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INFINITE DIMENSIONAL NON-POSITIVELY CURVED
SYMMETRIC SPACES OF FINITE RANK

BRUNO DUCHESNE

ABSTRACT. This paper concerns a study of three families of non-compact type sym-
metric spaces of infinite dimension. Although they have infinite dimension they have
finite rank. More precisely, we show they have finite telescopic dimension. We also
show the existence of Furstenberg maps for some group actions on these spaces. Such
maps appear as a first step toward superrigidity results.
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1. INTRODUCTION

Riemannian symmetric spaces of non-compact type have been introduced and clas-
sified by E. Cartan in the 1920s. Since then, they have always been closely related to
semi-simple Lie groups; indeed, there is a dictionary between semi-simple Lie groups
with finite center and without compact factor and Riemannian symmetric spaces of non-
compact type (the ones with non-positive sectional curvature and without Euclidean
de Rham factor). We refer to [HelO1l] for a general theory of Riemannian symmetric
spaces. FEuclidean buildings play a similar role for semi-simple algebraic groups over
non-archimedean local fields.

Some great results of rigidity where obtained by G. Mostow and G. Margulis in the
1970s. We are inspired by the following way to state Margulis superrigidity theorem.

Theorem 1.1 (Théoreme 2 in [Pan09]). Let X, Y be two Riemannian symmetric spaces
of non-compact type or Euclidean buildings and I" a lattice in Isom(X). Assume that X
1s 1rreducible and its rank is larger than 1.

If T' acts non-elementarily by isometries on Y then I' preserves a closed invariant sub-
space Z C'Y, which is isometric to X, and the action of ' on Z extends to Isom(X).

We aim at a similar statement in an infinite dimensional setting. However things are
not straightforward, as the following remarks indicate.

(i) Isometries of infinite dimensional Hilbert spaces can be very wild (see [Ede64)).

(ii) A rather natural idea is to consider X = GL(H)/O(H) where GL(H) is the group
of all invertible bounded operators of a Hilbert space H and O(#) is its orthogonal
group; the one hand, X is some generalisation of SL,(R)/SO,(R), in which any
Riemannian symmetric space of non-compact type embeds as a totally geodesic
submanifold (for n large enough); but, on the other hand, X is not a manifold
modelled on a Hilbert space, and not a CAT(0) space. In particular, a group that
acts by isometries on X and preserves a bounded subset does not have necessarily
a fixed point. Actually, it is a Banach-Finsler manifold of non-positive curvature
in the sense of Busemann (see [Nee02]).

(iii) A better candidate for an infinite-dimensional analogue of SL,(R)/SO,(R) could
be GL?(H)/0?(H), where GL?(H) denotes the subgroup of invertible operators
G such that G — I is a Hilbert-Schmidt operator and O%(H) = GL2(H) N O(H).
This is indeed an infinite-dimensional Riemannnian Hilbert manifold and a CAT(0)
space, but it has infinite rank (as defined below).

In [Gro93, section 6], M.Gromov suggests the study of the Riemannian symmetric
spaces X, = O(p,00)/O(p) x O(c0). These spaces seem to him as “cute and sexy as
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their finite dimensional siblings”. Moreover he suggests a similar statement to Margulis’
superrigidity should be true for actions of semi-simple Lie groups on these spaces.

1.1. Geometry. Let R, C, H be respectively the fields of real numbers, complex numbers
and quaternions of W.R. Hamilton. Throughout this article K will denote one of these
three previous fields and A —+ X\ will denote the conjugation in K (which is the identity
map if K = R). Let H be a (right) K-vector space. A sesquilinear form on H is a map
x,y —< x,y > such that < z,y >=<y,x > and < z,yA+ z >=< z,y > M+ < z,2 >
for all z,y,z € H and X € K. The sesquilinear form <, > is said to be positive definite
if <z,x>>0foralxzeHand (<z,z2>=0)= (r=0).

Remark 1.2. Our choice of right vector spaces allows us to identify linear maps with
matrices with coefficients in K in such a way that matrices act by left multiplication on
vectors; moreover, compositions of maps correspond to usual multiplication of matrices.
Our choice is consistent with the choice made in [BH99, Chapter I1.10] but different of
the one in [Wal63, Section 0.1] for example.

A K-vector space has a structure of R-vector by restriction of the scalars; we will de-
note by Hp this structure. If <, > is a sesquilinear form on H, we define < z,y >r=Re(<
x,y >), which is a symmetric linear form on the real space Hr. We say that (H, <,>)
is a K-Hilbert space if (Hg, <,>g) is a real Hilbert space. In this case, the norm of an
element € H is ||z]| = /< z,x > = /< =,z >g. The topology on H is defined by the
metric associated with the norm || || and does not depend on the field R or K.

Let p be a positive integer, Ey a linear subspace of dimension p and ® the linear
operator of H such that ®|g, =Id and ®|j L= —Id. We define a new sesquilinear form
by

By(z,y) =< z,®(y) > and set Q,(x) = Bp(z,z), for z,y € H.

Suppose H is infinite dimensional and separable. Let G, be the Grasmannian of all
K-linear subspaces of dimension p in H then we define

X,(K) ={E € G, | Bp|exg is positive definite } .

We show X, (K) is a Riemannian symmetric manifold of infinite dimension. Moreover
it has non-positive sectional curvature and thus is a complete CAT(0) space. We show
that at “large scale” X, (K) behaves really like a finite dimensional Riemannian symmetric
space of non-compact type. In particular its boundary 0.X,(K) is a spherical building of
dimension p — 1 (see section 5.1).

Theorem 1.3. Every asymptotic cone over X,(K) is a Euclidean building of rank p in
the sense of Kleiner and Leeb.

Following [CL10], we say that a CAT(0) space, X, has finite telescopic dimension if
there exists n € N such that every asymptotic cone of X has geometric dimension at most
n. In this case, the telescopic dimension of X is the minimum among such n. The rank
of a CAT(0) space, X, is the maximal dimension of an Euclidean space isometrically
embedded in X. The rank of X is not greater than the telescopic dimension of X.



4 BRUNO DUCHESNE

For Riemannian symmetric spaces of non-compact type, rank and telescopic dimension
coincide. By Theorem 1.3, this is also true for X,(K) :

Corollary 1.4. The space X,(K) is a separable complete CAT(0) space of rank and
telescopic dimension p.

Thus, all nice properties of finite telescopic dimension spaces hold for X,(K). For
example, every parabolic isometry of X, (K) has a canonical (but not necessarily unique)
fixed point in 0X,(K) [CL10, Corollary 1.5]. Any continuous action of an amenable
group on X, (K) satisfies a comparable conclusion to a result of S. Adams and W. Ball-
mann [AB98]; such action has a fixed point at infinity or stabilizes a finite dimensional
Euclidean subspace in X,,(K) [CL10, Theorem 1.6].

We give a more concrete expression of the metric. We introduce hyperbolic principal
angles. Recall first that, for two linear subspaces of dimension p in a Euclidean space
R™, there is a well-known construction (due to C. Jordan in [Jor75]) of a family of angles
(01,...,0y) called principal angles between them, which generalize the angle between
two lines. If (E, F) and (E’, F’) are pairs of linear subspaces of dimension p then there
is g € O(n) such that gF = E’ and gF = F’ if and only if (E, F) and (E’, F’) have same

principal angles. Moreover, the metric d(E, F) = 1/ 67 is the metric (up to a scalar

constant) of the Riemannian symmetric space of compact type O(n)/O(p) x O(n — p).

We introduce a similar notion of hyperbolic principal angles between two elements of
X,(K). This allow to recover the metric since if (o, ..., a;) are the hyperbolic principal

angles between E, F € X,,(K) then the distance between them is /> a? (up to a scalar

factor) and the family of hyperbolic principal angles is a complete invariant of pairs
in X,(K) under the action of Isom(X,(K)). Moreover, we show in the real case the
following characterization of isometries of X,(R).

Theorem 1.5. Let g be a map from X,(R) to itself. The following are equivalent :
(i) g is an isometry.

(ii) g preserves hyperbolic principal angles.

(iii) There exists h € O(p, 00) such that g = 7(h).

Corollary 1.6. The isometry group of X,(R) is PO(p,00) = O(p, 00)/{£I}.

We note that if p = 1 then one recover the infinite dimensional (real) hyperbolic space,
which appears already in [Mic39], for example, and more recently in [BIM05]. This space
has also some links with Kéhler groups and the Cremona group (see [Can07] and [DP10]
for example).

Since parabolic groups of finite-dimensional Riemannian symmetric spaces of non-
compact type play a key role in the theory, we study parabolic groups of X,(R) and
show they are in correspondence with isotropic flags (see Proposition 6.1).

1.2. Furstenberg Maps. An important step in Margulis’ superrigidity is to construct
Furstenberg maps. The analogue in our infinite-dimensional setting is the main result of
this paper :
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Theorem 1.7. Let G be locally compact second countable group and B a G-boundary.
For any continuous and non-elementary action of G on X,(K) there exists a measurable
G-map ¢: B — 0X,(K).

The notion of G-boundary is defined in section 7.2. Such maps ¢ are called Fursten-
berg maps and we hope they will allow us to obtain rigidity statements for a large class
of actions of locally compact groups on X,,(K).

In order to obtain the previous theorem we use the notion of measurable field of
CAT(0) spaces and in particular we show a similar statement to the principal theorem
in [AB9S].

Theorem 1.8. Let G be a locally compact second countable group and @ an ergodic
G-space such that G ~ Q is amenable. Let X be a measurable field of Hadamard spaces
of finite telescopic dimension.

If G acts on X then there is an invariant section of the boundary field X or there exists
an invariant Fuclidean subfield of X.

For a precise meaning of terms used in this theorem, we refer to section 10. A result
close to Theorem 1.8 was obtained by M. Anderegg and P. Henry (see [AH11, Theorem
1.1]). M. Anderegg also used measurable fields of CAT(0) spaces to show existence of
Furstenberg maps in the case of spaces of rank less than 3 (see [And10, Theorem 5.2.1}).

Acknowledgments. We thank Pierre de la Harpe and Nicolas Monod for useful conver-
sations and comments about this work.

Part 1. Geometry
2. SYMMETRIC SPACES OF INFINITE DIMENSION

2.1. CAT(0) spaces. We recall know facts about CAT(0) spaces and introduce nota-
tions. We refer to [BH99] for the general theory. A metric space (X,d) is a CAT(0)
space if it is a geodesic space and if for every x,y,z € X and a midpoint m between y
and z, the Bruhat-Tits inequality holds :

(2.1) d(xz,m)? <1/2 (d(av,y)2 + d(x, 2)2) —1/4 d(y, 2)2.

A subspace Y of a CAT(0) space X is convez if for every x,y € Y the unique geodesic
segment [z, y] between x and y is included in Y and Y is said to be Euclidean if Y is
isometric to some R™. If A is a geodesic triangle in X with vertices x,y, z, a comparison
triangle is a Euclidean triangle A of vertices 7,7, Z with same length of sides as A. For
three points x,y, z with = # y and x # z, the comparison angle Z,(y, z) is the Euclidean
angle in any comparison triangle between 7 and z at 7. If ¢/ and 2’ are points of X re-
spectively on the geodesic segments [z, %] and [z, 2], the angle Z,(v/, 2’) is non-increasing
when ¢y’ — z and 2/ — z. The limit Z,(y, 2) is called the Alexandrov angle between y
and z at .

If Y is a subset of metric space X, its diameter is sup, ,cy d(x,y). The subset YV’
is said to be bounded if it has finite diameter. In this case its circumradius, rad(Y)
is inf{r > 0| 3z € X, Y C B(z,r)} and a point z € X such that the closed ball
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B(xz,rad(Y")) contains Y is called a circumcenter of Y. In a complete CAT(0) space, ev-
ery bounded subspace has a unique circumcenter and if moreover Y is closed and convex
then its circumcenter belongs to it.

If X is CAT(0) space, Y a complete convex subspace of X and x a point of X then
there exists a unique point y € Y such that d(z,y) = inf{d(x, z)| z € Y'}. This point,
denoted by 7y (z), is called the projection of x onto Y and the following angle property
holds

(2.2) VzeY, Zy(x,z) > m/2.

Let Y)Y’ be two closed convex of a complete CAT(0) space of circumradii r, 7’ and
circumcenters ¢,c. If Y C Y’ then [Mon06, lemma 11]

(2.3) d(c,d)? <20 —r?).

Proposition 2.1 (Theorem 14 in [Mon06]). Any filtering (for the reverse order asso-
ciated with inclusion) family of closed convex bounded subspaces of a complete CAT(0)
space has a non-empty intersection.

