141 research outputs found

    Generating Function For Network Delay

    Full text link
    In this paper correspondence between experimental data for packet delay and two theoretical types of distribution is investigated. Statistical tests have shown that only exponential distribution can be used for the description of packet delays in global network. Precision experimental data to within microseconds are gathered by means of the RIPE Test Box. Statistical verification of hypothesis has shown that distribution parameters remain constants during 500 second intervals at least. In paper cumulative distribution function and generating function for packet delay in network are in an explicit form written down, the algorithm of search of parameters of distribution is resulted.Comment: 5 pages, 4 Tables, 5 Figure

    Selection of drug resistant mutants from random library of Plasmodium falciparum dihydrofolate reductase in Plasmodium berghei model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of drug resistance amongst the human malaria <it>Plasmodium </it>species has most commonly been associated with genomic mutation within the parasites. This phenomenon necessitates evolutionary predictive studies of possible resistance mutations, which may occur when a new drug is introduced. Therefore, identification of possible new <it>Plasmodium falciparum </it>dihydrofolate reductase (<it>Pf</it>DHFR) mutants that confer resistance to antifolate drugs is essential in the process of antifolate anti-malarial drug development.</p> <p>Methods</p> <p>A system to identify mutations in <it>Pfdhfr </it>gene that confer antifolate drug resistance using an animal <it>Plasmodium </it>parasite model was developed. By using error-prone PCR and <it>Plasmodium </it>transfection technologies, libraries of <it>Pfdhfr </it>mutant were generated and then episomally transfected to <it>Plasmodium berghei </it>parasites, from which pyrimethamine-resistant <it>Pf</it>DHFR mutants were selected.</p> <p>Results</p> <p>The principal mutation found from this experiment was S108N, coincident with the first pyrimethamine-resistance mutation isolated from the field. A transgenic <it>P. berghei</it>, in which endogenous <it>Pbdhfr </it>allele was replaced with the mutant <it>Pfdhfr<sup>S108N</sup></it>, was generated and confirmed to have normal growth rate comparing to parental non-transgenic parasite and also confer resistance to pyrimethamine.</p> <p>Conclusion</p> <p>This study demonstrated the power of the transgenic <it>P. berghei </it>system to predict drug-resistant <it>Pfdhfr </it>mutations in an <it>in vivo </it>parasite/host setting. The system could be utilized for identification of possible novel drug-resistant mutants that could arise against new antifolate compounds and for prediction the evolution of resistance mutations.</p

    Stochastic model predictive control for constrained networked control systems with random time delay

    Get PDF
    In this paper the continuous time stochastic constrained optimal control problem is formulated for the class of networked control systems assuming that time delays follow a discrete-time, finite Markov chain . Polytopic overapproximations of the system's trajectories are employed to produce a polyhedral inner approximation of the non-convex constraint set resulting from imposing the constraints in continuous time. The problem is cast in a Markov jump linear systems (MJLS) framework and a stochastic MPC controller is calculated explicitly, oine, coupling dynamic programming with parametric piecewise quadratic (PWQ) optimization. The calculated control law leads to stochastic stability of the closed loop system, in the mean square sense and respects the state and input constraints in continuous time

    Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Get PDF
    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.Comment: 17 pages, 12 figures; Open Access at http://www.mdpi.org/sensors/papers/s8074265.pd

