View metadata, citation and similar papers at core.ac.uk

reprints o
Milano (Italy) August 28 - September 2,201

-

P
brought to you by .. CORE

provided by IMT Institutional Repository

Stochastic Model Predictive Control for
Constrained Networked Control Systems
with Random Time Delay

Panagiotis Patrinos * Pantelis Sopasakis **
Haralambos Sarimveis **

* Department of Mechanical and Structural Engineering, University of
Trento, Via Mesiano 77, 38100, Italy. (e-mail: patrinos@ing.unitn.it).
** National Technical University of Athens, Heroon Politechniou 9,
NTUA Zografou Campus, GR-15780 , School of Chemical Engineering,
Unit of Automatic Control & Informatics, (e-mail:
chung,hsarimv@central.ntua.gr)

Abstract: In this paper the continuous time stochastic constrained optimal control problem
is formulated for the class of networked control systems assuming that time delays follow a
discrete-time, finite Markov chain . Polytopic overapproximations of the system’s trajectories are
employed to produce a polyhedral inner approximation of the non-convex constraint set resulting
from imposing the constraints in continuous time. The problem is cast in a Markov jump linear
systems (MJLS) framework and a stochastic MPC controller is calculated explicitly, offline,
coupling dynamic programming with parametric piecewise quadratic (PWQ) optimization. The
calculated control law leads to stochastic stability of the closed loop system, in the mean square
sense and respects the state and input constraints in continuous time.

1. INTRODUCTION

A networked control system (NCS) is a feedback control
system where its various components (sensor, actuator,
controller, plant) are connected through a communication
network. Due to their numerous advantages such as low
installation and maintenance cost and high flexibility, they
have attracted a lot of interest over the past few years
(Antsaklis and Baillieul [2004], Baillieul and Antsaklis
[2007], Heemels and van de Wouw [2010], Hespanha et al.
[2007], Tipsuwan and Chow [2003], Zhang et al. [2001]).
The presence of a communication network in the loop
introduces many interesting phenomena such as random
transmission delays and packet losses, which need to be
taken into account by the control synthesis algorithm
in order to guarantee closed-loop stability. For example
the presence of time-varying transmission delays may
render, an otherwise stable closed-loop system, unstable
(Cloosterman [2008], Zhang et al. [2001]).

There are two approaches proposed in the literature con-
cerning the modeling of the transmission delay. The one is
to model it as a deterministic quantity that takes values
in a closed interval (deterministic approach), (Clooster-
man [2008], Cloosterman et al. [2006], Cloosterman et al.
[2008], Cloosterman et al. [2009]). The second approach
is to consider the delay as random (stochastic approach),
(Antunes et al. [2009], Chen et al. [2008a], Chen et al.
[2008b], Donkers et al. [2010], Montestruque and Antsaklis
[2004], Nilsson [1998], Nilsson et al. [1998], Seiler and
Sengupta [2005], Shi and Yu [2009], Zhang et al. [2005]).
The first approach leads to an uncertain discrete-time
system, with the uncertainty appearing in an exponential
form. The next step of the deterministic approach is to
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construct a polytopic (possibly with an additive norm-
bounded term) over-approximation of the exponential un-
certainty, in order to arrive to a model that is amenable
to robust stability analysis and control synthesis, using
classical LMI (linear matrix inequalities) techniques. The
stochastic approach uses a probabilistic description of the
transmission delay, assuming that it is either an indepen-
dent across time random variable that follows a continuous
or discrete probability distribution, or a stochastic process
such as a Markov chain. Therefore, stability analysis and
control synthesis is performed in a stochastic setting with
the appropriate notion of stability being that of mean-
square stability.

