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ABSTRACT: The interrelation of the processes of immunity and senescence now receives an unprecedented 

emphasis during the COVID-19 pandemic, which brings to the fore the critical need to combat immunosenescence 

and improve the immune function and resilience of older persons. Here we review the historical origins and the 

current state of the science of innate and adaptive immunity in aging and longevity. From the modern point of 

view, innate and adaptive immunity are not only affected by aging but also are important parts of its underlying 

mechanisms. Excessive levels or activity of antimicrobial peptides, C-reactive protein, complement system, 

TLR/NF-κB, cGAS/STING/IFN 1,3 and AGEs/RAGE pathways, myeloid cells and NLRP3 inflammasome, 

declined levels of NK cells in innate immunity, thymus involution and decreased amount of naive T-cells in 

adaptive immunity, are biomarkers of aging and predisposition factors for cellular senescence and aging-related 

pathologies. Long-living species, human centenarians, and women are characterized by less inflamm-aging and 

decelerated immunosenescence. Despite recent progress in understanding, the harmonious theory of 

immunosenescence is still developing. Geroprotectors targeting these mechanisms are just emerging and are 

comprehensively discussed in this article. 
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The interrelation of the processes of immunity and 

senescence now receives an unprecedented emphasis 

during the COVID-19 pandemic, which has stressed the 

critical need to combat immunosenescence and improve 

the immune function and resilience of older persons. At 

this time, it is appropriate to review the current state of the 

science of innate and adaptive immunity in aging and 

longevity, as well as the historical origins of this field of 

study, to further promote the research in this area. That is 

the subject of the present work.  

Historically, the field originated at the turn of the 

20th century with the work of Elie Metchnikoff whose 

175th anniversary we celebrated on May 15, 2020 (May 

15, 1845 – July 15, 1916). Metchnikoff is well recognized 

as a pioneering immunologist and microbiologist, a vice-

director of the Pasteur Institute in Paris, and the Nobel 

Laureate in Physiology or Medicine of 1908 for the 

discovery of phagocytosis (a major contribution to the 

cellular theory of immunity). Yet, he may also be well 

credited as “the father” of gerontology – the disciplinary 

term he coined. Both the terms “gerontology” (“the study 

of aging”) and “thanatology” (“the study of death”) were 

coined by him in the “Etudes On the Nature of Man” 

published in 1903, which may mark the beginning of these 
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scientific fields. Moreover, Metchnikoff can also be 

credited for the establishment of the interdisciplinary 

connection between these fields, in particular between 

aging research and immunology. Metchnikoff was the 

author of arguably the first systematic scientific theory of 

aging, interrelating the processes of immunity and 

senescence (www.longevityhistory.com/) [1]). In 

Metchnikoff’s own words: “We saw that, during aging, 

there occurs a struggle between noble elements 

(parenchymal tissues, e.g. the tissues of the muscle, 

kidney, lung, and brain) and phagocytes (“low/primitive 

elements”), and that the vitality of the former is, for the 

most part, diminished, whereas the latter, on the contrary, 

show increased activity. Therefore, it would seem that the 

means to use in the struggle against pathological aging 

should be, on the one hand, the strengthening of the most 

valuable elements of the organism, and on the other, the 

attenuation of the aggressive onslaught of the phagocytes. 

I must point out to the reader from the beginning that this 

problem is not yet solved, but its solution does not involve 

anything impossible. It is a scientific question, like many 

others.”  (Elie Metchnikoff, Etudy o Prirode Cheloveka 

(Etudes on the Nature of Man), The USSR Academy of 

Sciences Press, Moscow, 1961 (1903), Ch. X. “Vvedenie 

v nauchnoe izuchenie starosti” (An introduction to the 

scientific study of aging), pp. 201-202.) 

Following a century of study, at the present time, 

natural immunity is understood to consist of three 

interrelated parts: physiological barriers, innate immunity 

and adaptive immunity. All of these are affected by aging 

[2]. Immunosenescence results in increased susceptibility 

and severity of infectious diseases and non-communicable 

age-associated diseases, among them cancer, 

cardiovascular disease, and autoimmunity [3].  

