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0. Introduction
0.1. Hierarchomorphisms (spheromorphisms)

The Bruhat-Tits tree ., is an infinite tree such that any vertex belongs to (p + 1)
edges, p=>2. Cartier [3] observed that the groups Aut(.7 ) of automorphisms of the
trees 7, are analogs of rank 1 real and p-adic groups (as SL,(R), SL,(C), O(1,n),
SL>(@,), etc.). The representation theory of Aut( ,) was developed in Cartier’s [3]
and Olshansky’s [31] papers.

The group Aut(J,) is essentially simpler than the rank 1 groups over locally
compact fields, but many nontrivial phenomena related to rank 1 groups survive for
the group of automorphisms of Bruhat-Tits trees.

The absolute of a Bruhat-Tits tree is an analogue of the boundaries of rank 1
symmetric spaces; in particular, the absolute is an analogue of the circle. A group of
hierarchomorphisms® Hier(7 ») (defined in [25]) is a tree analogue of the group
Diff(S!) of diffeomorphisms of the circle. The group Hier(J,) consists of
homeomorphisms of the absolute of 7, that can be extended to the whole
Bruhat-Tits tree except a finite subtree. It turns out [25,26], that the representation
theory of Diff(S") partially survives for the groups Hier(7,).
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In fact, the group Hier(Z ,) contains the group of locally analytic diffeomorph-
isms of p-adic line (see [26]), and this partially explains the points of similarity of
Diff(S') and Hier(7 ).

The following facts 14 are known about the groups Hier( ). Phenomena 1-3
are a reflection of the representation theory of Diff(S'), the last phenomenon now
does not have a visible analogue over R.

1. (Neretin [25,26]) Denote by O(c0) the group of all orthogonal operators in a
real Hilbert space H. Denote by GLO( ) the group of all invertible operators in H
having the form 4 = B+ T, where BeO(c0) and T has finite rank. Denote by H¢
the complexification of H. Denote by UO( o) the group of all unitary operators in
H¢ having the form 4 = B+ T, where BeO(c0) and T has finite rank. There exist
some series of embeddings

Hier(7 ,) »GLO(x), Hier(J,)—->UO(x).

This allows to apply the second quantization machinery (see [27,29,33]) for obtaining
unitary representations of Hier(7 ).

2. Embeddings Hier(7 ,) > GLO(o0) allow to develop a theory of fractional
diffusions with a Cantor set time (the Cantor set appears as the absolute of the tree).
I never wrote a text on this topic, but, on the whole, the picture here is quite parallel
to fractional diffusions with real time (see [28]).

3. (Kapoudjian [16,19]) There exists a Z/27-central extension of Hier(7 ).

4. (Kapoudjian, [18]) Consider the dyadic Bruhat-Tits tree 7 ;. There exists a
canonical action of the group Hier(7,) on the inductive limit of the Deligne—
Mumford [5] moduli spaces lim,_, o .#opo» of 2" point configurations on the
Riemann sphere. This construction also has two versions over R. The first variant is
an action on the inductive limit of Stasheff associahedrons [42]. The second variant is
an action on the inductive limit of the spaces constructed by Davis et al. [4]. Some
group-theoretical properties of Hier () are discussed in [17].

0.2. The purposes of this paper

The paper has two purposes. The first aim is to construct a new series of
embeddings of the groups of hierarchomorphisms to the group GLO(o0). By the
Feldman—Hajek theorem (see [41]), this gives constructions of unitary representa-
tions of groups of hierarchomorphisms, but we do not discuss this subject.

There exists the wide and nice theory of actions of groups on trees (see [20,38-40]).
It is clear that a hierarchomorphism type extension can be constructed for any group
I' acting on a tree (and even on an R-tree), it is sufficient to allow to cut finite
collections of edges. The second purpose of this paper? is to understand, is this
“hierarchomorphization” of an arbitrary group I' a reasonable object?