On the other hand, constraints on the input and state of
the system usually need to be imposed in any realistic
setting. Usually constrained control problems are treated
in a model predictive control (MPC) framework, by solving
a finite-horizon constrained optimal control problem at
each sampling instant. Assuming that the control action is
imposed through zero-order hold (ZOH) to the system, in-
corporation of input constraints at the sampling instances
to the MPC optimization problem is straightforward. How-
ever, since the actual system is continuous in time, the
requirement that the state constraints must be satisfied
at all times results in a non-convex optimization problem
even for linear systems with polyhedral constraints. To the
best of our knowledge, there are no practical approaches
considered in the literature concerning constrained con-
trol of (even non-networked) sampled-data systems, where
state constraints are imposed in the continuous time.

In this paper, we consider control of constrained, continuous-
time linear systems through a communication network. We
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model the transmission delay from the sensor to controller
as a Markov chain, while we assume that the delay from
the controller to the actuator (including the controller
delay itself) is constant by a buffering technique. Specifi-
cally, we assume that the controller has knowledge of the
current sensor-to-controller delay at each time instant (as
is usually the case via timestamping techniques), and that
the value of the delay switches among a finite number
of values according to a Markov chain. The system is
subject to hard state and input constraints that must
be fulfilled in continuous time by the closed-loop system.
The model is cast in a Markovian switching framework,
which is analyzed in the authors recent work, Patrinos and
Sarimveis [2010]. The state constraints in the continuous
time are approximated by imposing sufficient conditions
that the state of the system must satisfy only at the
sampling instances. The technique is based on recent ideas
regarding polytopic approximations of systems with time-
varying delays, (Cloosterman [2008], Gielen et al. [2009],
Gielen et al. [2010], Heemels et al. [2010], Hetel et al.
[2006], Hetel et al. [2007]).

Advantages of the proposed approach is that it guarantees
fulfillment of constraints for the continuous-time system
for all possible values of the transmission delay, without
destroying the structure of the resulting optimal control
problem, i.e. this is guaranteed by imposing the state to
lie in a polyhedral set only at the sampling instances. Fur-
thermore, the controller is allowed to switch synchronously
with the sensor-to-controller delay providing larger flexi-
bility and less conservativeness in comparison to the de-
terministic approach.

2. MODEL DEFINITION
2.1 NCS model

The NCS model consists of a linear, time-invariant,
continuous-time plant and a discrete-time controller that
are connected through a communication network with
induced sensor-to-controller (SC), 75¢ and controller-to-
actuator (CA), 7@, delays. The controller delay (the time
needed by the controller to perform computations) is as-
sumed to be incorporated into the CA delay. The full
state of the system is sampled by a time-driven sensor
with a constant sampling interval h > 0. The discrete-
time controller is event-driven and able to monitor the SC
delay, via timestamping. The CA delay is considered to be
constant by using the buffering technique. The discrete-
time control signal uy is transformed to a continuous-
time control input u(t) by a zero-order hold device (ZOH).
Based on these assumptions, the NCS model is:

#(t) = Aca(t) + Beu(t) (1a)
u(t) = ug, for t € [kh+m + 7, (k+ Dh+ 755, + 753)
(1b)

with A, € R™*" B, € R"™ ™. The SC delay evolves
according to a discrete-time, time-homogeneous Markov
chain {ry}ren taking values in a finite set S = {1,...,S5}
with transition matrix P = (p;;) € R9*S. Therefore, 75
switches among a finite set of values, where the switching
is orchestrated by the underlying Markov chain {ry}ren-
This assumption manages, in some sense, the correlation of
the transmission delays across time that is present in many

types of networks (Nilsson [1998], Tipsuwan and Chow
[2003]). Since the CA delay is considered constant through
the buffering technique, the two transmission delays can be
lumped into 7, £ 75+ 75, Therefore, the evolution of the
total transmission delay 7; is governed by the underlying
Markov chain {74 }ren and the controller has access to 7
at time k, but only probabilistic information is available
regarding its future evolution. Throughout the paper, it
is assumed that 7, < h. Furthermore, there is one-to-one
correspondence between the possible values of 7, and the
states of the Markov chain, i.e.:

Te=T 27 LA iy =4, i €S (2)
The cover of a state i € S is the set of all states accessible
i in one time step, i.e. S; £ {j € S|p;; > 0}. An admissible
switching path of length N € N, r £ (rg,---,ry) for
{rk}ren is a switching path for which ri11 € S, , for any
k € Np,n—_1). We denote by & the set of all admissible
switching paths (of infinite length), and by &y the set of
all admissible switching paths of length V. For any i € S,
B(i) £ {r € &lrg = i} and &x(i) £ {r € Gylrg = i}
denote the set of all admissible switching paths emanating
from i | of infinite length and length IV, respectively. The
state of the system generated by the NCS model (1) is
required to belong to a polyhedral set X, i.e.

z(t)e X, t e Ry (3)

Notice that constraints are imposed in the continuous
time. Similarly, the input signal is required to belong to a
polyhedral set U, i.e.

up €U, k€N (4)

Notice that since the input is a discrete-time signal,
imposing the constraints only at the sampling instances
is sufficient to guarantee satisfaction of input constraints
in continuous time. We are interested in mode-dependent
policies of the form © = {uo,u1,...}, with pr : R™ x
S — R™. Given a policiy m and a switching delay path
r, the input signal in continuous-time is given by u(t) =
pr(z(kh), ), for t € [kh + 7, (k + 1)h + Tk41). Given a
policy 7, an initial state z(0) = z, an initial delay ro = 1,
and an admissible switching path », the solution of (1) at
time t € Ry is denoted by ¥(¢;x, i, m, 7).

2.2 Ezact discrete-time system

The exact discretization of (1) is
h*Tk
Tht1 = eAch szr/ eAes dsBCukJr/
0 h

where x3, £ x(kh) is the discrete-time state at the k¢, sam-
pling instant. The above system can be cast in standard
state-space form with respect to the augmented state vec-
tor & = [z}, u),_,]’, (Cloosterman [2008], Nilsson [1998]).

Ehr1 = Ar &k + Brug, (5)

. A Ach [h Acs A [
with 4; = {e fh,,ie dSBc} B, & {fo e dsB. ||
0 0 I

i € S. Notice that (A4;,B;), i € S can be computed ex-
actly. Therefore, the NCS model (1) has been transformed
into the Markovian Jump Linear system (MJLS) (5) with
respect to the augmented state vector &, via exact dis-
cretization.

h
edes dsBoup_1
o
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2.8 Handling constraints in continuous time

Guaranteeing constraint fulfillment for the closed-loop sys-
tem requires from the controller to take into consideration
the so-called inter-sample behavior, i.e. what happens to
the state vector between two sampling instants. Let £ £ ¢t —
kh. Assume that r; = 7. Then the inter-sample behavior
is described by the following two equations (Cloosterman
[2008]):

x(kh +1t) =T} (f)&, for £ € [0,7%) (6a)
z(kh+t) =T2(#) [§], for t € [r',h) (6b)

where
F,Ll(f) £ |:eAC{’ fO{eAcs dSBC:| (7&)
r2(f) 2 [eAcf [ et dsm, [ ere as, (7b)

Considering as an uncertain parameter appearing in
the matrices I'/(f), 7 = 1,2 in exponential form, one
can compute an over-approximation separately for these
two cases. Specifically, let T} = [0,7%), T? = [7,h).
Furthermore, let:

I’ é{1”( )i e T/}

: pPJ

B . i O
Zozpl“gﬁp a€R+1,Zap:1 ,j=
p=1 p=1

c RnX (n+m) 1'\2

, j=1,2 (8a)
2 (8b)

where T} e R™*(42m) and P i e 8,
j=1, 2 are positive 1ntegers The next lemma pr0v1des
a SuﬁiClth condition imposed on the the state-input
vector of the exact discretization (5) such that the state
constraints (3) of the NCS (1) are satisfied in continuous
time. Its proof is omitted due to lack of space.