The molecular mechanisms of the induction of 

inflammation and cellular senescence intersect through 

activation of the TLR/NF-κB, cGAS/STING/IFN 1,3, 

AGEs/RAGE molecular signaling pathways and the 

assembly of the NLRP3 inflammasome. Chronic sterile 

inflammation with aging was termed by Claudio 

Franceschi “inflamm-aging” [4]. The hyperactivation of 

the innate immunity response predominantly reduces the 

lifespan. 

Antimicrobial peptides are involved in chemotaxis 

and activation of innate and adaptive immunity cells in 

different animals from invertebrates to humans [5, 6]. On 

the model of Drosophila, it is shown that hyperactivation 

of different antimicrobial peptide genes significantly 

reduces the lifespan [7].  

Pathogen-associated molecular patterns of 

microorganisms are recognized by the innate immune 

system through inherited pattern-recognition receptors 

[8], including C-reactive protein [9], Toll-like-receptors 

[10] and some cytoplasmic receptors, including 

cGas/STING [11].  

 

 
Figure 1. Gut dysbiosis/permeability with aging can induce 

TLR in microglia and exerts mitochondrial dysfunction. 

 

C-reactive protein (CRP) is a soluble pathogen 

pattern recognition receptor. It binds to 1,6-

Bis(phosphocholine) of cell membranes of damaged cells 

or bacteria to induce complement or immune cell 

activation [9]. CRP hyperactivity is a biomarker of aging 

and is connected with inflammation and fibrosis [12].  

The complement system includes more than 50 

proteins in the plasma and cell membrane that act in 

response to activation of pattern recognition receptors, 

including CRP, killing microbes, sending danger signals, 

and accelerating apoptosis of damaged cells. There was 

established the participation of the complement system in 

the pathogenesis of aging-dependent diseases and their 

complications, including age-related macular 

degeneration [13] and type 2 diabetes [14]. 

http://www.longevityhistory.com/
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Toll-like receptors (TLR) cell surface receptors can 

recognize pathogen patterns from viruses, bacteria, or 

fungi to induce NF-kB proinflammatory signaling. TLR 

inhibition is a potential target to alleviate 

neuroinflammation [15]. TLR4 is of particular interest in 

connection with aging, since it can be activated by 

cytotoxic oxysterols (7-ketocholesterol), which are 

formed in tissues during inflammation or come from long-

stored food [16]. Its activation leads to mitochondrial 

dysfunction and an inflammatory reaction [17], including 

in brain microglia [18] (Fig. 1). TLR4 is inhibited by 

substances from cocoa [16]. Some polyphenols can 

suppress overexpression of inflammatory mediators 

through TLR4/NF-κB/STAT signaling intervention [19].  

 

 
 

Figure 2. AGEs/RAGE pathway and age-related diseases. 

cGas/STING pathway is the main intracellular 

sensor of viral invasion, including SARS-Cov-2, to 

induce Interferon 1 and 3 productions [20]. The STING 

pathway is also hyperactivated with aging by internal 

reasons, including retrotransposons, chromatin and 

mtDNA fragments in the cytosol with a consequent 

interferon induction, cellular senescence and apoptosis 

[21-24]. This could be a hypothetical reason for the 

greater severity of Covid-19 in elderly people. 

Some simple sugars (glucose, fructose) in the 
presence of transition metal ions (iron and copper) react 

chemically with amino acid residues (lysine, arginine) in 

proteins, such as collagen and elastin, causing the 

formation of glycation end products that not only increase 

the extracellular matrix stiffness, but also induce chronic 

inflammation through their RAGE receptors on the 

surface of cells (Fig. 2), such as vascular endothelium 

[25]. 

Cellular senescence itself can induce inflammation 

by secreting pro-inflammatory cytokines, the so-called 

Senescence Associated Secretory Phenotype (SASP) [26] 

(Fig. 3). 

According to Baker's study, elimination of senescent 
cells prolongs the lifespan and healthspan of mice [27, 

28]. 
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Figure 3. SASP involvement in aging-related pathologies. 