Proof. We recall the proof in the case of a sequence. Let (X)) be such a sequence and
let r, and ¢, be the circumradius and circumcenter of X,,. The sequence (r,) is non-
increasing and non-negative. Thus this is a convergent sequence and inequality (2.3)
shows (¢p,) is a Cauchy sequence. The limit is a point of NX,. O

A usefull geometric object associated with a CAT(0) space X is its boundary at infinity.
Two geodesic rays p, p': RT — X are asymptotic if their images are at bounded Hausdorff
distance. The boundary at infinity X of X is the set of classes of asymptotic rays. If X
is a complete CAT(0) space, € X and £,£ € 90X then there exist unique geodesic rays
p, p/ such that p(0) = p/(0) = z and p, p’ are respectively in class £, £’. The angle Z,(€,¢)
between &, & at x is Zy(p(t), p(t')) for any ¢,¢' > 0 and Z(&,&’) is sup,ex £(&€,&’). The
map (&,¢&') — Z(&,€') is a metric on 9X called the angular metric and the length metric
(see [BH99, Definition 1.3.3]) associated with Z is called the Tits metric on 0X. If (x,,)
is a sequence of points, one says that x,, converges to £ € 90X if for any x € X and any
r > 0 the intersection [z, x,] N B(z,r) converges to p([0,r]) for the Hausdorff distance
where p is the geodesic from z in the class §. If E,n € 09X, x € X, x,, = & and y,, = 0
then [BH99, Lemma I1.9.16]

(2.4) lirginfzx(-fm yn) > 4(‘5) 77)'

If £ is a point at infinity of a complete CAT(0) space X, the Busemann function
(x,y) = Be(x,y) is defined by fe(x,y) = limyo0 d(z, p(t)) — t where p is the geodesic
ray from y is the class . Busemann functions verify the cocycle relation f¢(x,z) =
Be(x,y) + Be(y, z) for all z,y,2 € X. If y is fixed, we call also Busemann function
the function x — fe¢(x) = Be(x,y). For two different base points, the cocycle relation
shows the associated Busemann functions differ by a constant. The following relation for
£€0X,x,y € X and p geodesic from x to £ is known as the “asymptotic angle formula”
[CMO09, Section 2].

(2.5) tllglo cos (Z(p(t),y)) = (1)




INFINITE DIMENSIONAL NON-POSITIVELY CURVED SYMMETRIC SPACES OF FINITE RANK 7

2.2. Riemannian Geometry. For a general treatment of Riemannian geometry (in
finite or infinite dimension) we refer to [Lan99] or [K1i95]. The image to have in mind
is that Riemannian manifolds of infinite dimension are constructed the same way as fi-
nite dimensional ones except that tangent spaces are Hilbert spaces instead of Euclidean
ones. Let (M, g) be a Riemannian manifold. As in finite dimension, one can define the
Riemann tensor, the sectional curvature and the exponential map. Moreover, a com-
plete simply connected Riemannian manifold with non-positive sectional is a complete
CAT(0) space and the exponential map at any point is a diffeomorphism (see [Lan99,
chapter XII]).

Let Hg be a real Hilbert and O(Hg) its orthogonal group. We define L?(Hg) to be
the space of all Hilbert-Schmidt operators of Hg. We set GL?(Hg) to be the group of
invertible operators that can be written I + M where I is the identity and M € L2(Hg).
We also set O%(Hg) = O(Hr) N GL*(Hg), S?>(Hg) the closed subspace of symmetric
operators in L?(Hg) and P?(Hg) the cone of symmetric positive definite operators in
GL%(Hg).

Then P?(Hg) identifies with GL?(Hg)/O?(Hg). The exponential map exp: S?(Hg) —
P2(Hg) is a diffeomorphism. The space P?(Hg) is actually a Riemannian manifold. The
metric at [ is given by < X,Y >=Trace(!XY") and it has non-positive sectional curva-
ture. Then it is a complete Cartan-Hadamard manifold. This is a Riemannian symmetric
space and the symmetry at I is given by G — G~!. Actually, this is the most natural
generalization of the finite dimensional Riemannian symmetric space SL,(R)/SO.,(R)
and already appeared in [dIH72] and [Lar07].

As observed in [Lar07, Theorem F] the Riemannian symmetric space GL,(R)/O,(R)
embeds isometrically in P?(Hg). Fix a Hilbert base of Hg and identify R™ with the
subspace spanned be the n first vectors of the Hilbert base. This gives an embedding
GL,(R) — GL?(Hg). An operator G €GL,(R) is extended by the identity on the
orthogonal of R® C Hg. This induces an embedding GL,(R)/O,(R) — P?(Hg) and
(up to a scalar factor) this is an isometric embedding. With the previous identification,
P2(Hg) is the closure of the union | J, GL,(R)/Oy(R).

As observed by P. de la Harpe, the characterization [Mosb5, Corollary of theorem
I] of totally geodesic subspaces of SL,(R)/SO,(R) obtained by Mostow is also true in
the infinite dimensional case. We recall that L?(#Hg) is a Lie algebra with Lie bracket
[X,Y] = XY —Y X and also a Hilbert space with scalar product < X,Y >=Trace(!XY).
Then a Lie triple system of L?(Hp) is a closed linear subspace p such that for all X,Y, Z €
p, [X,[Y,Z]] € p. A totally geodesic subspace of a geodesically complete Riemannian
manifold X is a closed submanifold Y that such for any point ¥y € Y and any vector
v € T,)Y the whole geodesic with initial vector v, is included in Y.

Lemma 2.2 (Proposition I11.4 in [dIH72]). Let p be a Lie triple system of S?*(Hg) then
exp(p) is a totally geodesic subspace of P2(Hg). Moreover, all totally geodesic of P?(Hg)
which contains I are obtained this way.
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Let H be a K-Hilbert space as in the introduction and Hg the underlying real Hilbert
space associated with H. We set L(H) (respectively GL(H)) to be the subset of all
(respectively invertible) bounded K-linear operators on H. This is GL(Hg) if K = R,
the subspace of GL(HR) of operators that commute with multiplication by i if K = C
and the subspace of GL(HR) of operators that commute with multiplications by 4, j, k
if K =H.

For A € L(H) there is a unique operator A* € L(#) called the adjoint operator of A
such that for all x,y € H, < Az, y >=< x, A%y >.

2.3. Riemannian structure on X,(K). We set O,, - (K) to be the subgroup of GL(H)
of elements G such that G*®G = ®. A more natural (but less uniform) way to denote
these groups could be respectively O(p, o), U(p, o0) and Sp(p, o0). We also set O]%,oo(K)
to be the closed subgroup O, «(K) N GL?(Hg) of GL*(Hg).

The group O, o (K) acts naturally on X, (K) and the stabilizer of Ey is Op o (K) N
O (K) (where O (K) is the orthogonal group of H). Indeed an element that fixes Ey
induces an orthogonal operator of it and another orthogonal transformation of its or-
thogonal for B, which it is also its orthogonal for the scalar product. Thus the stabilizer
of Ep is exactly O,(K) X O (K). Once again it could be more natural to write this
group O(p) x O(c0), U(p) x U(oo) of Sp(p) x Sp(c0) depending if K =R, C or H.

Let E € X,(K). Witt’s theorem [Wal63, Theorem 1.2.1] implies that there exists an
element g of O, (K) such that gEy = E. This shows O, «(K) acts transitively on
X, (K). It shows a little bit more. Let O;I:oo(K) (respectively O (K)) be the subgroup
of Op o (K) (respectively of O (K)) of operators that can be written I + M where M
is a finite rank operator. Thus OF (K) acts transitively on X, (K).

Actually, X, (K) can be identified with different quotient spaces
Xp(K) = Op,00(K)/Op(K) x Ooo(K),
~ 0} . (K)/Op(K) x O3, (K),
~ 0F (K)/Op(K) x OL(K).

Let 0, o (K) be the subspace of L(H) of operators A such that A*® + ®A = 0. We
also denote by o2 (K) the intersection oy, o (K) N L*(Hg).

Proposition 2.3. The space X,(K) embeds as a totally geodesic subspace of P2(Hg).

Before proceeding with the proof of this proposition we recall what happens in finite di-
mension. We use the notations of section 1.1. We suppose that H has dimension n = p+q
where 1 < p < ¢ and then we define X, ,(K) = {E € G, | By|pxg is positive definite }.
If O, 4(K) is the orthogonal group of @, then X, ;(K) ~ O, ,(K)/O,(K) x O4(K) and it
is an irreducible Riemannian symmetric space of non-compact type. Moreover O, ,(K)
is a reductive subgroup of GL(Hgr) ~GL,,(R) where m = dimg(K). We recall that a
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reductive subgroup of GL,,(R) is a closed Lie subgroup stable under transposition. See
[BH99, 11.10.57] for example.

The Lie algebra of O, 4(K) is 0,4(K) = {A € L(H)| A*® + ®A = 0} and X, 4(K)
identifies with a totally geodesic subspace of GL,,(R)/O,,(R), which is the image of
symmetric elements in o, 4(K) by the exponential map. See [BH99, Theorem I11.10.57]
for more details.

The tangent space at I of GL,,(R)/O,,(R) is the space of symmetric operators and
we endow it with the scalar product < X,Y >=Trace(!XY). Up to a scalar factor it
coincides with the scalar product coming from the Killing form. The advantage of this
scalar product is that GL,,(R)/O,,(R) embeds isometrically and totally geodesically in
GL, (R)/Opy (R) for m < m/.

Choose a base (e;) of H such that Ej is spanned by the p first vectors. We naturally
identify O, 4(K) with the subgroup of O,(K) that acts on the span of ey, ..., ep+4 and is
the identity on the orthogonal of this subspace. We do obviously the same for o0, ,(K).

Proof of Proposition 2.5. The space p = 0, 00(K)NS?(Hg) is a Lie triple system because
it is the closure of Uysp(0p4(K) N S2(Hg)). Let X = exp(p), G be the subgroup of
GL?*(Hg) generated by exp(02 o (K)) and K = G N O(Hg). Then X is totally geodesic
subspace of P?(Hg), G acts transitively on X and X ~ G/K.

Indeed G is a subgroup of 0120700(K) which contains 05 «(K). Thus G acts transitively
on X,(K) and the stabilizer of Ej is exactly K then X,(K) ~ G/K ~ X. O

Remark 2.4. Let d = dimg(K). If one considers Hp, the symmetric bilinear form Re(B,)
is actually By, and elements of X,(K) are also elements of Xg,(R) considered as real
vector subspaces. Thus, X,(K) can be identified with a subset of Xg,(R). Moreover
0p,00(K) can be identified with a Lie subalgebra of 04y~ (R) and thus X,(K) can be
identified with a totally geodesic subspace of X p(R).

The embedding provided in Proposition 2.3 allows us to endow X,(K) with the pull
back of the metric on P?(Hg). Now, X,(K) will always be endowed with this metric.
Actually, the previous embedding shows that X, (K) is a Riemannian symmetric space
of non-positive sectional curvature but we will retain less information.

Corollary 2.5. The space X,(K) is a separable complete CAT(0) space.

Proposition 2.6. For all finite configuration of points, geodesics, points at infinity and
Fuclidean subspaces of finite dimension, there is a closed totally geodesic space Y of
Xp(K) that contains the elements of the configuration and that is isometric to some
Xp,q(K) with ¢ = p.

Moreover, every isometry of Y coming from Oy, (K) is the restriction of an isometry of

X,(K).

Proof. Indeed, it suffices to show the result for a finite number of points in X, (K) because
a Euclidean subspace of finite dimension is completely determined by a finite number of
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geodesic lines, a geodesic line is completely determined by two different points on it and
a point at infinity is determined by a geodesic ray pointing toward it.

Let Ey,...,E, € X,(K). There exists a finite dimensional subspace Hy of H that
contains Fy, F1,...,E,. Let p+ ¢ be the dimension of Hy. Then Ey, F1, ..., Ey lies in
some X, ,(K) isometrically and totally geodesically embedded in X,(K). Moreover the
only geodesic line through F; and E; is contained in this X ,(K). O

3. METRIC APPROACH

3.1. Hyperbolic principal angles. Let E, F' be two elements of X,(K). We will define
successively the family of their hyperbolic principal angles.

Let ¢; = sup{B(z,y)| x € E, y € F, Q(z) = Q(y) = 1}. Since Q|g and Q|r
are positive definite, there exist 1 € E and y; € F such that Q(z1) = Q(y1) = 1
and B(x1,y1) = c1. Suppose ¢;, x;,y; are defined for i = 1,...,l < p, we define E; =
{z1,...,0}°NE, F; = {y,...,y} "¢ N F and ¢;41 = sup{B(z,y)| = € E, y €
F, Q(z) = Q(y) = 1}. We choose once again x;41 € E; and y;4+1 € F; such that
Q(zi41) = Qyi+1) = 1 and B(zi41, yi41) = i1

Remark 3.1. In case p = 1, the reverse Schwartz inequality (see [BH99, I1.10.3]) shows
that |B(z1,y1)| > 1 and it is possible to define the hyperbolic angle between z; and y;
by ay=arccosh(|B(z1,y1)|). However if p > 2 and z,y € H such that Q(z) = Q(y) =1
it is possible that |B(z,y)| < 1 and it is impossible to define a hyperbolic angle between
x and y.