3 Another heuristic explanation can be obtain by the monstrous degeneration construction from
[20, Chapter 9]; the Lobachevsky plane can be degenerated to the universal R-tree.
“4See also the recent preprint of Nekrashevich [24].
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One example of such ‘“hierarchomorphization” is quite known, this is the
Richard Thompson group [23], which firstly appeared as an counterexample in the
theory of discrete groups. Later it became clear, that this group is not a semi-
pathological counterexample, but a rich and unusual object (see works of Greenberg,
Ghys, Sergiescu, Penner, Freyd, Heller and others [1,10,12,13,34,35], see also [2]),
relation of the hierarchomorphisms and the Thompson group was observed by
Sergiescu).

If the group I' acting on a tree is discrete, then the corresponding group of
hierarchomorphisms is a discrete Thompson-like group. If the group I is locally
compact, then the group of hierarchomorphisms (see some examples in [26]) is an
“infinite-dimensional group” (or, it is better to say, “large group’) similar to the
group of diffeomorphisms of the circle or diffeomorfisms of p-adic line.

0.3. New results

We define two groups Hier®(J), Hier(J) of hierarchomorphisms of a tree.

The first groups Hier®(J) consists of transformations of set of the vertices. These
transformations are almost compatible with the structure of the tree, we allow
“breaking” of arbitrary finite collections of edges.

The second group Hier(J) consists of homeomorphisms of the absolute that admit
a continuation to whole tree except a finite subtree. This group is a quotient group of
Hier®(J).

The second group is more similar to the group of diffeomorphisms of the circle,
and apparently it is more important.

We construct embeddings of the both groups to GLO( o).

First, we introduce a family of Hilbert spaces #,(J), where 0 <1< 1, associated
with a tree J. The space #,(J) contains the system of vectors (a ‘“nonorthogonal
basis”) e, enumerated by vertices a of the tree, and the inner products of the vectors
eq, € are given by

<€ eb> _ /«L{distance between @ and b}
as -

(these spaces are well-known, see [14,15,32]). We show that the group Hier®(J) acts
in #,(J) by operators of the class GLO(o0).

Second, for sufficiently large values of A, we construct an operator of the
“restriction to the absolute” in the space #;(J). In other words, we construct an
Hier®(J)-invariant subspace &,(J) in 5 ,(J). The action of Hier°(J) in &,(J) is not
faithful, and it is reduced to the action of the quotient group Hier(J). Thus, we
obtain the embedding of Hier(J) to the group GLO of the space &,(J).

0.4. The structure of the paper

Sections 1 and 2 contain preliminary definitions and examples. In Section 3, we
define the groups of hierarchomorphisms of trees. In Section 4, we consider the
Hilbert spaces #,(J) and the associated embeddings of the groups Hier® to
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GLO(0) associated with a tree J. In Section 5, for sufficiently large A, we construct
an operator of the ‘restriction to the absolute’ in the space s ,. In Section 6, we
discuss the action of the group of hierarchomorphisms in spaces of functions
(distributions) on the absolute.

1. Notation and terminology
1.1. Simplicial trees

A simplicial tree J is a connected graph without circuits. By Vert(J) we denote the
set of vertices of J. By Edge(J) we denote the set of edges of J. We say that two
vertices a, be Vert(J) are adjacent, if they are connected by an edge. We denote this
edge by [a, b].

We assume that the sets Vert(J), Edge(J) are countable or finite. A simplicial tree
is locally finite if any vertex a belongs to finitely many edges. We admit nonlocally
finite trees.

A way in J is a sequence of distinct vertices

L d,dp,az, ...

such that a;,a;; are adjacent. A way can be finite, or infinite to one side, or infinite
to the both sides.