Adiposity is another source of inflamm-aging. 

Adipocyte hypertrophy leads to the secretion of 

proinflammatory leptin, lipocalin-2, progranulin, and 

chemoattractants for T- and B-cells [29-33] (Fig. 4). 

In addition, there are many other ways of induction 

of the main proinflammatory transcription factor NF-kB: 

overeating, obesity [34],  dysbiosis [35], psychological 

and chronic stress [36], vitamin D deficiency [37], 

circadian rhythm disturbance [38], aldosterone [39], 

angiotensin II [40], mitochondrial N-formyl peptides [41], 

oxidized mitochondrial DNA [42] (Fig. 5). 

In our experiments on the Drosophila model, we 

inhibited the different underlying pathways of NF-kB. In 

most cases, this led to an increase in lifespan [43-45]. 

It is worth noting that many substances of natural 

origin contained in food can inhibit NF-kB [46]. 

Aging is accompanied by gut microbiota alteration, 

like decreased overall diversity and an increased 

abundance of proinflammatory species, that can be a part 

of systemic inflammation and many aging-related 

diseases [47, 48]. 

Internal virome aging-related changes can affect 

different age-dependent diseases, including 

immunosenescence [49] and atherosclerosis [50] by 

cytomegalovirus, cancerogenesis by papillomaviruses 

[51] and Alzheimer’s by simple herpes [52-55]. 

 
 

 

 

 
 

Figure 4. The role of adiposity in inflammation. 
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Figure 5. Physiological stress factors can induce NF-kB 

pathway. 

 

 

Immune parameters associated with survival may 

vary in diverse populations of different ages. Therefore, 

we have to focus on the changes considered to be the 

hallmarks of immunosenescence, based on the literature 

data. The hallmarks of immunosenescence include: (i) a 

reduced ability to respond to new antigens; (ii) the 

accumulation of memory T cells; (iii) a lingering level of 

low-grade inflammation termed “inflamm-aging.” 

Mechanistically, immunosenescence is only partially 

explained by organismal and cellular senescence. 

Therefore, these hallmarks of immunosenescence would 

be markedly affected by the history of individual exposure 

to pathogens. In fact, several factors, such as genetics, 

nutrition, exercise, previous exposure to microorganisms, 

biological and cultural sex, and human cytomegalovirus 

(HCMV) status can influence immunosenescence [56]. 

Concerning sex/gender, in Western countries, 

women live 5-6 years more than men do. Furthermore, 

85% of over 100 years old are women. It is debated 

whether women live longer than men for reasons of 

gender or sex, e.g., for cultural or biological differences. 

However, females live longer than males in other animal 

species. There is sexual dimorphism in the immune 

response, i.e. females are more resistant to infections, but 

they have a higher incidence of autoimmune diseases 

compared to males, yet their relevance for life span is 

negligible. However, age-related changes in various 

immunological parameters differ between men and 

women.  Findings indicate that the slower rate of decline 

in immunological parameters in women than those in men 

is consistent with the fact that women live longer, than 

men do [57]. 

Concerning HCMV, virus status has a greater impact 

than age on the immune system because the virus 

contributes to shaping the immune profile and function 

during normal human aging. HCMV seropositivity is 

closely related to the reversal of the CD4/CD 8 T-cell 

ratio. In fact, persistent HCMV infection leads to chronic 

stimulation of CD8 T cells, which expand clonally 

showing an effector memory phenotype characterized by 

low CD28 expression. The absolute increase in memory 

T cells, called memory inflation, is observed only in older 

people infected by HCMV [58]. 

One of the pillars of adaptive immunity is the thymus. 

After an active period of creation and training of new T 

cells in childhood, at the time of puberty, the thymus 

undergoes involution, losing the stromal part and filling 

with fat [59], that can decrease T-cell repertoire to new 

antigens, including SARS-CoV-2. The involution is 

continuing during aging, because Wnt4 expression is 

down-regulated, while their Frizzled receptors and 

PPARgamma expression increases in the thymus [60]. On 

the contrary, peripheral T-cell numbers are maintained 

through the antigen-independent homeostatic 

proliferation of naive T cells that may lead to the 

emergence of dysfunctional memory-phenotype CD4+ T 

cell subpopulation (cell senescence-associated T cells, 

SA-T cells) [61]. SA-T cells secrete abundant pro-

inflammatory factors such as osteopontin and 

chemokines, playing a direct role in SASP [62].  

