CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Nitrogen and phosphorus limitation of oceanic microbial growth during spring in the Gulf of Aqaba
Authors
E Bar-Zeev
T Berman
+14 more
I Berman-Frank
D Iluz
Z Kolber
T Lawson
B Lazar
O Levitan
H Medova
E Meeder
Prášil O
A Quigg
N Stambler
DJ Suggett
E Vázquez-Dominguez
T Zohary
Publication date
1 September 2009
Publisher
'Inter-Research Science Center'
Doi
Abstract
Bioassay experiments were performed to identify how growth of key groups within the microbial community was simultaneously limited by nutrient (nitrogen and phosphorus) availability during spring in the Gulf of Aqaba's oceanic waters. Measurements of chlorophyll a (chl a) concentration and fast repetition rate (FRR) fluorescence generally demonstrated that growth of obligate phototrophic phytoplankton was co-limited by N and P and growth of facultative aerobic anoxygenic photoheterotropic (AAP) bacteria was limited by N. Phytoplankton exhibited an increase in chl a biomass over 24 to 48 h upon relief of nutrient limitation. This response coincided with an increase in photosystem II (PSII) photochemical efficiency (F v /F m), but was preceded (within 24 h) by a decrease in effective absorption crosssection (σPSII) and electron turnover time (τ). A similar response for τ and bacterio-chl a was observed for the AAPs. Consistent with the up-regulation of PSII activity with FRR fluorescence were observations of newly synthesized PSII reaction centers via low temperature (77K) fluorescence spectroscopy for addition of N (and N + P). Flow cytometry revealed that the chl a and thus FRR fluorescence responses were partly driven by the picophytoplankton (æ10 μm) community, and in particular Synechococcus. Productivity of obligate heterotrophic bacteria exhibited the greatest increase in response to a natural (deep water) treatment, but only a small increase in response to N and P addition, demonstrating the importance of additional substrates (most likely dissolved organic carbon) in moderating the heterotrophs. These data support previous observations that the microbial community response (autotrophy relative to heterotrophy) is critically dependent upon the nature of transient nutrient enrichment. © Inter-Research 2009
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 01/04/2019
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017
University of Essex Research Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repository.essex.ac.uk:847
Last time updated on 11/06/2012
Digital.CSIC
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:digital.csic.es:10261/1037...
Last time updated on 25/05/2016