If E € X,(K) one can define the orthogonal projector Pr on E with respect to Q.
This is the unique linear operator P such that P|g =ldg, P| 1, = 0.

For x € F and y € F, B(x,y) = B(Pp(x),y) = B(x, Pg(y)). If B is a bilinear sym-
metric form, two orthonormal bases (z;) and (y;) of subspaces E and F' are biorthogonal
if for @ # j, B(xs,y;) = 0.

Lemma 3.2. The p-uple (c1,...,cp) does not depend on choices of x; and y;. Moreover
(z;) and (y;) are biorthogonal bases of E and F with respect to B.

Proof. We first show (x;) and (y;) are biorthogonal bases. It is clear that (z;) and
(yi) are bases of respectively E and F. Thus, it suffices to show that for 1 < i < p,
Pr(x;) = ¢;y; and Pg(y;) = ¢z Fix 1 < i < p and suppose this is true for 1 < j < i.
Since B(x;,x;) = 0 for all 1 < j < i, B(x;, Pp(y;)) = 0 and B(Pg(x;),y;) = 0 for all
1 <j<i. So, Pr(x;) € F; and Pp(x;) = ¢;y;. Symmetrically, Pr(y;) = ¢;x;.

Now, consider the operator PpPrPg. In an orthogonal base starting with (z;) the

matrix of this map is diagonal with diagonal entries c%, ... ,c]%, 0,0,.... Thus, the non-

trivial eigenvalues are exactly the ¢? and do no depend on the base (z;). g

We can now define hyperbolic principal angles between F and F. For 1 < i < p,
Plr(z;) = ciyi so Q(z:) = 2Q(y:) + Q(x; — ¢;y4). Since Q(z;) = Q(y;) = 1 and Q is
negative definite on F1e, c? =1-Q(z; — ¢y;) > 1. We define «; =arccosh(c;) for
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1 < i < p. The non-increasing family (o;) of non-negative real numbers is called the
family of hyperbolic principal angles between E and F'.

Proposition 3.3. Let E, F, E', I’ € X,,(K). There ezists g € Op o (K) such that g(E) =
E' and g(F) = F'if and only if E, F and E', F' have same families of hyperbolic principal
angles.

Proof. From the definition of hyperbolic principal angles, it is clear that the existence
of such g implies F, F and E’, F’ have same families of hyperbolic principal angles.

Suppose E, F and E’, F’ have same families of hyperbolic principal angles. We choose
(xi)i, (yi)i biorthogonal bases for E, F and (7);, (y}); biorthogonal base for E', F'. We
set u; = y; — Pp(y;) and v, = y} — P (y}). Let G, G’ the span of, respectively, E U F
and E' U F’. Then {z;} U {u;, u; # 0} and {z}} U {u}, u] # 0} are orthogonal bases of
G and G'. Since the restriction of @, to G and G’ are equivalent, Witt’s theorem yields
g € Op (K) such that gz; = 2} and gu; = v} for 1 <i <p. O

Remark 3.4. We have seen in remark 2.4 X, (K) embeds as a totally geodesic subspace
of Xgp(R) where d = dimg(K). So it is a natural to try to understand what is the
link between hyperbolic principal angles between E and F' in X,(K) and the hyper-
bolic angles between E and F' considered as elements of X,(R). Actually if (z1,...,xp)

and (y1,...,yp) are biorthogonal bases associated with E and F' (as K-vector spaces)
then (z1,iz1,...,2p,izp) and (y1, Y1, . .., Yp, iyp) are biorthogonal bases associated with
E and F as R-vector spaces if K = C and (z1,iz1,jz1, k21 ..., 2p, izp, jTp, kp) and

(Y1, %Y1, JYy1, kY1 - - - Yp, WWp, JYp, kyp) are biorthogonal bases associated with E and F as
R-vector spaces if K = H. If (ai,...,0p) is the family of hyperbolic principal an-
gles between E and F as elements of X,(K) then (ai,ai,...,qp, ap) is the family
of principal hyperbolic angles between E and F as elements of X,(R) if K = C or
(o, 01,00, 00, ..., 0p, 0, O, ) is the family of hyperbolic principal angles between E
and F' as elements of X,(R) if K = H.

Proposition 3.5. Let E, F' € X,,(K) and (o) their family of hyperbolic principal angles.
Then
»

d(E, F)* = 2dimg(K) ) _ of.
i=1
Proof. We begin by the case K = R. Thanks to Proposition 2.6, we can consider that
E, F are points in some X, ;(R).

We recall some facts about X, ;(R) and O(p, q). Let n = p+ ¢ and ® be the diagonal
matrix of GL,(R) with first p occurrences of 1 and ¢ occurrences of —1. The group
O(p, q) is then the subgroup

{M € GL,(R); ‘M®M = ¢}
and the Lie algebra of O(p,q) is
o(p,q) = {H € M,(R); "H®+dH =0}
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Any element H € M,,(R) is in o(p, ¢) if and only if

A B
nel b el

where A € Mj,(R) and C € My(R) are skew-symmetric and B is any matrix in M, ;(R).
The space M, 4(R) can be identified with the tangent space of X, ;(R) at Ey and in this

case the exponential map is
B»—>exp<[ tOB g ]) - Ey.

Let p be the subspace of symmetric elements in 0, 4(R) (which we identify with M,, ,(R)).
A maximal abelian subspace of p is given, for example, by the set of matrices Hy where

0 Dy 0
(3.1) Hy=| Dy 0 0
0 0 0

and D) is the diagonal matrix with diagonal A = (A1,...,\,) € RP. The Killing form on
o(p,q) is K(H,H') = (p+ q — 2)Trace(! HH') but the (natural) choice of scalar product

on S2 (R) correspond to K' = 5 +é_2K . With this scalar product

p
K'(Hy, Hy) =2) A

i=1
Moreover a computation shows that
ch(A) sh(A) 0O
exp(Hy) = | sh(A) ch(A) 0
0 0 | P

where ch(\) (respectively sh())) is the diagonal matrix with diagonal entries ch(A1), ..., ch(Ap)
(respectively sh(A1),...,sh(\,)) and thus

p
(3.2) d(exp(Hy)zo,x0)* = K'(Hx, Hy) =2 A},
=1

Since O(p, q) acts transitively on X, , preserving both distance and hyperbolic principal
angles, we can also suppose that E' = Ey and F' = exp(H))Ey for some A € RP. Then, it
suffices to remark that the set of hyperbolic principal angles are {|\;|}. Equation (3.2)
concludes the real case.

Now, if K is C or H, thanks to remark 2.4, it suffices to understand the distance
between E and F as elements of Xg,(R) where d = dimg (K). Then the above treatment

of the real case and remark 3.4 show that the desired formula for the distance between
E and F' holds. O
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3.2. Isometries of X,(R).

Proof of Theorem 1.5. Implications (iii)=-(ii)=(i) are easy. We show (i)=-(iii).

Let g € Isom(X)). Since O(p, c0) acts transitively on X,. We can assume gEy = Ey.
We define the differential of g at Ey by Tr,g(H) = lim¢_,o gexp(tH) for H € Tg, X, ~
L(Ey, E&') This map is homogeneous and preserves the norm of Tg,X,. It is a clas-
sical result that Tg,g is a linear isometry of Tg,X,. We will understand Tr,g on the
orthonormal base (0;;) of L(Ey, E3) where d;j is the map z —< x,e; > ¢; for (e;)1<i<p a
orthonormal base of Ey and (¢;),cn a orthonormal base of Hy. The point exp(d;;) of X,
is Span(eq, ..., ej—1,ch(1)e; +sh(1)ej, eiq1,...,ep) and lies on a singular geodesic (that
is a geodesic contained in at least two maximal Euclidean subspaces) of Ey.

A maximal Euclidean subspace containing Ej can be written
P, = {Span ({ch(X\j)u; +sh(Xi)viti=1.p) | (A1,...,Ap) € RP}

for u = (u1,...,up) orthonormal base of Ey and v = (vy,...,v,) orthonormal family of
Ho.

The action of O(p) x O(co) on L(Ey, Hy) is given by H — BH 'A for A € O(p) and
B € O(c0). Thus, O(p) x O(o0) acts transitively on the maximal Euclidean subspaces
of X, containing Ey. We can suppose g fixes pointwise the maximal Euclidean subspace
P.. where e = (eq,...,e,) and € = (1,...,&p). If £ is obtained from e by replacing ¢;
by some ¢ for k > p then the intersection of P.. and P, . is a Euclidean subspace of
dimension p — 1 that is obtained by setting A; to 0. The same property holds for gP, ./
and P... Thus gP. . can be written P, .» where ¢ is obtained from ¢ by replacing the
i-th coordinate by a unitary vector e} orthogonal to €1, ..., €.

Since €} is determined by the image of the singular geodesic containing 0 and
Span(ey, . .., ej-1,ch(1)e; +sh(1)eg, egjq1),-- -5 ep), e} depends on ¢, and, a prioiri, on 4
but does not depend on ¢; for i # k. Thus, for a fixed 1 < i < p, the map e — €} is
well defined and can be extended in a linear orthogonal map B; € O(c0). So, Tg,g can
be written H = [hy, ..., hy] = [Bih1,..., Bphy| where h; is He;. It remains to show are
all B; are the same map.

Up to (post-) compose g by Id><Bf1 we can suppose that B; =Id. Let uq, us be two or-
thogonal unitary vectors of Ey. The image of Span(ch(1)e; +sh(1)uy,...,e;—1,ch(1)e;+
Sh(l)UQ, €(i41)s -+ ep) S Xp is
Span(ch(1)er +sh(1)u, ..., ei—1,ch(l)e; +sh(1) Biug, €giy1), - - -, €p) € Xp. Thus, Biua is
orthogonal to u; for all such ui,ue and thus B;us = f+us. So, B; = ¢;Id with ¢; = £1.
Finally, if A is the diagonal matrix of O(p) with diagonal entries ¢; then g-(AxId) =Idy, .

O

Proof of corollary 1.6. Let m: O(p, 00) — Isom(X,(R)). Thanks to Theorem 1.5, Isom(X,(R)) ~
O(p, o0) /ker(m). So, it suffices to show that ker(r) = {£Id}. Let g €ker(m). Since
g-Ey=Ep, g€ O(p) x O(0). Let A € O(p) and B € O(o0) such that g = A x B. the
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differential of w(g) at Ey is H — BH'A. Let a;; and (b;;) the matrix coefficients of A
and B. We choose H to have all matrix coefficients 0 except the one in position (i, 7)
which is 1. Then the matrix coefficient in position (k,[) of BH A is ayjbg;. This implies
that a;; = 0 for ¢ # j, bj; = 0 for i # j and, for all i« < p and all j, a;;b;; = 1. Finally,
Qg5 — bjj = ail] — +1 and G = £Id. O

4. TELESCOPIC DIMENSION

4.1. Geometric dimension. In [Kle99], B. Kleiner introduces a notion of dimension
for CAT (k) spaces. Recall that if X is a CAT(k) space and z a point in X, the space
of directions ¥, X at x is the quotient metric of the set of germs of geodesics issued
from z, endowed with the Alexandrov angle as pseudometric. This a CAT(1) space.
Let X be the set of all spaces that are CAT(x) for some x € R. The geometric di-
mension is the smallest function on X such that discrete spaces have dimension 0 and
GeomDim(X) >GeomDim(¥,X) + 1 for all z € X and X € X.

Theorem 4.1 (Theorem A in [Kle99]). Let v € R and X CAT(k) space. The following
quantities are equal to the geometric dimension of X.

e sup{DimTop(K)| K compact subset of X} where DimTop(K) denotes the topo-
logical dimension of K.

e sup{k € N| H(U,V) # 0 for some open subsets VC U C X}. Where Hi(U,V)
1s the k-th relative homology group.

4.2. Telescopic dimension. We recall the “probabilistic point of view” on ultrafilters.
We refer to [BH99, 1.5.47] and references therein for more details. A non-principal ul-
trafilter U on the set of positive integers N is a function P(N) — {0,1} such that if
A, BCN, ANB={ then U(AU B) =U(A) + U(B) and U(A) = 0 if A is finite.

Let U be a non-principal ultrafilter on N. A sequence (ay) of real numbers is said to
converge toward [ € R with respect to U if for every e > 0, U({n € N| |l —a,| <e}) = 1.
An important property of an ultrafilter is that every bounded sequence has a limit with
respect to this ultrafilter.