For each vertices a, b, there exists a unique way ay = a, 4y, ...,a; = b connecting a
and b. We say that k is the simplicial distance between a and b. We denote the
simplicial metrics by

dsimp(a, b)

A subtree I < J is a connected subgraph in the tree J. The boundary OI of a subtree
I<J is the set of all ae Vert(I) such that there exists an edge [a, b] with b¢ Vert(I). A
subtree I<J is a thicket-subtree, if the number of edges [a, b]e Edge(J) such that
ael, b¢l is finite. If we delete a finite collection of edges of J, then we obtain a finite
collection of thicket subtrees.

A subtree I<J is a branch, if there is a unique edge [a,b]eEdge(J) such that
aeVert(I), b¢ Vert(I), see Fig. 1. The vertex a is called a root of the branch. If we
delete an edge of the tree J, then we obtain two branches.

A subtree [ < J is a bush, if its boundary contains only one point « (a root) and the
number of edges [a, b]e Edge(J) such that ¢ is finite, see Fig. 1.

Lemma 1.1. (a) The intersection of a finite family of thicket-subtrees is a thicket-
subtree.

(b) For a thicket-subtree I<J, there exists a finite collection of edges
(1, ..., lreEBdge(I) such that I without /\, ..., x is a union of bushes and single
point sets.
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Proof. Statement (a) is obvious.

(b) Let ay, ..., a; be the boundary of I. Let L = I be the minimal subtree containing
the vertices ay, ..., a;. It is sufficient to delete all edges of L.

The rest is a (disconnected) subgraph M, satisfying the following properties:

(a) OM is finite.
(b) Let a,hbeOM, and an edge [c, '] is on the way between a and b, we have
[c, c'¢M.

Each connected component of M satisfies the same properties. But a connected
graph satisfying (a), and (b) is a bush. [

1.2. Actions of groups on simplicial trees

A bijection Vert(J)—Vert(J) is an automorphism of a simplicial tree J, if
the images of adjacent vertices are adjacent vertices. An action of a group I’
on a simplicial tree J is an embedding of I' to the group of automorphisms
of J.

1.3. Absolute

The absolute Abs(J) of a tree is the set of points of the tree at infinity. Let us give
the formal definition.

We say that a ray is an infinite way a;, as, ... . We say that rays a;,a, ... and
by, by, ... are equivalent if there exist k and a sufficiently large N such that b; = a; ¢
far all j > N.

A point of an absolute is a class of equivalent ways.
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1.4. Metric trees

Let J be a simplicial tree. Let us assign a positive number p(a,b) to each edge
[a,b]. Let a,c be arbitrary vertices of J, let ay =a,a,...,ar = ¢ be the way
connecting a and ¢. We assume

k
pla,c) = Z paj-1,a5).
j=1

Obviously, p is a metric on Vert(J). We call by metric trees the countable spaces
Vert(J) equipped with the metrics p.

Obviously, the edges of J can be restored from the metric p. By this reason, we
prefer to think that the edges are present in a metric tree as an additional
(combinatorial) structure.

Remark. Simplicial trees can be considered as partial cases of metric trees. Indeed,
we can assume that lengths of all the edges are 1.

Remark. Sometimes the term metric tree is used in the quite different sense (for
R-trees, see below 4.7).

1.5. Actions of groups on metric trees

Let J be a metric tree. A bijection Vert(J)— Vert(J) is an automorphism of J,
if it preserves the distance (hence it automatically preserves the structure of a
simplicial tree).

An action of group I' on a metric tree J is an embedding of I' to the group of
automorphisms of J.

2. Examples of actions of groups on trees

The purpose of this section is to give a collection of examples for abstract
constructions given in Sections 3-6 (all these examples are standard). For algebraic
and combinatorial theory of actions of groups on trees, see [38—40].

2.1. Bruhat-Tits trees

The Bruhat-Tits tree 7, is the tree, in which each vertex belongs to (p+1)
edges. The group Aut(,) of automorphisms of 7, is a locally compact group.
This group is similar to rank 1 groups over R and over p-adic fields. The
representation theory of Aut(J,) and related harmonic analysis are well under-
stood, see [3,7,8,31].
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2.2. The tree 7 .,

We denote by 7 , the simplicial tree, in which each vertex belongs to a countable
set of edges. At first sight, the group Aut( , ) seems pathological. Nevertheless, it is
a useful object as one of the simplest examples of infinite-dimensional groups, see
[29,32]. This group is an imitation of the group O(1, o).

