined, both from observations and simulations, how mass exchange processes control the ratio of cold-to-warm gas in the atomic ISM.Comment: 8 pages, 1 figure; to appear in "IAU Symposium 270: Computational Star formation", Eds. J. Alves, B. Elmegreen, J. Girart, V. Trimbl
    corecore