Let (X,d) be a metric space, ()\;) a sequence of positive numbers such that A\; — 0,
(x;) a sequence of points in X and U a non-principal ultrafilter on N. Let X*° = {(y,,) €
XN (Nid(yi, 7)) is bounded}. For y = (y) and z = (z;) in X*®° we define d*(y, 2)
to be the limit with respect to U of the bounded sequence (\;d(y;, z;)). Then d™ is a
pseudometric on X°° and the quotient metric space associated is called the asymptotic
cone of X with respect to U, (\;) and (z;). A metric space Y is called an asymptotic
cone of X if it is isometric to the asymptotic cone of X with respect to some U, (\;) and

(i)

Every asymptotic cone of a CAT(0) space is a complete CAT(0) space. Following
[CL10], a CAT(0) space = has telescopic dimension less than n € N if every asymptotic
cone of X has geometric dimension less than n and the telescopic dimension of X is the
minimal n € N such that X has telescopic dimension less than n € N. The telescopic
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dimension can be characterized quantitatively by an asymptotic equivalent of Jung’s
inequality between circumradii and diameters of bounded subsets of Euclidean spaces.

Proposition 4.2 (Theorem 1.3 in [CL10]). Let X be a CAT(0) space and n be a positive
integer. The pace X 1is of finite telescopic dimension if and only if for any § > 0 there
exists D > 0 such that for any bounded subset Y C X of diameter larger than D, we
have

(4.1) rad(Y) < (5 + 2(n"+1)> diam(Y).

The following theorem is the first important result about CAT(0) spaces of finite
telescopic dimension.

Theorem 4.3 (Theorem 1.1 in [CL10]). Let X a complete CAT(0) of finite telescopic
dimension and (X,,) a filtering family of closed convex subspaces. If N X, = () then NOX4
is not empty and has radius at most w/2 (for the angular metric).

The authors prove this theorem using gradient flows of convex functions. We prove it
without these analytic tools. Our proof use only elementary geometric facts on CAT(0)
spaces and the explicit construction of the circumcenter at infinity will be convenient for
measurability questions in section 8. Similar ideas already appeared in [Buy98|.

The crucial point to show Theorem 4.3 is to deal with nested sequences of closed
convex subspaces. This is the following proposition. We show it without using gradient
flow. The end of the proof of Theorem 4.3 can be done as in [CL10] and does not use
any gradient flow.

Proposition 4.4 (Lemma 5.4 and 5.5 in [CL10]). Let X a complete CAT(0) of finite
telescopic dimension and (X;);en a nested sequence of closed convex subspaces. If NX; =
0 then NOX; is not empty and has radius at most /2.

Proof. Let p € X and xz; the projection of p on X;. Since NX; = @), we know that
d(p,z;) — oo (see Proposition 2.1). We introduce the following notations :

Ny = mlH{Z €N, d(p,l’@) > t}7

for i > Ny, x;(t) is the point on [p, x;] at distance ¢ from p,
Ct = (uilt), i > Ni},

D, = diam(C}),

for i > Ny, ¢} is the circumcenter of {z;(t), j > i} and

rt =rad{z;(t), j >i}.

P =

The non-decreasing function ¢ — D; may be bounded or not. In the first case, this
implies the sequence (z;) converges to a point £ € 0X that belongs to NOX;. Since the
projection on a closed convex subset is 1-Lipschitz, the point & does not depend on p.
Thanks to the angular property of projection, for any y € X;, Z,(y,z;) < 7/2 and so
NOX; is included in the ball of radius 7/2 around &.

Now, suppose t — D; is not bounded. Let n be the telescopic dimension of X. We

choose § > 0 such that §v/2 + ﬁ < 1. Let D > 0 be a positive real given by 4.2.
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For ¢ > 0 such that D; > D and 4,5 € N with j > i > N; we have Z,, (p,z;) > 7/2. So,

7

Zp(zi, ) < /2 and d(x(t),2;(t)) < v/2t. Thanks to inequality (4.1)

ri < <5+ 2(nn+1)>Dt§ <5\/§+,/(n”+1)>t.

So the triangle inequality gives

d(p, ) > d(p, z:(t)) — d(a;(t), ) > [1 - (5\/5+ (ni 1)>] t.

Inequality (2.3) shows d(c}, ¢f) < \/ 2((rf)? — (r%)?) and since k — 7t is non-increasing

for a fixed ¢ we deduce that (c})j is a Cauchy sequence. We denote by ¢; its limit and
we remark that

(4.2) d(p,c;) > [1 - (5\/§+ , /(ninﬂ t.

Now we will show ¢; converges to a point at infinity when ¢ goes to infinity. For ¢ > ¢ > 0

et j > i > N] we introduce the point denoted by %cg on [p, cf] at distance %d (p, cf)

from p. Using Thales’ Theorem in a comparison triangle, we have d (acj (1), %cﬁ’) <

Ld (xj(t’),c§’> < Ly’ And so, 7t < Lr?. Let 7, be the (non-decreasing) limit of (r});
t t!

then % < % < V2. Thus (%) converges as t goes to +o00. In the geodesic triangle
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x(t), tt,cf , ¢;, if m is the midpoint of [;

d(;(t),m)* < % (d(x]() ? +d< ox- g’>2> _,d (t/ “05)2

Since m is not the circumcenter of C}, there exists j such that d(m, acj (t)) > rt. This last

L N2
inequality with inequalities d(z;(t), ) < r} and d(x;(t), tt,ct ) < t,r give d (t ct ct) <

2
’ i\ 2
22 [(?/) — (%) ] . If i goes to infinity we obtain

2 t 2 £\ 2
d Ect,,ct < 212 L I
t’ t/ t

Fix tg > 0 and € > 0. To conclude, it suffices to show the points x =

Ll ], the Bruhat-Tits inequality gives

d(p t)c and y =

ﬁtft,ct' on segments [p, ¢! and [p, ¢"'], are at distance less than ¢ for ¢, ¢’ large enough.

Once again, Thales’ theorem in a comparison triangle associated with p, ¢, f,c shows

N 2 2
d(z,y) < T Ct)d<f,ct ct). Now, for t,¢ such that [(Ttt,) - (%) ] < €2, inequality

(4.2) shows

V2¢e
(2 i)

Let £ be the limit of ¢;. By the same argument as above, £ does not depend on p. If we
choose p € X; then convexity of X; shows that & € 0X;. Finally, £ € N;0X;.

d(z,y) <

let n € NOX; and p be the geodesic ray from p to . Fix ¢ € N and denote by p}
the projection of p(u) on X;. Since distance from p(u) to X; is bounded, convexity of
x — d(x, X;) implies that d(p{, p(u)) is bounded by d(p, X;). So p}* converges to n as u
goes to infinity. Thus for ¢ > 0 and i > Ny, B,(xi(t), p) = limy—ee d(z4(t), p}) — d(p}', D).
Since Zg,(p,p¥) > m/2 a comparison argument shows that d(x;(t),p) < d(p,p}). Thus
By(zi(t),p) < 0. Continuity and convexity of 3, imply S,(c!,p) < 0. Now, the asymp-
totic angle formula (2.5) shows lim infy ;00 Zz(p(u), ¢!) < m/2 and finally by inequality
(2.4), £(E,m) < /2. 0

We call the point ¢ constructed in Proposition 4.4 the center of directions associated
with the sequence (Xj).

Proposition 4.5. Let (X;) and (X]) be two nested sequences of closed convex subsets
of a complete CAT(0) space of finite telescopic dimension. If for all i,j € N there are
i,j" € N such that X; C Xj, and X} C Xy then (X;) and (X]) have same centers of
directions.

Proof. If ¢: N — N is an increasing map then (X;) and (X,(;)) haves same centers of
directions. Indeed the curve t — ¢! in the proof of Proposition 4.4 is the limit of the
sequence (c}); and thus is the same for (X;) and (X))
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By inclusion properties of (X;) and (X/), we can find two extractions ¢ and ¢’ such
that for alli € N, X ;) C X(’p,(i) C Xy(i41)- Then we set Xg; = Xy and Xy, | = Xfp,(i).
The above remark for (X/') and (X;) and (X/) and (X/) concludes this proposition.

O

There is an another place where gradient flows appear in [CL10]. This is in the proof
of our Proposition 4.6, which follows. The use of gradient flows is handy for the authors
but really not necessary. We show how to modify the proof. Once it this done, all results
of [CL10] may be obtain without the use of gradient flows.

Fix zp in a complete CAT(0) space X. Let Cy the set of all 1-Lipschitz and convex
functions that vanish at xg. Endowed with the pointwise convergence topology, Cp is a
compact topological space. Let C C Cy the image of X under the map x — d(z,.) —
d(z,xp).

Proposition 4.6 (Proposition 4.8 in [CL10]). Let X a CAT(0) space of finite telescopic
dimension not reduced to a point and with a minimal action of Isom(X) ~ X. Then ev-
ery affine function of C is a Busemann function associated with a point & in the boundary

of the de Rham factor of X.

Lemma 4.7. Let X be a complete CAT(0) space. If f is an affine 1-Lipschitz map such
that

(43) Ve>0VneNVreX 3ze X, d(z,z) >nand f(z) — f(x) > (1 —¢)d(z, 2)
then there exists £ € 0X such that for x,y € X,
f(@) = =B (x, o).

Proof. Fix x € X. For | > f(z), we set X; = {y € X| f(y) > {}. X is a non-empty
closed convex subset of X. Let x; be the projection of z on X;. For f(z) <1’ <llety
be the unique point on [z, ;] such that f(y) =’ then

U'— f(x
d(ﬂ?, CL‘l/) < d(fL’, y) = l—f((l‘))d(x, ﬂS'l)‘
This shows that [ s (&) i non-increasing. Now hypothesis (4.3) shows that lim;_, . (I—

d(x,z;
f(z))/d(z,z;) = 1. So( d(:i‘,xl) =1~ f(z) for all | > f(x) and U p(z)[z, 21] is a geodesic
ray. Let & be the endpoint of this geodesic ray. Since the projection on X is 1-Lipschitz
¢ does not depend on z. Now characterization of Busemann functions [BH99, I1.8.22]
shows that
Il

Proof of Proposition 4.6. Let f be an affine function of C. The proof of Proposition 4.8
in [CL10] leads to the conclusion that f and — f satisfy the condition of lemma 4.7. Thus
there exists £ and &’ such that for all x € X, f(x) = —f¢(z,x0) and — f(x) = —Be (x, x0).
Since f is 1-Lipschitz the concatenation of geodesic rays from x to £ and ¢’ is a geodesic.
This proves that X is the reunion of geodesics with extremities &€ and &¢’. Theorem 11.2.14
in [BH99| concludes the proof. O
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5. SPHERICAL AND EUCLIDEAN BUILDINGS ASSOCIATED WITH X, (K)

5.1. Spherical building at infinity. It is a classical result that the boundary at in-
finity (endowed with the Tits metric) of a Riemannian symmetric space of non-compact
type is a spherical building (see section 3.6 of [Ebe96]). We show the same holds for
X,(K). We will use the following geometric definition of a spherical building. It is bor-
rowed from definition [BH99, IT.10A.1] and this geometric definition is equivalent to the
combinatorial usual one.

Definition 5.1. A spherical building of dimension n is a piecewise spherical simplicial
complex X such that :

(i) X is the union of a collection A of subcomplexes E, called apartments, such that
the intrinsic metric dg on E makes (F,dg) to the sphere S™ and induces the
given spherical metric on each simplex. The n-simplices of a apartement are called
chambers and the (non-empty) intersections of chambers are called faces.

(ii) Any two simplices of X are contained in at least one apartment.

(iii) Given two apartments E and E’ containing both simplices B and B’, there ex-
ists a simplicial isometry from (E,dg) onto (E’,dg) which leaves both B and B’
pointwise fixed.

If moreover, every (n — 1)-simplex is a face of at least three n-simplices, X is said to be
a thick building.

In the case of the boundary 0X of a Riemannian symmetric space of non-compact
type, apartments are exactly boundaries of maximal Euclidean subspaces of X.

If X is a CAT(0) space, we recall that the Tits boundary of X is the space 0X endowed
with the Tits metric (see definition [BH99, I1.9.18] for more details).

Proposition 5.2. The Tits boundary of X,(K) is a thick spherical building of dimension
p—1.