Lemma 1. Let 7, = i and T7, TJ be as in (8) with
] CT,j =12 Let X; £ (X} x R™) N X7, where
XijéﬂpG'P( ) 1(X), j =1,2. Then:

)

(Er,ur) € X; = z(t) € X, Vte[kh,(k+1)h) (9)

Notice that X; is a polyhedral set. For every i € S, let:
Y; 2 X; UR" x U) (10)
Then, it follows from lemma 1 that the state and input

constraints (3), (4) for the continuous time system are
satisfied for all possible delay switching paths if:

(&ryup) €Yy, kKENVTED (11)

Summing up, the polyhedral state constraint set of the
continuous-time NCS (1), is inner-approximated with a
family of mode-dependent polyhedral sets that capture
the dependence on the random time delay 7, , with
respect to the state vector and input vector of the exact
discretization (5).

2.4 Polytopic Overapproximation of the trajectories of an
NCS

In this section we will present a method for the overapprox-
imation of Fg , by polytopes of matrices, fz . Taking into
account the special structure of I'/(¢), this boils down to
overapproximating functions of the general form Ag(t) £

e/t for t € [t1,to] and T (t fo e AcsdsBe, i.e., we have

to determine sets Ca, and Cr, such that for all ¢ € [t1, ta],
{Ao(t)‘t S [tl,tg]} - CAO and {Fo(ﬁ)lt S [tl,tg]} - CF0~

Heemels et al. [2010] provide a thorough literature
overview on that matter from which the approach based on
the canonical Jordan form decomposition and the Cayley-
Hamilton Theorem provide a framework for the calculation
of such polytopic overapproximations. Other approaches
that employ truncated Taylor series expansions lead to
non-polytopic norm bounded overapproximations. Finally,
the method of Gridding and Bounding (G&B) Heemels
et al. [2010] yields tight overapproximations and can be
employed to obtain arbitrarily tight e-overapproximations
by partitioning the interval [t1,?2] using a sequence of
points t1 = 19 < 1 < -+ < Ty = to and applying the
overapproximation procedure on each subinterval [¢;,t;41],
l e N[07s,1].

Applying Jordan decomposition on A. , we obtain the
equivalent representation A. = QJQ! , hence Ag(t)
and Ty(t) are rewritten as Ag(t) = Qe/t Q™! Ty(t) =
Qfot e’ dzQ'B. The special structure of the Jordan
matrix J allows for the analytical calculation of e”’*
integral fot e’? dz and via simple algebraic manipulations
upper and lower bounds can be calculated element-wise.
In particular, Ag(t) and T'y(¢) are decomposed to Ag(t) =
Zf:o (pi(t)SZ‘ and Fo(t) = Z;;O ’yi(t)SiB, where Si are
sparse matrices with 0—1 entries. Exploiting the analytical
formulas of ¢;(t) and ~;(t) we calculate upper and lower
bounds for them on [t1, 5], that is:

7, < vilt) <75 and o, < pi(t) <P
This leads to the following overapproximations:

{Do(t)|t € [t1,t2]} € Cay = conv{F;}jen, o)
— {0 wiSilus € 1,7} }
{To(t)[t € [t1,t2]} € Cry £ conv{G;}jeny, on)

= {Zle 1:Si Bl € {L-ﬁ}}

However, this approach introduces a constant overap-
proximation error. To surmount this drawback, we parti-
tion equidistantly the interval [t1,%3] into s subintervals

T; £ [r,711) thus obtaining sets Ca,; and Cryi,l €
Nijg,s—1). Then the overall overapproximations are Cf =

and its

(12)

COHV{CFU,Z}IGN[OYS,U and CSAO £ COHV{CAQ,Z}IGN[OYS,U'
3. FROM CONTINUOUS-TIME TO DISCRETE-TIME
STOCHASTIC OPTIMAL CONTROL