    A non-uniform predictor-observer for a networked control system

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s12555-011-0621-5This paper presents a Non-Uniform Predictor-Observer (NUPO) based control approach in order to deal with two of the main problems related to Networked Control Systems (NCS) or Sensor Networks (SN): time-varying delays and packet loss. In addition, if these delays are longer than the sampling period, the packet disordering phenomenon can appear. Due to these issues, a (scarce) nonuniform, delayed measurement signal could be received by the controller. But including the NUPO proposal in the control system, the delay will be compensated by the prediction stage, and the nonavailable data will be reconstructed by the observer stage. So, a delay-free, uniformly sampled controller design can be adopted. To ensure stability, the predictor must satisfy a feasibility problem based on a time-varying delay-dependent condition expressed in terms of Linear Matrix Inequalities (LMI). Some aspects like the relation between network delay and robustness/performance trade-off are empirically studied. A simulation example shows the benefits (robustness and control performance improvement) of the NUPO approach by comparison to another similar proposal. © ICROS, KIEE and Springer 2011.This work was supported by the Spanish Ministerio de Ciencia y Tecnologia Projects DPI2008-06737-C02-01 and DPI2009-14744-C03-03, by Generalitat Valenciana Project GV/2010/018, by Universidad Politecnica de Valencia Project PAID06-08.Cuenca Lacruz, ÁM.; García Gil, PJ.; Albertos Pérez, P.; Salt Llobregat, JJ. (2011). A non-uniform predictor-observer for a networked control system. International Journal of Control, Automation and Systems. 9(6):1194-1202. doi:10.1007/s12555-011-0621-5S1194120296K. Ogata, Discrete-time Control Systems, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.Y. Tipsuwan and M. Chow, “Control methodologies in networked control systems,” Control Eng. Practice, vol. 11, no. 10, pp. 1099–1111, 2003.T. Jia, Y. Niu, and X. Wang, “H ∞ control for networked systems with data packet dropout,” Int. J. Control, Autom., and Syst., vol. 8, no. 2, pp. 198–203, 2010.Y. Wang and G. Yang, “Robust H ∞ model reference tracking control for networked control systems with communication constraints,” Int. J. Control, Autom., and Syst., vol. 7, no. 6, pp. 992–1000, 2009.H. Gao and T. Chen, “Network-based H ∞ output tracking control,” IEEE Trans. Autom. Control, vol. 53, no. 3, pp. 655–667, 2008.H. Karimi, “Robust H ∞ filter design for uncertain linear systems over network with network-induced delays and output quantization,” Modeling, Identification and Control, vol. 30, no. 1, pp. 27–37, 2009.H. R. Karimi, “Delay-range-dependent linear matrix inequality approach to quantized H ∞ control of linear systems with network-induced delays and norm-bounded uncertainties,” Proc. of the Inst. of Mech. Eng., Part I: J. of Syst. and Control Eng., vol. 224, no. 6, pp. 689–700, 2010.K. Lee, S. Lee, and M. Lee, “Remote fuzzy logic control of networked control system via Profibus-DP,” IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 784–792, 2003.Y. Tipsuwan and M.-Y. Chow, “Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperationpart I: networked Control,” IEEE Trans. on Industrial Electronics, vol. 51, no. 6, pp. 1218–1227, December 2004.A. Sala, A. Cuenca, and J. Salt, “A retunable PID multi-rate controller for a networked control system,” Inform. Sci., vol. 179, no. 14, pp. 2390–2402, June 2009.A. Cuenca, J. Salt, V. Casanova, and R. Piza, “An approach based on an adaptive multi-rate Smith predictor and gain scheduling for a networked control system: implementation over Profibus-DP,” Int. J. Control, Autom., and Syst., vol. 8, no. 2, pp. 473–481, April 2010.A. Cuenca, J. Salt, A. Sala, and R. Piza, “A delay-dependent dual-rate PID controller over an Ethernet network,” IEEE Trans. Ind. Informat., vol. 7, no. 1, pp. 18–29, Feb. 2011.Y. Tian and D. Levy, “Compensation for control packet dropout in networked control systems,” Inform. Sci., vol. 178, no. 5, pp. 1263–1278, 2008.Y. Zhao, G. Liu, and D. Rees, “Modeling and stabilization of continuous-time packet-based networked control systems.” IEEE Trans. Syst., Man, Cybern. B, vol. 39, no. 6, pp. 1646–1652, Dec. 2009.X. Zhao, S. Fei, and C. Sun, “Impulsive controller design for singular networked control systems with packet dropouts,” Int. J. Control, Autom., and Syst., vol. 7, no. 6, pp. 1020–1025, 2009.H. Gao and T. Chen, “H ∞ estimation for uncertain systems with limited communication capacity,” IEEE Trans. Autom. Control, vol. 52, no. 11, pp. 2070–2084, 2007.S. Oh, L. Schenato, P. Chen, and S. Sastry, “Tracking and coordination of multiple agents using sensor networks: System design, algorithms and experiments,” Proc. of the IEEE, vol. 95, no. 1, pp. 234–254, 2007.M. Moayedi, Y. Foo, and Y. Soh, “Optimal and suboptimal minimum-variance filtering in networked systems with mixed uncertainties of random sensor delays, packet dropouts and missing measurements,” Int. J. Control, Autom., and Syst., vol. 8, no. 6, pp. 1179–1188, 2010.W. Zhang, M. Branicky, and S. Phillips, “Stability of networked control systems,” IEEE Control Syst. Mag., vol. 21, no. 1, pp. 84–99, 2001.J. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results in networked control systems,” Proc. of the IEEE, vol. 95, no. 1, pp. 138–162, 2007.J. Baillieul and P. Antsaklis, “Control and communication challenges in networked real-time systems,” Proc. of the IEEE, vol. 95, no. 1, pp. 9–28, 2007.P. Garcia, P. Castillo, R. Lozano, and P. Albertos, “Robustness with respect to delay uncertainties of a predictor-observer based discrete-time controller,” Proc. of the 45th IEEE Conf. on Decision and Control, pp. 199–204, 2006.C. Lien, “Robust observer-based control of systems with state perturbations via LMI approach,” IEEE Trans. Autom. Control, vol. 49, no. 8, pp. 1365–1370, 2004.A. Sala, “Computer control under time-varying sampling period: an LMI gridding approach,” Automatica, vol. 41, no. 12, pp. 2077–2082, Dec. 2005.J. Li, Q. Zhang, Y. Wang, and M. Cai, “H ∞ control of networked control systems with packet disordering,” IET Control Theory Appl., vol. 3, no. 11, pp. 1463–1475, March 2009.Y. Zhao, G. Liu, and D. Rees, “Improved predictive control approach to networked control systems,” IET Control Theory Appl., vol. 2, no. 8, pp. 675–681, Aug. 2008.K. Astrom, “Event based control,” Analysis and Design of Nonlinear Control Systems, pp. 127–147, 2007.A. Cuenca, P. García, K. Arzén, and P. Albertos, “A predictor-observer for a networked control system with time-varying delays and non-uniform sampling,” Proc. Eur. Control Conf., pp. 946–951, 2009.J. Xiong and J. Lam, “Stabilization of linear systems over networks with bounded packet loss,” Automatica, vol. 43, no. 1, pp. 80–87, 2007.H. Song, L. Yu, and A. Liu, “H ∞ filtering for network-based systems with communication constraints and packet dropouts,” Proc. of the 7th Asian Control Conf., pp. 220–225, 2009.P. Garcia, A. Gonzalez, P. Castillo, R. Lozano, and P. Albertos, “Robustness of a discrete-time predictor-based controller for time-varying measurement delay,” Proc. of the 9th IFAC Workshop on Time Delay Systems, 2010.J. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optimization methods and software, vol. 11, no. 1, pp. 625–653, 1999.T. Henningsson and K. Astrom, “Log-concave observers,” Proc. of the 17th Int. Symp. on Mathematical Theory of Networks and Systems, pp. 2163–2170, 2006.D. Davison and E. Hwang, “Automating radiotherapy cancer treatment: use of multirate observer-based control,” Proc. of American Control Conf., vol. 2, pp. 1194–1199, 2003