Proof. We show that conditions (i)-(iii) of definition 5.1 hold. Apartments of X, (K)
are defined to be boundaries of maximal Euclidean subspaces of X,(K). Thus, any
apartment is isometric to SP~'. If F is a maximal Euclidean subspace, a Chamber
of OF is the closure of a connected component of the set of points & € JF that are
endpoint of regular geodesic ray included in F' (a geodesic ray is called regular if it is
included in a unique maximal Euclidean space). Conditions (i)-(iii) involve only finitely
many apartments simultaneously. By Proposition 2.6, we know such configurations lie
actually in some 0Y where Y is a totally geodesic subspace of X, (K) isometric to some
X,,q(K) with ¢ > p. Now, the building structure on 9.X, ,(K) implies these conditions
hold. O

5.2. Euclidean buildings as asymptotic cones. In [KL97], the authors introduce a
new definition of Euclidean building, which is more geometric and more general than
the usual one. This definition allows the authors to show that every asymptotic cone of
a Euclidean building is a Euclidean building [KL97, Corollary 5.1.3]. Moreover, every
asymptotic cone of Riemannian symmetric space of non-compact type is a Euclidean
building. This phenomenon can be simply illustrated in dimension one. A Euclidean
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building (in the classical sense) of dimension one is a simplicial tree without leaf. Since
every asymptotic cone of a Gromov-hyperbolic space is a real tree [Gro93, example
2.B.(b)], some real trees that are not siplicial are also buildings of dimension 1 in the
sense of Kleiner-Leeb.

We recall the definition of Euclidean building in the sense of Kleiner-Leeb. Let E
be a Euclidean space. Its boundary at infinity OF endowed with the angular metric
is a Euclidean sphere of dimension dim(F) — 1. Since isometries of E are affine and
translations act trivially on OF, one obtain a homomorphism

p: Isom(E) — Isom(0F)

that associates its linear part to every Euclidean isometry. A subgroup Wag < Isom(FE)
is called an affine Weyl group if it is generated by reflections through hyperplanes and
if W := p(Wag) is a finite subgroup of Isom(0F). The group W is called the spherical
Weyl group associated with Wag. If Wag is an affine Weyl group then (E, Wag) is called
a Buclidean Cozeter complex and (OE, W) is the associated spherical Cozxeter complex
at infinity. Its anisotropy polyhedron is the spherical polyhedron

A = OE/W.

An oriented segment (not reduced to a point) Ty of F determines a unique point of
OF and the projection of this point to A is called the A-direction of Ty. Let m be the
projection OF — A. If 61, 09 are two points of A, we introduce the finite set

D(01,62) = {£(&1,€2))[&1,&2 € OF, w(&1) = 01, 7(&2) = b2}

Definition 5.3. Let (E,Wxg) be a Euclidean Coxeter complex. A FEuclidean building
modelled on (E,Wag) is a complete CAT(0) space (X, d) with

(i) a map 60 from the set of oriented segments not reduced to a point to A,

(ii) a collection, A, called atlas, of isometric embeddings ¢: £ — X that preserve A-
directions. This atlas is closed under precomposition with isometries in Wag. The
image of such isometric embedding ¢ is called an apartment.

Moreover the following properties must hold.
(1) For all x,y,z € X such that y # z and = # z,

(2) The angle between two geodesic segments Ty and Zz is in D(0(zy), 0(xz)).

(3) Every geodesic segment, ray or line is contained in an apartment.

(4) If A; and Ay are two apartments with a non-empty intersection then the transi-
tion map LE; olLA: L;ll (A1 NAg) — L;;(Al N Ay) is the restriction of an element
of Wag.

If X is a Euclidean building, the rank of X is the dimension of any apartment.

Proof of Theorem 1.3. Actually, the proof of Kleiner-Leeb, which shows asymptotic cones
of Riemannian symmetric spaces of non-compact type are Euclidean buildings, works
also in our infinite dimensional settings with a very slight modification. We recall how
0, A, Wag and apartments are defined and we refer to [KL97, Theorem 5.2.1] for the full
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proof and show the slight modification appears.

Choose a maximal Euclidean subspace E in X, (K) then Wyg is defined to be the
quotient group of the stabilizer Stab(E) of E by the pointwise stabilizer Fix(E) of E.
With the same notation as above we set W = p(Wag).The quotient OFE/W can be
identified with any fixed chamber A of the building at infinity. If { € 0X,(K) we set
() to be the unique point in A of the orbit of £ under Isom(X,(K)). This point exists
because of Proposition 2.6 and the fact that Isom(X), ,(K)) acts transitively on chambers
of 0X, 4(K). Now, let Y be an asymptotic cone of X,(K). Apartments of ¥ are defined
to be ultralimits of maximal Euclidean subspaces of X, (K) and if = # y are points of Y,
choose (x,,) and (y,) sequences in X, (K) corresponding respectively to x and y. Let &,
be the point at infinity of geodesic ray trough y,, starting at x,. Since A is compact, the
sequence (6(&,)) has a limit and 6(Zy) is defined to be this limit. This does not depend
on the choice of sequences because if z,y, z are points of X,(K) and £, n are points at
infinity corresponding to Ty and Tz then

da(é,m) < Za(y, 2).

To show point (2) of definition 5.3, the authors use a compactness argument in [KL97,
Lemma 5.2.2]. Let z € Y and y,z € Y \ {p}. Let (xy,), (yn), (2n) be sequences of X, (K)
that correspond to respectively x,y and z. Thanks to homogeneity and Proposition 2.6,
we can find a totally geodesic subspace Z C X, (K) isometric to some X, 2,,(K) such that
for any n there exists g, isometry of X,(K) such that g,z, = Ey and ¢nyn, gnzn € Z for
all n. Now, the argument given in [K1.97, Lemma 5.2.2] works.

O

Proof of corollary 1.4. We know that X,(K) is a separable complete CAT(0) space.
Thanks to Proposition 2.6, every Euclidean subspace of X,(K) is included in a convex
subspace Y which is isometric to some X, ,(K). Since the rank of X, ,(K) is min(p, q)
(see table V in [Hel01, X.6]), the rank of X,(K) is less than p and since there exist
isometric embeddings of X, ,(K) in X, (K) with ¢ > p, the rank of X,(K) is p.

Thanks to Theorem 1.3, every asymptotic cone of X,(K) is a Euclidean building of
dimension p. Now, [KL97, corollary 6.1.1] asserts that if V' C U are open subsets of a
Euclidean building X then Hy(U,V) = 0 for k > rank(X). This result and character-
ization 4.1 show the geometric dimension of a building of rank p is exactly p. So, the
telescopic dimension of X,(K) is p. O

6. PARABOLIC SUBGROUPS OF O(p, 00)

It is a well-known fact that parabolic subgroups of SL,,(R) are in correspondence with
flags of R™ (see [Ebe96, 2.17.27] for example). A similar phenomenon is also true for
O(p, 00).

For the remaining of this section, K = R. A vector of H is isotropic if Qp(z) = 0
and a subspace E C H is totally isotropic if any x € E is isotropic. Since the index
of @p is p, any totally isotropic subspace has dimension less or equal to p. Maximal
(for inclusion) totally isotropic subspaces are exactly those of dimension p. A sequence
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(Ei)f-“:1 of non-trivial subspaces of H is called a flag if E; C E;qq forany 1 <i <k —1.
A flag F' = (E;)¥_| is said to be isotropic if E}, is a totally isotropic subspace of H. We
remark that O(p, co) acts naturally on the set of isotropic flags and this action gives an
action of Isom(X,(R)).

We denote by G¢ the stabilizer of £ € 0X,(R) and by G the stabilizer of an isotropic
flag F, inside Isom(X,(R)).

Proposition 6.1. For any £ € 0X,(R) there exists an isotropic flag F(§) such that
Ge = Gp). Moreover, for any totally isotropic flag F, there exists § € 0X,(R) such
that F' = F(&) and thus Gp = Ge.

Lemma 6.2. Let £ € X,(R), a1 be the first principal hyperbolic angle between E and
Eo. If M € O(p,0) and MEy = E then ||M|| = \/ch(a1)? + sh(aq)2.

Proof. The existence of biorthogonal bases show that, in a good orthogonal base of H,
we can find some My € O(p, 00) such that MyEy = E and its matrix is

ch(a) sh(a) 0
sh(a) ch(a) 0
0 0 1d

where ch(a) (respectively sh(«)) is the matrix diag(ch(a), ..., ch(eyp)) (respectively the
matrix diag(sh(ay), .. .,sh(ap)). It is not difficult to show that || My|| = v/ch(a1)? + sh(aq)2.
Now, if M € O(p,o0) satisfies MEy = E then MM;' € O(p) x O(co) and thus
|| M| = || Mol|- O

Proof of Proposition 6.1. Let g; be the transvection of length ¢ from Ejy toward £. Let
h be an isometry of X,(R) then h{ = ¢ if and only if the geodesic ray from Ej to £ and
its image by h remain at a bounded distance one from another. This means exactly the
set {d(hgsFo, g:Eo)| t > 0} = {d(g; *hgiEo, Eo)| t > 0} is bounded. Thanks to Lemma
6.2, this means that the set of operators {g; 'hg;| t > 0} is bounded.

Since the isometry group of X, ,(R) acts transitively on the set of chambers of the
spherical building 0X,,(R) and any £ € 0X,(R) is in the closure of a chamber, we
can suppose that ¢ is in the closure of the boundary at infinity of the Weyl chamber
(of second type in the terminology of [Ebe96, 2.12.4]) C = {exp(H))Eo| A1 > -+ >
Ap > 0} where H) is an infinite-dimensional operator of finite rank of 7 which has the
same expression as the one in equation (3.1). So, we suppose that £ is the limit when
t — +oo of gEy = exp(tHy)Ep for a fixed A = (A,...,Ap) with Ay > --- > A, > 0.

Let v1 > --- > v the distinct non-trivial values of A1,..., )\, and E; be the span of
{ej + ep+jl Aj > v;}. In order to show that h stabilizes the isotropic flag F' = (FE;)¥_,,

we will use a more convenient Hilbert base of H. Let (e}) the Hilbert base defined by

¢ =1/V2(e; +eiyp), 1<i<p
¢ =1/V2(e; — eiyp), P+1<i<2p
L= e, 1> 2p
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In this new base, the block decomposition of the matrix representation of g; is

et 00
0 e 0
0o o0 I

t

where e} is the diagonal matrix with diagonal exp(t)\1),...,exp(t)). The matrix of ®

1S

If we write the matrix of A
hi ha hs
hy hs hg
hy hs hg

then the matrix of g{lhgt is

e—)\thlekt e—)\thQG—)\t 6_>‘th3
e/\t h4€)\t e/\t h5€f)\t eAt h6
h7€)‘t hgef)‘t hg

Now, since {||g; "hg:||| t > 0} is bounded, simple computations show that hy is a
block upper-triangular matrix and blocks correspond with E;’s. The matrix h4 has zeros
everywhere except if the row index, 4, and column index, j, satisfy A\; = A\; = 0. The
matrix h7 has trivial columns except the ones whose index, j, satisfies A; = 0. This
shows h stabilizes the flag F'.

Conversely, if F' is an isotropic flag (F;)¥_, then we can find a Hilbert base (e;);en such
that there exist 1 =14y < --- <41 < p+ 1 such that Ej is the span of Cijy vy Cijyy—1-
We define A\, = k—j+1 le] §i<ij+1 and \; = 0 if i1 < i < p. Now, if h € G
then we use the same matrix representation (with same block decomposition as above)
in the base (€]) constructed as above from (e;). The block h; is block upper-triangular
and hy, h7 have trivial columns except the ones whose index, j, satisfies A; = 0.

We also know that h~! € G and th = &L~ 1P. If R, are the blocks of h~! then hs =t
| is block lower-triangular, *hy = h/; have trivial entries except the ones whose index,

i,7, satisfy \; = A\j = 0 and hg = —th’7 has trivial rows except the ones whose index, i,
satisfies A; = 0. These conditions on the blocks of h imply that {||g; *hg||| t > 0} is
bounded and if { = lim;_.oo g1 Fo then h € G¢. O

Part 2. Furstenberg Maps
7. AMENABILITY

7.1. Amenable actions. We recall the notion of amenable actions, which generalizes
the notion of amenable groups and was introduced by R. Zimmer in [Zim78]. See [Zim84,
section 4] and [ADRO0] for more details. Let 2 be a standard Borel space and G be a
locally compact second countable group. The space €2 is said to be a G-space if it is
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endowed with an action G ~ by Borel automorphisms and there is a quasi-invariant
probability Borel measure on ). Every measurable notion on B will refer to this implicit
class of measure.

Throughout this section €2 will be a standard Borel space and p a Borel measure on
it.
Definition 7.1. A measurable field of Banach spaces is collection E = {(E,, ||||]) }wea
of Banach spaces and a subset M C [] cq Ew with the following properties :

i) if f,g € M then f+ g € M,
(ii) if f € M and ¢: Q — C is a measurable function then ¢f € M,
(iii) if f € M then w — || f|| is measurable,
(iv) if f € [, cq Fu such that (f") is a sequence in £ with lim f} = f,, for almost every

w then f € M and

(v) For almost every w, {f,| f € M} is dense in E,,.
The subset M is called a measurable structure for E and elements of M are called sections
of E. The measurable field E is separable if there is a countable family {f"} € M such
that (f)nen is dense in E,, for almost every w.