 

 
 
Figure 6. Thymus involution and inflamm-aging. 

 

CD8+ cytotoxic T lymphocytes [63] and NK cells 

[64] clear cells infected by viruses (e.g. SARS-CoV-2). 

However, CD8+ themselves undergo senescence [65]. 

Immunosenescence could be the reason for the 

dysfunction of immune clearance of senescent cells [66]. 

In addition, senescent cells avoid immune clearance 

through HLA-E-mediated inhibition of NK and CD8 + T 
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cells [67]. Thus, thymus involution is one of the 

mechanisms of inflamm-aging [68] (Fig. 6). 

Senescence of bone marrow hematopoietic stem cells 

is affected by (HSC) niche [69] and intrinsic factors [70], 

extracellular matrix stiffness [71], systemic inflammation 

[72] or other systemic factors [73]. With age, HSCs 

reduce the homing and regenerative capacity and increase 

proinflammatory myeloid-biased differentiation [74]. 

T follicular helper (TFH) cells are presented in 

lymphoid organs and in peripheral blood and help B cells 

for the production of immunoglobulins. Dysfunctional 

TFH cells with aging play a role in cancer, autoimmune 

and cardiovascular diseases [75]. 

Recent studies revealed that long-lived mammalian 

species are characterized by the particularities in their 

immune system. Cancer and other age-related disease-

resistant naked mole-rats lack canonical natural killer 

cells [76]. Many expanded gene families in the longest-

living microbat Myotis brandti are involved in the 

immune response [77]. Bats showed a unique, age-related 

pattern of gene expression associated with DNA repair, 

autophagy, immunity and tumor suppression, which can 

lead to an increase in their health span [78]. They also 

express a reduced inflammation response after viral 

infection [79]. The evaluation of the bowhead whale 

genome revealed the potentially relevant changes in genes 

related to the immune response [80].  

Human centenarians are a model for healthy aging. 

The longest living cohort of Italian centenarians has more 

favorable values of important immune parameters: naïve, 

activated/memory and effector/memory T cells [81]. 

Healthy centenarians presented with a distinct expression 

of proteins/pathways that reflect a healthy immune 

function, including less inflamm-aging and autoimmunity 

and increased B cell-mediated immune response [82].  

 

 

 
 
Figure 7. Changes occurring during aging (reproduced with permission from [56]). 

Centenarians have been used as an optimal model for 

successful aging. However, this model shows several 

limitations, in particular the selection of appropriate 

controls. Thus, the interest has been centered on 

centenarian offspring, since it is well known that they are 

healthier than the remaining old people are. Accordingly, 

significant differences between old subjects and 

centenarian offspring, in most of the studied T and B 
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subsets, show that centenarian offspring subsets present 

intermediate phenotyping between old and younger 

people. Therefore, centenarian offspring retain more 

youthful immunological parameters and the exhaustion of 

the immune system is less evident than in old people 

without centenarian parents [83]. Therefore, cell subset 

changes could represent a hallmark of successful or 

unsuccessful aging and could be used as a biomarker of 

human life span, potentially useful for the evaluation of 

immunosenescence treatment [83, 84]. 

Despite recent progress in understanding (Fig. 7), the 

harmonious theory of immunosenescence is still 

developing. 

Based on the present level of knowledge, the 

geroprotective therapies targeting the mechanisms of 

immunosenescence are just emerging [85]. Their studies 

need to intensify, with a broader identification of potential 

clinically applicable interventions and biomarkers, and 

their extensive pre-clinical and clinical testing [85].  

There are several hundreds of potential 

geroprotective interventions, that have been demonstrated 

on model organisms and collected in online databases 

Geroprotectors.Org [86] and DrugAge [87]. Not all of 

them meet the criteria of effective and safe treatment 

applicable for humans [88, 89].  