    A non-uniform multi-rate control strategy for a Markov chain-driven Networked Control System

    Full text link
    [EN] In this work, a non-uniform multi-rate control strategy is applied to a kind of Networked Control System (NCS) where a wireless path tracking control for an Unmanned Ground Vehicle (UGV) is carried out. The main aims of the proposed strategy are to face time-varying network-induced delays and to avoid packet disorder. A Markov chain-driven NCS scenario will be considered, where different network load situations, and consequently, different probability density functions for the network delay are assumed. In order to assure mean-square stability for the considered NCS, a decay-rate based sufficient condition is enunciated in terms of probabilistic Linear Matrix Inequalities (LMIs). Simulation results show better control performance, and more accurate path tracking, for the scheduled (delay-dependent) controller than for the non-scheduled one (i.e. the nominal controller when delays appear). Finally, the control strategy is validated on an experimental test-bed.This work was supported in part by Grants TEC2012-31506 from the Spanish Ministry of Education, DPI2011-28507-C02-01 by the Spanish Ministry of Economy, and PAID-00-12 from Technical University of Valencia (Spain). In addition, this research work has been developed as a result of a mobility stay funded by the Erasmus Mundus Programme of the European Commission under the Transatlantic Partnership for Excellence in Engineering (TEE Project).Cuenca Lacruz, ÁM.; Ojha, U.; Salt Llobregat, JJ.; Chow, M. (2015). A non-uniform multi-rate control strategy for a Markov chain-driven Networked Control System. Information Sciences. 321:31-47. https://doi.org/10.1016/J.INS.2015.05.035S314732
    corecore