If E is a separable measurable field of Banach spaces, a cocycle a,for G on E, is a
collection {a(g,w)}geqwen such that
(i) for all g and almost every w, a(g,w) €lsom(E,, Eqy,),
(ii) for all g, ¢ and almost every w, a(gg’,w) = a(g, gw)a(g’,w) and
(ii) for all £, f' € M, (g,w) - |1fu — alg.g~ ') f! v, || is measurable.

In this case the formula (gf), = a(g,g_lw)f;,lw defines an action of G on M. If E is

measurable field endowed with a cocycle for G then one can constructs the dual field E*
endowed with the dual cocycle af.

Definition 7.2. Let Q) be a G-space. The action G ~ € is amenable if for every cocycle
for G on a measurable field E over (2 and every G-invariant subfield K of weakly compact
subsets of the balls of E* there exists an invariant section in K.

7.2. G-boundaries. We recall the notion of G-boundary, which appeared for the first
time in [BM96].
Definition 7.3. Let G be a locally compact group and (B, v) a G-space. The measure
space (B, v) is said to be a G-boundary if

(i) the action G ~ (B, v) is amenable,

(ii) the diagonal action G ~ (B x B,v X v) is ergodic.

Thanks to a theorem of V. Kaimanovich in [Kai03] (which generalizes [BM02, Theorem
6]), every locally compact and second countable group has a strong boundary, which a

strengthening of the notion of boundary and which has been introduced by M. Burger
and N. Monod in [BMO02].

8. MEASURABLE FIELDS OF CAT(0) SPACES

A general study of measurable fields of CAT(0) spaces has been done in [AH11]. We
first recall definitions and some general lemmas which are part of this general study.
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Definition 8.1. Let (€, u) be a standard probability space. A measurable field of
CAT(0) spaces is a collection X = {(X,,,d,)} of (non-empty) complete CAT(0) spaces
and a countable family F C [[ X,,, called a fundamental family, such that

(i) for all z,y € F, w+— dy(xy,y,) is measurable,
(i) for almost all w, {f,| f € F} is dense in X,,,.

Let X be a measurable field of CAT(0) spaces. A section of X is an element z € [[ X,
such that for all y € F, w — dy(zw, ) is measurable. Two sections are identified if
they agree almost everywhere. The set of all sections is the measurable structure M of
X. If z,y are two sections, the equality

dw(xwa yw) = sup |dw(xwa Zw) - dw(ZWv yw)‘
ZEF

shows that w +— d(xy, ) is also measurable. Since a pointwise limit of measurable
maps is also measurable, we have the following lemma.

Lemma 8.2. If x € [[, Xo and (2™) a sequence of sections such that for almost every
w, x, — x, then x is a section of X.

If G is a locally compact group and ) is a G-space then a cocycle for G on X is a
collection {a(g,w)}geqwen such that
(i) for all g and almost every w, a(g,w) € Isom(Xy, Xg.),
(ii) for all g, g and almost every w, a(gg’,w) = a(g, gw)a(g’,w) and
(iii) for all 2,y € F, (g,w) — duw(2w, a(g, g 'w)y,-1,) is measurable.
A subfield Y of X is a collection {Y,,},cq of non-empty closed convex subset such that
for every section x of X, the function w — d(z,,Y,,) is measurable.

We identify subfields Y and Y’ if Y, = Y/, for almost every w. We introduce a par-
tial order on the set of (equivalence class of) subfields : Y < Y’ if for almost every w,
Y, CY/.

A cocycle for G on X induces an action of G on M by (gz), = a(g, g 'w)z,-1, for
z € M and w € Q. It induces also an action on subfields by gY = {a(g, g~ 'w)Y,-1, }o-

Lemma 8.3. Let Y,Z be two subfields of X. Then Y < Z if and only if for all x € F
and almost every w, d,(Yy, xy) > dw(Z,,xw) and Y < Z if and only if Y < Z and there
exists x € F such that p({w| dy(Ye, 2w) > dw(Zy,xy)}) > 0.

Proof. For xz € F, we define Q, = {w | dy,(7w, Vo) > dw(2w, Z,)} and Q, = {w | dy (7, Ya,) >
dy(Tw, Z,)}. Then Q, et Q, are measurable subsets of Q. If Y < Z then for all z € F,
Q.. has full measure. Conversely, if for all z € F, Q. has full measure , then Q =N, Q,
has also full measure and for all w € Q, Y., C Z,,. Moreover, if j(£2;) > 0 then Z £Y.
This shows the second part of the lemma. ]

Following lemmas aim to show that usual constructions in complete CAT(0) spaces
can be done measurably for measurable fields of CAT(0) spaces.

Lemma 8.4. If z,y are two sections and r: Q@ — [0,+00) is a measurable map then
w > dy (Yw, B(zw,m(w))) is measurable.
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Proof. The restriction of w — dy,(Yw, B(2w, 7(w))) to {w| r(w) = 0} is clearly measurable.
So we suppose that r(w) > 0 for all w. Then we remark that

Ay (Yo, B(zw,m(w))) = inf{dy(Yu, 2w)| 2 € F, 2, € B(xy,r(w))}.

For z € F, we define aw(yw,iw) = +o0 if 2, & Bz, 7(w)) and dy, (Y, 2w) = dw(Yw, 20)
in the other case. Then w — dy, (Y, 2) is a measurable function with values in RT U{oo}
and

do (Yoo, B(Tw, 7(W))) = inf diy (Yo, 2e)-
zeF
[l

Lemma 8.5. Let Y be a subfield of X. If x is a section of X then the family of
projections of x,, on Y, is a section of X.

Proof. Let F = {2'};eny be a fundamental family of X and x be a section of X. We
define .
d(zy, zt,) d(zy,Y,) +1/n and }

i(n,w) = inf J i <
i(n,w) =inf < dzi.Y) < 1/n

Thus, (mij(n’w)) is a section and 22" — 7y, (Tw). O
Remark 8.6. Lemma 8.5 shows subfields are fields on their own. A fundamental family
is given by projections of elements of a fundamental family of X.

Lemma 8.7. Let {z'};en be a countable family of sections of X. The function w Hrad({xi,})
is measurable and if it is essentially bounded then the family of circumcenters of {x!} ,
18 a section.

Proof. The first part of the lemma holds because
rad({z,,}) = inf sup d,,(zi,,y).
Let r(w) =rad({z%,}) and let us number F = {y }jen. We define
j(n,w) = min{j € N| Sup du (20, y) < r(w) +1/n}.

Then (yfj(n’w)) is a section and for almost every w, lim, 4o yf,(n’w) is the circumcenter

of {z1}. O

Lemma 8.8. Let x,y be two sections of X and d: Q — [0,+00) a be measurable function
such that for almost every w, d(w) < dy(xy,Yu). The family (z,) of points on [x,, Y]
such that dy,(xy, z,) = d(w), is a section of X.

Proof. Any such function d can be obtain as a pointwise limit of function of the type
w = AMw)dy(Tw, Yw) where A is a measurable function with dyadic values in [0, 1]. Thus,
it suffices to show the result when z, is the midpoint of [z, yw].

In a CAT(0) space, X, fix two points = and y then the set

Ze = {Z € X| max(d(z, 2),d(y, 2)) < d(x,g)—i—s—:}
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contains the midpoint of [z, y] and has diameter at most €. It suffices to define z, to be
the limit as n — 400 of projections of x,, on the intersection

5 (xw, d(xw, Yo) + 1/n> B <yw7 d(zw, Yo) + 1/n> .

2 2
g

A measurable field of CAT(0) spaces X has finite telescopic dimension if for almost
every w, X, has finite telescopic dimension. We note that the quantitative result of
Theorem 4.2 shows that w +— DimTel(X,,) is a measurable map. For example if there is
a cocycle for G on X and G ~ € is ergodic then almost every X, has the same telescopic
dimension (maybe infinite).

Let X be a measurable field of CAT(0) spaces such that for almost w, 0X,, # (). We
define its boundary field 0X to be the collection (0X,,). A section of 9X is a collection
¢ = (&) such that for all z,y sections of X, the function

w = Be, (Tw, Yuw)

is measurable.

Lemma 8.9. Let X be a measurable field of CAT(0) spaces with almost surely non-empty
boundary. Let & = (&) be a collection of points &, € 0X,,.

The collection £ is a section of OX if and only if there exists a sequence (2") of sections
of X such that for almost every w, 2z — &,.

Proof. Let (2™) be such a sequence of sections. Thus for all sections x,y of X and almost
every w,

5&, (xwu yw) = ngr_‘r_loo dw(xwa ZZ) - dw(ywv ZZ)
Conversely, let £ be a section of 0X. We fix a section = of X and we define 2]} to be

the point on the geodesic ray from z, to &, at distance n from xz,. Let Y} = {y €
Xo| Be, (y,xn) < —n}. If 2 is a section of X then

d(2,Y,) = max {0, B¢, (2w, o) + 1} .
Thus Y™ = {Y} is a subfield of X and the collection 2" = (27) = (myr(z.,)) is a section

w

of X which tends to &. O

If Q is a G-space for some locally compact group G and « is a cocycle for G on
X then there exists a natural action of G on the sections of dX. This is given by

(98)w = a(g, g7 w)Eg-14,

Proposition 8.10. Suppose that X has finite telescopic dimension and (X™) is a non-
increasing sequence of subfields such that for almost every w, N, X = 0. Let &, be center
of directions constructed in Proposition /.J associated with (X[).

Then & = (&,) is a section of 0X.

Proof. Proof of Proposition 4.4 and lemmas 8.5, 8.7 and 8.8 show that for almost every
w, &, is a limit of a sequence 2, where 2" is a section of X. ]
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Proposition 8.11. Suppose X has finite telescopic, G acts on X wvia a cocycle o and
G ~ Q is ergodic. Then there exists a minimal invariant subfield of X or there exists
an invariant section of 0X.

The following lemma will be usefull for the proof of Proposition 8.11.

Lemma 8.12. Let X be a totally ordered family of subfields of X. Then there exists a
countable non-increasing subfamily (X™)nen that is cofinal.

We recall that (X"),en is cofinal means that for any Y € X’ there is n € N such that
X" <Y.

Proof. For x € Fand Y € X, set fY(w) = d,(z,,Y,). Then forallz € Fand Y € X,
fX is a measurable function and (Lemma 8.3)

Y >Z < VzVw fX(w)> fAw).

Now thanks to a classical analysis result, for all x € F, we can find a sequence
(X™) such that (fX"), is non-inreasing and cofinal among {f.¥ }yecx (for the order :
f>g9g <= Yw f(w)> g(w)). Since F is countable, we can suppose this is the case

for all z € F simultaneously. Lemma 8.3 permits to conclude that (X") is cofinal.
O

Proof of Proposition 8.11. We suppose there is no invariant section of 0X then we will
show that the set of all invariant subfields of X is inductive (for the opposite order of
>). Then Zorn’s Lemma will provide a minimal invariant subfield.

Let X be a totally ordered subset of invariant subfields. Thanks to Lemma 8.12, X
contains a cofinal non-increasing sequence (X™). The subset {w € Q| N, X} = 0} =
{w € Q| dy(zy, X)) = 400} is measurable and G-invariant. By ergodicity, it is a null or
a conull set. If it is a null set then Proposition 8.10 provides a section at infinity which
is invariant because X,, are invariant. This contradicts our assumption. In the other
case we define Y,, = (1,, X2J. This is a closed convex subset of X, for almost every w.
If F = {2"}ren then we set y* to be the projection of z¥ on Y. Since yF is the limit
of projections of z¥ on X7 for almost every w, y* = (y*) is a section of X and {y*} is
a fundamental family for Y which is thus an invariant subfield and a lower bound for
X. O

9. ADAMS-BALLMANN THEOREM IN A MEASURABLE CONTEXT

9.1. Euclidean de Rham factor. Let X be a complete CAT(0) space. It is a classical
result that X is isometric to some product Y x E where Y is a complete CAT(0) space
and F is Euclidean space (maybe of infinite dimension) that is maximal for inclusion.
Moreover if X ~ Y’ x X’ is another such decomposition then £ ~ E’ and Y ~ Y’. The
Euclidean space E is called the Euclidean de Rham factor of X. We show that under
some assumptions, this decomposition can be done measurably. Under assumptions of
properness and finite dimension, M. Anderegg and P. Henry show that a more precise
decomposition, inspired by [AB98, Theorem 1.6], can be obtained (see [AH11, Proposi-
tion 3.20]).
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Throughout this section we consider a measurable field of CAT(0) spaces X that has
finite telescopic dimension and is not reduce to a single section, a fundamental family
F = {2'} for X and a cocycle « for a locally compact group second countable group G
on X. We assume that X is minimal and G ~ (2 is ergodic.