In this section we formulate the constrained optimal con-
trol problem for the NCS as a stochastic control problem
in continuous time. However, since the input to the system
is a signal in discrete time, the expected outcome from the
solution to the optimization problem is an optimal control
policy 7 £ {ug, 5, ...} Given an initial state z(0) = =,

an initial mode ry = i and a policy ™ £ {ug, 1, ...}, we
introduce the infinite horizon cost function:
Vi) 28| [T gt 03
0

where ¢ is a convex quadratic function of u, i.e., g(x,u) =
5(2'Qx + v Ru) (Q and R are positive semidefinite and
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positive definite respectively), z(t) £ (t;z,i,7,r) and
u(t) = pp(zg, i) for t € [kh+my., (k+1)h+7141) (piecewise
constant using a ZOH element). The constrained infinite
horizon stochastic control problem for the NCS is then
formulated as follows:

V*(z,i) £ inf{Vy(x,i)|r € (z,i)} (14)
where Pi(x,i) is the set of admissible policies for initial
state x and initial mode ¢, i.e.:

tyx, i X,teR

H(x,’t) é T w('ax7l77r?r) € I S + )

pr (Wt i, m,r),rg) € Uk € N,Vr € &(3)
The continuous-time stochastic optimal control prob-
lem (14) can be transformed into a discrete-time one ex-
ploiting the exact discretization of the system. The infinite
horizon cost function (13) is restated as:
) (k+1)h
i / (z(t)' Qx(t) + u(t) Ru(t))dt
k=0 “Fkh
Some simple algrebraic manipulations yield:

Vﬂ(£7 2) =E lzg(gka Uk, rk)]
k=0

Vr(z,i) = E

(15)

where
. 11 Qi Si
e ui) = 1181 [ & 5] 1) (16)
The formulas for the matrices appearing in (16) are
omitted due to lack of space.

4. FINITE-HORIZON CONSTRAINED STOCHASTIC
OPTIMAL CONTROL FOR NCS

The continuous-time NCS (1) subject to constraints (3)
and (4) has been transformed to the Markovian switch-
ing system (5) subject to the mode dependent polyhe-
dral constraint sets (11). Notice that the discrete-time
systeméqrefeq:MJLS has resulted from exact discretiza-
tion, and approximation is performed with respect to the
continuous-time state constraints only. Therefore, the ob-
jective has now become to design an optimal controller
(in some sense) for the MJLS (5). This problem is a spe-
cial case of the generic framework introduced in Patrinos
and Sarimveis [2010]. Specifically, since individual mode
dynamics are linear and the mode-dependent constraint
sets are polyhedral, the MPC problem can be solved ex-
plicitly by coupling dynamic programming with the con-
vex parametric piecewise quadratic solver of Patrinos and
Sarimveis [2011].

For each i € S, let U;(&) £ {u € R™|(&,u) € Y;} and
Ei e domZ/Ii. Let Y = {}/;}ies and = 4 {Ei}i€S~ A
mapping g : R*™ x § — R™, such that u(&, 1) € U;(€)
for each £ € E;, i € S, is called a (mode-dependent) control
law. An infinite sequence of control laws m = {puo, p1, ...}
is called a policy. If the policy is of the form {u,p,...}
then it is called stationary and is denoted by p. Since we
are only dealing with mode-dependent control laws and
policies, the adjective mode-dependent will be omitted for
brevity for the rest of the paper.

The solution of (5) at time k given a policy = and a
switching path r with rg = ¢ and & = £ is denoted by
o(k; &, i,m,r). For £ € B, i € S, we denote by Iy (&, 1)
the set of admissible policies of length IV, i.e.

gk = ¢(k7 fa i, T, T)v ke I\I[O,N]
7| (ks i€k 1)) € Y k € Njg vy
Env € EL Vr € By (4)
Here £/ £ {=/},cs is the mode-dependent terminal set,
to which the state of the system needs to be steered at the
end of the horizon. The finite horizon cost of the admissible
policy 7 € IIn (&, 1) for (5) is:
N—1
VN,TF(é-) ’L) é E Ze(gka Uk Tk) + Vf(gNa TN)
k=0