According to the clinical studies conducted around 

the world, exercise, fasting, caloric restriction, 

resveratrol, metformin and NAD precursors are the 

interventions with the highest number of clinical trials that 

target aging [90]. For all of them, a geroprotective effect 

on immunity is shown. Epidemiological data indicate that 

regular physical activity reduces the incidence of 

infectious diseases in the elderly, including viral and 

bacterial infections, as well as non-infectious diseases 

associated with the immune system, such as cancer and 

chronic inflammatory diseases [91]. Cyclic fasting 

decelerated the immunosuppression caused by 

chemotherapy and reversed age-dependent myeloid-bias 

in mice [92]. Cycles of fasting reduce autoimmunity and 

activate the lymphocyte-dependent killing of cancer cells 

in humans [93]. The immunological status of rodents 

under calorie restriction is superior to the immunological 

status of the non-restricted animals, involving activation 

of the upstream signaling molecules and cytokine gene 

expression that are altered with age [94].  

Arguably, there is no need to limit the entire diet. It is 

enough just to reduce the intake of certain nutrients to the 

necessary minimum. Protein restriction increased 

circulating interleukin-5 concentration in mice [95], that 

experimental overexpression in vivo significantly 

increases the number of eosinophils and B cells [96]. 

However, protein undernutrition is unfavorable for 

immune function in the elderly [97]. Methionine-deficient 

diet extends mouse lifespan and slows immune aging [98]. 

Branched-chain amino acid supplementation induced pro-

inflammatory gene expression in visceral adipose tissue 

in mice [95]. On the contrary, treatment by other animo 

acids may decrease the aging-related loss of immune 

system function. Thus, alanine supplementation has 

stimulated the proliferation of immune cells [99].  

Brian Kennedy et al. reviewed potential 

geroprotectors and paid special attention to rapamycin, 

senolytics, metformin, acarbose, spermidine, NAD+ 

enhancers and lithium [100]. Lithium presents a clear 

antiviral activity demonstrated at the preclinical level 

[101]. Lithium chloride confers protection against viral 

myocarditis via suppression of coxsackievirus B3 virus 

replication [102]. Lithium affects many aspects of 

immunity, including the activity of B- and T-cells, 

macrophages, interleukin-2 levels [103]. NAD precursors 

alleviate dysfunctional mitochondria in T cells [104]. 

Metformin enhances autophagy and normalizes 

mitochondrial function to alleviate aging-associated 

inflammation [105]. Acarbose benefits for immune 

function may be mediated by selective modulation of the 

gut microbiota [106]. After one year of treatment with 

acarbose or metformin, IL-6, TNF-α, IL-1β and ferritin 

levels of pro-inflammatory factors in type 2 diabetes 

patients were significantly decreased [107]. In accordance 

with a review [108], resveratrol can suppress the toll-like 

receptor and pro-inflammatory genes’ expression, 

associated with widespread health benefits for different 

autoimmune and chronic inflammatory diseases. 

Spermidine induces autophagy and improves the function 

of both the old mouse and old human B cells [109]. It has 

been proposed, that senolytics, i.e. drugs that selectively 

eliminate senescent cells that are the main source of pro-

inflammatory cytokines with aging, may prove to 

alleviate immune dysfunction in older individuals [110]. 

However, this assumption requires experimental 

confirmation. 

Rapamycin is a well-known potent immune-

suppressive agent in xenotransplantation [111]. 

Rapamycin caused reversible thymus involution in mice  

[112]. Nonetheless, in a randomized control trial in an 

older human cohort, rapamycin increased a myeloid cell 

subset and TREGS  [113]. Network-based transcriptomic 

drug repurposing for novel coronavirus 2019-

nCoV/SARS-CoV-2 revealed rapamycin along with 

melatonin and mercaptopurine as potential anti-HCoV 

drugs [114]. A large number of reports have documented 

a relationship between melatonin and the immune system 

[115]. 

Gaining this knowledge is urgently needed to enhance 

the quality of life and health span of the global aging 

population, to improve their resilience against both non-

communicable and communicable diseases. 
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