Remark 9.1. Assumptions of ergodicity and minimality imply that for almost every w,
X, is unbounded.

Proposition 9.2. Let x be a section of X. There exists n € N and two subfields E and
Y of X containing x such that X = E x Y, for almost every w, E, ~ R" and E 1is
maximal for those properties.

Moreover, if y is an other section of X and X = E' x Y’ is another such decompo-
sition associated with y then for almost every w, the projections 7, |g, and my,|y; are
isometries. In particular, if v =y then E=E and Y =Y'.

The subfield E will be called the Fuclidean de Rham factor of X and such a decompo-
sition X = E xY will be called a Fuclidean de Rham decomposition. We will say that X
is Euclidean if X = E and that X has no Euclidean factor is X = Y is reduced to a point.

To recover measurably the Euclidean de Rham Factor we well need a measurable
version of Proposition 4.6. We fix a section z° of X. We set A to be set of family
f = (f.) such that such that for almost w, f, is an affine function on X, and there exist
a sequence (x') of sections of X such that for almost every w and every y € X,

foly) = lim dy(y, ) — d(a), af,).
71— 00

For all w € Q we set E,, the Euclidean subspace of X, that contains :L‘g and is isometric
to the Euclidean de Rham factor of X,,. At this stage, we don’t that (E,,) is a subfield.

Proposition 9.3. Let f € A.Then for almost every w, there exists &, € OF,, such that
fu is the Busemann function associated with &, .

Proposition 4.6 uses the following technical lemma.

Lemma 9.4 (Lemma 4.9 in [CL10]). Let X be an unbounded complete CAT(0) space of
finite telescopic dimension . Then there exists a sequence (Dj) of positive numbers such
that for every j, D; > j, a sequence (8;) of positive numbers that tends to 0, a sequence
of points pj € X and a sequence of finite subsets Q; C X with the following properties.

(i) The set Q; is included in the closed ball of radius D;(1+ 6;) centered at p;.
(i1) For every s € X, there exists q; € Q; such that d(s,q;) — d(s,p;) > D; — 1.

A measurable version for X of this lemma is the following.

Lemma 9.5. There exists a sequence D; > j, a sequence of sections P’ of X and a finite
set of sections Q; of X such that
(i) For all ¢ € Q; and almost every w, dy (Pl qu) < D;(1+1/j7).

(it) For almost every w and all x € X, there exists ¢ € Q; with dy,(z, q.) —dw(:r,pi,) >
D;.
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Proof. Let F = {2'} be a fundamental family for X. For w € Q and j,n € N, we set

< B(Q:ZJ,T(I +1/7))
and VI € N 3k(l) d(z, 25y — d(ab, i) > r [

W)W

D, :inf{r >jl3dieN, Jit,...,in,

Since z, are dense in X, we note that

; . . Azri,..., 2, € B(z,r(1+1/7))
J — 9 9 9 )
D = inf {T > J ’ v € Xo, with Vy € X, 31, d(zi,x) — d(zi,y) >r [

The first way to write Dﬂ;n shows w +— DZ,,n is measurable. Indeed, for r» > 0, set

j axin e Bl r(14+1/5

W =dwe|FeN, i, i, 00" (z 7“1( iw)/y)) - |
y and Vl € N Elk(l) d({l}w,xw ) — d(mwszj) > 7

So

vm € (1] d(ain,at) < r(1+1/7)
and d(zl,, z%) — d(zl,2%) > r ’

W) Fw

o.=U U N U {weo

€N i1, in€NIEN k€ {iy ... in}

Thus, Q%,T is a measurable set for n,j € N and r» > 0. Finally, if w € ng“ inequalities
J
n,r
{wEQ‘ Di7n<r}: U QZM,: U in,/ .

r'<r r'<r, r'eQ

are strict, there exists € such that for all ' with |r — | < e, w € Q) , and

This shows w +— DZM is measurable.
The second way to write Dﬂ,,n shows that w — Dﬂm is G-invariant. By ergodicity,
there exists Dj, such that for almost every w, D, ,, = Dj,.

Fix j, Lemma 9.5 shows that for almost every w, there exists n such that Di,n < 00.
Set
nj(w) = inf{n € N| DJ,,, < oo}.

Once again, w +— n;j(w) is measurable and G-invariant. Thus there exists n; such that
for almost every w, n;(w) = n;.

We set D; = D%j +1 and

Jit, ..., in,

ald, ... xlp € Bk, Dj(1+1/7))
et VI e N 3k(l) d(al, 20y —d(al,2l)) > D; —1 [

(@)

i/ (w) = inf {z eN

Then w + i/ (w) is measurable and if we set Pl = 25 then p’ is a section for all j.

We endow the (countable) set of subsets with n; elements of N with an order coming
from a bijection with N. We set

2, ..z’ € B(ph, Di(1+1/9)) }

I =inf Sy, ... in, L i i
and VI € N 3k(l) d(!,, z,"") — d(z!,,pl,) > D; — 1
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Then IZ, is measurable and if we set ij,(w) to be the k'™ element of I, for k € [1,2, ... , 1]
then w — ig(w) is measurable.

Finally, we set
Q= {@E“) ke ll,2,...,nl}
and claimed properties hold. ]

Proof of Proposition 9.5. For j € N, set

- . ° fu(zw) = fu(zw) = Dj =1
S; = {x section of X | Vf e A, Vw dz, € X, , and dy (2. 2,) < (1 +1/§)D; |-

Thanks to Lemma 9.5, S; # 0 for all j € N. Then we set C; = (C,) where
¢! = Conv{zl| x € S;}.

Thanks to lemma 8.8, C; is a subfield of X.. Since S; ist a-invariant, C; is so. Thanks to
minimality of X, CJ, = X, for almost every w. We remark that S; is stable under convex
combinations and pointwise limits. Thus, for all f € A, almost every w and all z € X,
there exists z € X,, such that f,(2) — fu(z) = D; — 1 and dy,(x,2) < (1+1/5)D;. We
can now use Lemma 4.7 which provides &, € 0X,, such that for all z € X,,, —fu(z) =
Be,(z,20). We call y? the point at distance n from 20, such that f,(y?) = n for all
n € N. By construction of f,, for all n € N, (y”) is a section of X and for almost every
w, —f = limp 00 d(y},.) — n. This shows that (—f,) € A and the same reasoning gives
another &,. Moreover, if z € X,,, the concatenation of rayons issued from x towards &,

and £, is a geodesic line. Thus, X, is the union of geodesic line from &, to &,. Theorem
I1.2.14 in [BH99] gives the product decompostion. d

Proof of Proposition 9.2. Let X, = E, X Y,, be the Euclidean de Rham decomposition
of X, where we identify F,, and Y,, with to (closed convex) subsets of X, such that
Y, NE, = {x,}. Suppose that

(i) for all sections y, z; w — dy,(7E, (Yu), T, (2w)) is measurable.

Yo
2w
Fommmmmmmooooooooooooooy Ty, (Zw)
b Yo
; Fommmmm ooy Ty, (Yw)
EUJ TrEw (ZW) T[-Ew (yw) Lo

Now, let y et z be two sections of X. We have
dw(yw7 TE, (yw>) = \/dw(ywy ww)Q - dw(xuu TE,, (yw))Q-
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Since g, (%y) = Tw, w — dy(Yw, TE, (Yw)) is measurable. Since

dw(Yr> TE,, (Zw))2 = dy(TE, (Yu); TE, (Zw))2 + duw (Y, TE, (%}))27

w > dy(zu, e, (Yw)) is measurable. This shows that for every section z, (7g,(2y)) is
also a section of X.

Since d(7y, (Y ), Ty, (zw))2 = dy (Yuw, zw)2 —dy(rp,(Yw), TE, (zw))Q, for every section
y of X, (my,, (y.,)) is also a section of X.

Projections on FE,, and Y,, of sections in F gives fundamental families for Y = (Y,)
and E = (E,). Thus, E and Y are subfields of X. Last properties come from usual
properties of the Euclidean de Rham decomposition for each X,,.

It remains t show property (i). Fix two sections y and z of X. For w € Q, let C,
be the set of 1-Lipschitz convex functions on X,, which vanishes at 20. For f € C,, set

AY (f) = %f@i) —f (miﬂ ) where m% is the midpoint of 28, xﬂ]] Since f is convex,

this quantity is non-negative. Let f¥ be the function y — d,(y, z*) — d(z0, 2¥) and

W Fw

K ={k eN| dw(xk :CO) >netVi,j<n, Ai;](fif) < 1/n}.

w?) Hw

We claim that following equalities hold (with convention that the supremum of the empty
subset of RT is 0) and thus property (i) hold.

A, (). () = o () = fo()| = lim_ sup |f5(u) = f (2]

By definition of A, we know that

rfleajf | folyw) = folzw)] < ngrfoo :&% ‘fo’j(yw) - fﬁ(zw”

To show the inverse inequality, set

e = { € K2 | £ () — fi(z0)| = sup | fE(y) — fE(20)] — 1/n},

keK

let k(n,w) = min L and ¢ = ff("’w). We have
li k w) — k w)| = li o w) — " w)|
nJTooks‘e‘%'fw(y ) = fu(zo)l = lim {g: (o) — gi(20)]

Each C,, is compact for the pointwise convergence. Thus [, . Co is so. Up to extract a
subsequence, we can suppose that for almost all w, g converges to some g,,.Thanks to
Proposition 9.3, g = (g.,) is an element of A. Thus,

I}leaj( |fw(yw) - fw(zw)’ > ngl—ir-loo kSEL}?Zj ’folj(yw) - fa]j('zw)‘

and for almost all w, g, corresponds to a Busemann function of E,. Thus,

dw(TE, (Yo), TE, (20)) > I}leaj( | fo(Yu) = fu(zw)l-
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Since for almost every w, (z!,);en is dense in X,,, for all n, we can find z* arbitrarily
closed to the geodesic (7, (Yw), Tw(2w)) in E, and k € K. O

Corollary 9.6. There are two cocycles for G on E and Y, ag and ay such that a =
O X Qy.

Proof. For a fixed g € G and w € (1, we set
E' = gE and Y' = gY.

This gives a new de Rham decomposition X = E’ x Y’. The second part of Proposition
9.2 shows the projection 7g, | and 7y, |y, are isometries. We set ag(g,w) = 7g,, ©
a(g,w) and ay(g,w) = 7y,, o a(g,w). Thus a(g,w) = ag(g,w) X ay(g,w) for all g and
almost all w. Cocycle properties of ag and ay follow from those of a. O

9.2. Measurable Adams-Ballmann theorem. Let G be locally compact second count-
able group and Q an ergodic G-space. Let X be measurable field of CAT(0) space of
finite telescopic dimension endowed with a G-cocycle. Let F = {z'};cn be a fundamental
family of X.

We fix a section 2°. For w € €, let C,, be the locally convex linear space of convex
functions which vanishes at 20 endowed with the topology of pointwise convergence. Let
C., the compact convex subspace of C,, of functions which are moreover 1-Lipschitz. A
metric on C,, can be given by the formula

|f(xl,) — g(=L,)]
D,(f,9) = : :
9= 2 el )
ieN
Let t: X, — Ly, defined by 1, (z) = dy(x,.) — du(z,20). We define K, to be the closed
convex hull of ¢,(Xy). Then K = (K ), is a measurable field of compact spaces. A
fundamental family is given by rational convex combinations of elements in {¢,,(z,) }ien-

A section f = (f,) of K is called affine if for almost all w, f, is an affine function on
X

Proposition 9.7. If X has no Euclidean factor, is minimal and is not reduced to a
section then K does not contain any affine section.

Proof. We use same notations as in the proof of Proposition 9.2. We introduce the
following function 7:  — R where
7(w) = inf sup A% (f).
()= inf sup A ()
The function 7 is measurable and G-invariant thus, by ergodicity, it is an essentially
constant function. Since K, is compact 7(w) = 0 means exactly that K, contains an
affine function. The same way we define v:  — R where

vw) = _inf sup AL (f).

tw(Xw) 4,5

Then v is also an essentially constant function. We remark that for almost every w,
v(w) = infreqsup; ; Ay (f). Since X has no Euclidean factor and is minimal, Propo-
sition 9.3 implies that A is empty. Thus, there is € > 0 such that for almost every e,
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v(w) = e. Lemma 4.10 in [CL10] shows that 7(w) > 0 almost everywhere and then K
can not have any affine section. O

We define C(K) to be the measurable field of Banach spaces (C(K,,)) where C(K,,) is
the Banach space of continuous functions on the compact metrizable space K,. Each
C(Ky) is endowed with the sup-nom. For details about the measurable structure, we
refer to [And10] or [Hen10].