Iy(¢, i) =

(17)

where & £ ¢(k; €,4,m,7), up 2 pr (&, r1) and the terminal
cost Vy(&,1) = f’Pifg with Pif positive semidefinite, i € S.
The constrained finite horizon stochastic optimal control
problem is:

inf

]P)N(fvz) : VKT(faz) é Ry (£,0) VN,ﬂ'(é-?Z')

We call V the finite horizon value function. Notice that
optimization is sought over truly closed-loop policies. Tak-
ing into account lemma 1, this guarantees satisfaction of
the constraints for the continuous-time system for every
admissible transmission delay path. The multi-stage prob-
lem Py (€, %) can be decomposed in one-stage problems and
solved using dynamic programming (DP). The dynamic
programming algorithm for (18) is:

(18)

VO* = Vf (19&)
Vk*+1(§, i) = 12f{f(£7 u, 7’) + Zpijvk*(Aig + Biu>j)}=
jeS
1€8, ke N[O,Nfl] (19b)

Since the individual mode dynamics of the Markovian
switching system (5) are linear, the mode-dependent con-
straints (11) are polyhedral, and the stage cost (16) and
terminal cost V; are convex quadratic, it follows from
theorem VLI of Patrinos and Sarimveis [2010], that V;* (-, 7)
are convex PWQ for each i € S and each k € Np n.
Furthermore, the DP subproblems can be explicitly solved
off-line by the convex parametric PWQ optimization al-
gorithm of Patrinos and Sarimveis [2011]. The algorithm
decomposes the state space into a finite number of critical
regions in a graph traversal framework, using graphical
derivative (Rockafellar and Wets [2009]) formulas of so-
lution mappings. For each k € Ny y_y) , the proposed
algorithm calculates the optimal mode-dependent control
law p} as a piecewise affine (PWA) mapping for each mode
i €S, ie domVy(-,14) is decomposed in a finite number

of polyhedral sets {R;, ; }je 7, . (ki is a finite index set)
on each of which i is affine, i.e. uf(€,9) = K &+, ,, if
EER],

5. STOCHASTIC MPC OF CONSTRAINED NCS

Since Py (&, 1) is solved explicitly using dynamic program-
ming and the convex parametric PWQ solver, at the last
step of the algorithm we obtain the explicit stochastic
MPC (SMPC) law, i.e. the control law that would result by
solving repetitively online the problem Py (&g, 7)) at each
time instant k, and applying to the system py (g, 7). In
fact the procedure could be performed on-line by refor-
mulating Py (£, 7,) as a multi-stage stochastic optimiza-
tion problem (see section VI.B of Patrinos and Sarimveis
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[2010]) using a scenario-based approach. The resulting
optimization problem is a large-scale quadratic program,
with an exponential increase in complexity with respect to
the prediction horizon. Instead, the explicit DP approach
decomposes the multi-stage problem into smaller single-
stage problems, and performs all the heavy computations
off-line. Therefore, online, only the evaluation of a PWA
affine mapping is needed in order to compute the MPC
law. For future reference, the following notation for the
Markovian switching system in closed-loop with the SMPC
controller is introduced:

€1 = Ar &k + Br v (ki) (20)
6. STABILITY AND INVARIANCE PROPERTIES OF

STOCHASTIC MPC FOR NCS

In this section we provide conditions that the terminal cost
and terminal set must satisfy in order for the closed-loop
system (20) with SMPC to be mean-square (MS) stable.
Paralleling the theory of deterministic MPC for linear
systems, the terminal weighting matrices Pif can be se-
lected as the solution of the infinite horizon unconstrained
stochastic optimal control problem, i.e. as the solution of
the CARE Costa et al. [2005], ch.4):

Pl = A&, (P Ai — (A& (PT)B; + S))- (21)
(R; + BI&;(PH)By) " Y(BI&(P) A + S) + Qi, i €S

where &(Pf) 2 Y. opyP/, and B = {E}ies
is the maximal uniformly positive invariant set for
the Markovian switching system in closed loop with
the unconstrained optimal policy wu(€,4) £ —(R; +
BLE(PFYB;) "1 (BLE(PT)A;+S;)¢ (Patrinos and Sarimveis
[2010]). The following theorem provides the promised sta-
bilizing properties of the SMPC controller. Its proof can
be found in Patrinos and Sarimveis [2010].

Theorem 2. Suppose that the terminal cost and terminal
set are selected as above for the Markovian switching
system (5) subject to (11). Then the origin is MS stable in

Ex = domV3 for the system in closed loop With the SMPC

controller (cf. (20)). Furthermore, if 0 € 1nt _ ,4 € S then
the origin is exponentially MS stable in 2%.

Theorem 2 in turn implies MS stability of the origin for
the continuous time NCS (1) in closed-loop with the SMPC
controller, since using lemma 4.3.5 of Cloosterman [2008],
that provides an upper bound for the norm of the state of
the continuous time system between two sampling instants
of the form ||z(kh 4+ r)|| < co||ack|| + c1|ug|] + col|ur—1l|,

one concludes that lim;_,o, E[z(t)]? =0 .

7. EXAMPLE

In this section we apply the proposed method on an
applied control problem and manifest its advantages over
alternative approaches found in literature (Cloosterman
[2008]). The NCS describes a printer that is controlled
through a network. The matrices in (1) are A. = [§3],
Be = [ 150 7], while X = [~10,10]2, U = [-2,2], Q = 101,
and R = 1. The sampling interval is h = 20 ms while the
SC delay can take the values 75¢! = 3 ms and 75¢2 = 15
ms with transition matrix P = [J-57 9:33]. The CA delay is
considered constant with 7°* = 1 ms. We set the prediction

horizon to NV = 10 steps. In the following illustrations we
present a visualization of the polyhedral decomposition
of the feasible state space on which the control law is
defined as a PWA function over these regions. The mode-
dependent PWA control law consists of 61 and 73 critical
regions (cf. Figure 1) for each of the two modes.

In order to elucidate the benefits of SMPC we compare our
results with alternative control approaches. The first ap-
proach (Delay-free MPC') is a deterministic MPC scheme
for the exact discretization of the continuous-time system
without taking into consideration the time-varying delay
i.e., for the system .1 = el + T'y(h). Constraints
are imposed only on discrete sampling times while the
cost function is considered to be quadratic, f(x,u) =
%(x’th + u'Rpu) where Qn, = h@ and Rj, = hR. The
second alternative scheme (Non-switched MPC') is a de-
terministic MPC controller for the exact discretization of
the continuous-time system where the delay is considered
constant and equal to its greatest value (worst case sce-
nario, Tmax = 16 ms), i.e. for the discrete-time system
Ekt1 = [e*" To(h)—To(h—Tmax) ] &k + Lo(h — Timax)ur and
the constraints are imposed only for the sampling times.

In order to compare SMPC against the alternative
schemes, 20 simulations (corresponding to 20 switching
paths according to the transition matrix) for every ex-
treme point of the effective domain of V3 (-,4), i € S
are performed. For every single one of them, SMPC
achieved stochastic stability in the mean-square sense for
the continuous time closed loop system while respecting
the constraints in the continuous time. Non-switched MPC
achieved this goal only in 66.77% of the cases while for
delay-free MPC the percentage drops to 8.47%. An il-
lustrative simulation of the NCS in closed-loop with the
SMPC controller is depicted in Figure 2.

MPC Jontroller Decorapos:sion for bode 2

Fig. 1. PWA control law over a polyhedral decomposition
of the extended state space for the network controlled
printer.
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Fig. 2. Simulation of the closed-loop system using the
SMPC controller, in continuous time, starting from
x(0) = [9.72 8.98])" and ro = 1.
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