If B(g,w)(f) = foalg ! gw) — f( for f € K, then we define a cocycle v via the
formula
Yg:w)e(f) = w(Blg™ " 9w)(f))
for f € Ky, and ¢ is a section of C(K,,). We endow the dual field C(K)* with the dual
cocycle v*.

Let M(K) be the compact convex subfield of C(K)j (the measurable field of unit balls
in duals). It is invariant under v* and moreover if y € M(K,) then

(g, w) 1= B(g,w)«p-

We recall (see [Zim84, 4.1.4] and reference therein) there exists a continuous map, called
barycenter, b: M(K) — K for K a compact convex subset of a locally convex space.
This map is defined on convex combinations of Dirac masses by

b() " Nidk) =D Aiki.

The density of such combinations (for the weak-* topology) permits to define b ev-
erywhere. Moreover, if T: K — K’ is an affine map between two compact convex
subsets of some locally convex spaces and b, b’ are the respective barycenter maps then
Tob(p) =V (Typ) for every p € M(K).

So if u is a section of M(K) invariant for the cocycle v* then we define k,, = by, (1)
where b, is the barycenter map b,, : M(K,) — K. Since for all g and almost every w
B(g,w) is affine, we have

(B : k)w = B(gag_lw)kg—lw = bw(ﬁ(gag_lw)*:u'g—lw) = ﬁw(#w) = k.

This gives an invariant section of K.

Proof of Theorem 1.8. We suppose there is no invariant section of 9X. Thanks to Propo-
sition 8.11, there exists a minimal invariant subfield X’ of X. Let X’ = E x Y be a
Euclidean de Rham decomposition of X’. The minimality of X’ implies the minimality
of E and Y under cocycles ag and ary. Then it suffices to show Y is reduced to a section.

Fix a section x of Y. Let K be the measurable field of compact spaces previously
introduced at the beginning of section 9.2, relatively to Y. By amenability of the action
G ~ Q, M(K) has an invariant section. The previous discussion shows K has also an
invariant section. Let f be an invariant section of K, this means for all section y of Y
and almost every w,

(9'1> fw(yw) = fg*lw(aY(gila w)yw) - fg*lw(O‘Y(gila w)ww)'



INFINITE DIMENSIONAL NON-POSITIVELY CURVED SYMMETRIC SPACES OF FINITE RANKS35

This means the quantity fg—lw(OZY(gil, W)Yw) — fw(yw) does not depend on y. So, we set
c(9,w) = fow(Ygw) — fulav (97, gw)ygw) and then ¢ : G x Q@ — R s an additive cocycle.
We introduce the three measurable subsets of €2,

Qnin = {w € Q| f, has a minimum},
Qe = {w € Q| f, does not have a minimum and inf f, > —oo},
N = {weQ| inff, =—oc0}.
The equation (9.1) can be written by replacing w by gw,
fgw = fw o O‘Y(gilmgw) + C(ng)'

Thus the three previous subsets are G-invariant. Their union has full measure and since
G ~ Q is ergodic, one of them has full measure.

If Qmin has full measure then we define Y = f(min £,,) and this gives a G-invariant
subfield Y’ of Y. By minimality Y’ = Y. This shows that for almost every w, f, is a
constant function on Y,,. But since Y has no Euclidean factor and is minimal, Proposi-
tion 9.7 shows that Y is reduced to a section.

If Q_, has full measure, we define Y7 = f1(] — 0o, 7]) for » € R™ and if Q¢ has full
measure, we define for 7 € RY, Y = f71(Jinf f,,inf f, +7]). In the two cases, Y" is
subfield wich satisfies

ay(g,w)Y] = Yy o)
for all g, almost every w and all » > 0. We choose a countable dense subset D of rational
numbers in R* or R™. Thanks to Proposition 8.10 (used for (Y"),cp) we construct a
section of Y and thanks to Proposition 4.5 it is ay-invariant and this gives also an
a-invariant section of 9X. O

10. FURSTENBERG MAPS
Let us start by recalling the following lemma.

Lemma 10.1 ([CL10, Proposition 1.8.(ii)]). Let G be a group acting on X,(K) by isome-
tries without fized at infinity. Then there exists a minimal (non-empty) G-invariant
closed convex subspace X of X,(K).

Now, we suppose we are under the hypotheses of Theorem 1.7. That is G is a locally
compact second countable group which acts measurably and in a non-elementary way
by isometries on a space X,(K). The action G ~ X,,(K) is non-elementary if there no
G-invariant Euclidean subspace of X,,(K) nor fixed point at infinity.

Let B be a G-boundary and let Y be a complete CAT(0) space on which G acts
continuously by isometries. We will consider the constant field Y over B such that for
allb € B, Y, =Y. We choose a dense countable family D of points in Y. A fundamental
family of Y is given by elements (x3) such that all z;, are equal to a same element of
D. The group G acts on Y via a cocycle o where a(g,b) = g for every g and b. With
this definition, we remark that an invariant section z = (x3) coincides with a measurable
G-equivariant map from B to Y, b +— x(b) = . Indeed, x is an invariant section means
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that a(g,b)xy = x4 for all g and almost every b and b — x(b) is G-invariant means that
x(gb) = gz(b) for almost every b.This is just a matter of vocabulary.

We will set X to be the constant field such that for all b, X; = X,(K). Let Y be
a closed convex subset of X endowed with a continuous G-action by isometries. We
consider the constant field Y with the cocycle ay (g,w) = g for all g and almost every

w. Since Y C X,(K) then each Y} can be seen as a non-empty closed convex subset of
X,(K).

Proposition 10.2. If there is an invariant Fuclidean subfield E of Y then for almost
every (b,b), OE, N OEy # 0 or there is a Fuclidean subspace FEy of Y such that for
almost all b, Ey, = Ejy.

Proof. Inspired by Gromov-Hausdorff convergence, we introduce the function dgpr of Eu-
clidean subspaces of X, (K). We emphasize that this function is not a distance and does
not characterizes the Gromov-Hausdorff convergence. If E, F' are Euclidean subspaces
of Y we define dgy(E, F) =

inf {1/r|3z € E, y € F, dy (EN B(z,r), FNB(y,r)) < 1/r}

where dp is the Hausdorff distance on closed bounded subspaces of X, (K) . The action
of Isom(X,) on Euclideans subspaces preserve dgp. Moreover, for any r > 0, we can
find countably many subsets

U(FE;, z;,r) = {F Euclidean subspace| dg(F N B(z;,r), E; N B(x;, 7)) < 1/r}

which cover the set of all Euclidean subspaces of X,(K). Actually, OF (K) acts tran-
sitively on the pairs (z, A) where A is maximal Euclidean subspace and z a point in A.
Moreover if g — e in Of  (K) (with the norm-topology) then for all z € X,(K) and
r > 0 the restriction of g to B(z,r) converges uniformly to the identity map. Fix a point
2 in a maximal Euclidean subspace A. For each dimension 0 < i < p, choose a countable
family (A?)nen of Euclidean subspaces in A such that for all Euclidean subspaces E C A
containing  and all £ > 0, there exist i,n such that dgy(F, A%) < . Now, choose a
dense subset {g;}; of O (K) then the countable family {(g;, g;A%)}( induces a
covering as above.

i?j’n)

Let E,F be two subspaces such that dgp(F,F) = 0. We claim that £ = F or
OE N OF # (. Indeed, there exist sequences (z,,), (y,) such that for n € N,

dy (Eﬂ?(mn,n),FOE(yn,n)) <1/n.

We can moreover suppose that x,, € E for all n. Since E is compact, we can also suppose
this sequence is convergent. If the limit is in E then F = E and if the limit is in OF
then it is also the limit of (y,) and thus a point in 0E N OF.

Since the Euclidean field is invariant Egy = ¢Ep and then b,b' — dgy(FEy, Ey) in
invariant. Thanks to double ergodicity, this function is essentially equal to some r > 0.
If » > 0, we choose a Euclidean subspace E and a point x such that U(F,z,r/2) has
positive measure for the image measure by b — FEj and we find P C Q x € which has
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positive measure such that (b,0') € P, dgg(Epy, Ey) < r. Thus r = 0.

This implies that for almost all (b,V'), Ej, = Ey or 0E,NOEy # (). The set {(b,V')| E, =
Ey} is G-invariant and measurable then by double ergodicity it is null or conull. In the
first case this implies that that for almost all (b,b") OE, N 9Ey # () and in the second
one this implies by Fubini’s theorem that there exists b such that for almost every ¥,
Ey, = Ey. O

Proof of Theorem 1.7. Since we suppose the action G ~ X,(K) is non-elementary then
Lemma 10.1 implies there exists a minimal closed convex invariant subspace X of X, (K).
Let X = E x Y be the Euclidean de Rham decomposition of X. It is a property
of Euclidean de Rham decomposition that the action G ~ X is diagonal and thus it
induces an action G ~ Y which is also minimal. Moreover, fixing a point z € X, Y
identifies with a unique totally geodesic subspace of X which contains x. We note this
subspace is not invariant under the action of G on X. However the embedding 0Y C 90X
does not depend on the identification. Thus 0Y is G-invariant (as subspace of 0.X) and
the extension on JY of the actions G ~ X and G ~ Y are the same. We will retain the
following data on Y

e The space Y is a complete CAT(0) space of finite telescopic dimension.
e The action G ~ Y is minimal.
e The boundary 9Y is a subset of 0.X,(K).

Let Y be the constant field over B associated to Y. We apply Theorem 1.8 to this
field. This gives an invariant section of JY or an invariant Euclidean subfield. An in-
variant section of JY gives a G-equivariant map B — 0Y C 0X,(K) when the latter
is equipped with the visual topology and is thus homeomorphic to a separable Hilbert
sphere.

Suppose now E is an invariant Euclidean subfield of Y. Since Y is a subfield of X,
E is also a subfield of X and we can apply proposition and then for almost every (b,b’),
OE, NOEy # ) or there is Fy Euclidean subspace of Y which is invariant. In the second
case this means that F' x Ej is a Euclidean invariant subspace of X,,. So we suppose
that for almost every (b,b'), OE, N OEy # (.

We consider now the building structure Z,(K) on 0X,(K). Since 0F} is a subspace
of an apartment of Z,(K) we note Cj the minimal subcomplex of Z,(K) which contains
OFy. This is a finite subcomplex.

If C is a subcomplex included in an apartment of Z,(K) we call the type of C, its
class under the action of Isom(X,(K)). The set of types is finite because each apartment
is a finite subcomplex and Isom(X,(K)) acts transitively on apartments of Z,(K). We
know that for almost every (b,0'), C, N Cy is a non-empty subcomplex. Since the type
is invariant under the action of G, double ergodicity implies that there is a type D such
that for almost all (b,b") C, N Cy has type D.
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We claim that the map (b, b') — CpNCl is essentially constant. We set Dy = CpNCly.
Fubini’s theorem implies that there is a conull measurable set By C B such that for all
b € By there is By, C B which is conull such that for all ¥ € B’, Dy has type D. We
fix b1,b2 € By and we set C; = Cp, and Cy = C,. Since there is a finite number of
subcomplexes of (' there exists By C B with positive measure and a subcomplex Dy of
type D such that for all b € By

CiNCy = Ds.

Then for all for b,b" € By, Dy = D;. Since there is also a finite number of subcomplexes
of C5 there is a measurable subset of positive measure By C Bj such that for all b, ¥’ € B,
Dy = CoNCy = C2NCy. Since C1NCy has type D we have C1 NCy = Dy. This implies
that b +— Dy, s is essentially equal to D;. Since for almost b,b" Dy, , = D1 = Dy, py and
Dy has type D, we have Dy = Dy. This shows this complex is G-invariant.

Let f be the mean of the Busemann functions (of Y') associated with the circumcen-
ters of the cells of D; and that vanish at some point xy € Y. Since G permutes the
circumcenters of the cells of D1, the function f is quasi-invariant. That is for all g € G
and z € Y, f(gz) = f(x) + f(g9z0). Thus g — f(gxo) is a homomorphism. If f has
a minimum then this homomorphism is trivial and the subset Z where f achieves its
minimum is a closed convex non-empty closed subspace of Y which G-invariant. By
minimality, Z = Y and then f is constant on Y. This means that Y has at least one
affine Busemann. This is a contradiction because Y has a trivial de Rham factor.

If f does not achieve its minimum the center of directions associated with the nested
family of sublevel sets is a fixed point at infinity for the action G ~ Y and thus there is
a fixed point at infinity for the initial action G ~ X,(K). This is a contradiction with
non-elementarity.

Finally, we a have obtained a measurable G-equivariant map ¢: B — 0X,(K).
O
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