2.3. The tree of free group

Denote by F, the free group with two generators o, . Vertices of the tree J(F»)
are numerated by elements of the group F,. Vertices v,,v, are connected by an
edge if

p=qu*' or p=gqp*l.

Obviously, J(F>) is the Bruhat-Tits tree .7 3. The group F» acts on the tree J(F>) by
the transformations

Fiv,—> U, Wwhere re k.

Fix /1, 1,>0. Assign the length /; to any edge [v), v,], and the length /, to any edge
[vp, vpg]. Thus we obtain the metric tree with the action of F5.

2.4. Another tree of free group

Let us contract all the edges of the type [vp, v,,] of the tree J(F>) described in 2.3.
Thus, we obtain the action of F»> on J .

2.5. Dyadic intervals

Vertices V,,,, of the tree J,(R) are enumerated by segments in R having the form

u u+1
Sun = {5,7], where ueZ,ne”.

We connect V,,, and V,,,—; by an edge if S,,—1 D Sy-
Obviously, we obtain the simplicial Bruhat-Tits tree .7 ,.

2.6. Balls on p-adic line

Denote by Q, the field of p-adic numbers, denote by Z, the p-adic integers. Denote
by B, the ball

lz—al<p™.
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Remark. The radius p~* is determined by the ball. But By = By for any ce B, .

The set of vertices of the tree J(Q,) is in one-to-one correspondence with the set of
balls B,j. Vertices v,x and vy are connected with an edge, if Bpiy1 D Bak.
Obviously, the group of affine transformations

z—oz+ f

of the p-adic line @[1) acts on the tree J(Q,).
2.7. Tree of lattices

Consider the p-adic plane @; equipped with a skew symmetric bilinear form

A((v1,v2), (Wi, w2)) = viwy — vawy.

Denote by Sp,(Q,) the group of linear transformations preserving the form
A(v,w).
A lattice in @ﬁ is a compact subset Rc @i having the form

Zyu®Z,v, where v,w are not proportional.

We say that a lattice R is self-dual if

1. A(v,w)eZ, for all v,w in R.
2. if he@i satisfies A(/,v)eZ, for all veR, then heR.

Vertices of the tree I~ (@12,) are self-dual lattices. Two vertices R, .S are connected
by an edge if

1
volume of RNS :[—)(Volume of R).

It can be shown that .7 (@ﬁ) is the Bruhat-Tits tree J ,. Obviously, the symplectic
group Sp,(Q,) ~SL,(Q,) acts on our tree by automorphisms.

Let us show that the absolute of the tree (@;) can be identified with the
p-adic projective line P@;. Any self-dual lattice admits a representation in the
form p™"Z,u®p"Z,v, where u,veZi and A(u,v)eZ,. We say that a sequence
of the lattices converges to a line L if the lattices R; can be represented in
the form

P Zyu; ®p Ly,

where n;— + oo and the lim u; exists and belongs to L.
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2.8. Modular tree

Consider the following standard picture from an arbitrary textbook on complex
analysis. Consider the Lobachevsky plane L : Im z>0 and the triangle 4 with three
vertices 0, 1, co on the absolute Im z = 0. Consider the reflections of 4 with respect
to the sides of A. This gives us 3 new triangles 4, 4,, 43. Then we consider the
reflections of 4; with respect to their sides, etc. We obtain a filling of L by infinite
triangles (with vertices in rational points of the absolute Im z = 0).

Vertices of the modular tree are enumerated by the triangles of the filling.
Two vertices are connected by an edge, if the corresponding triangles have a
common side.

The group SL,(Z) acts on the modular tree in the obvious way.

2.9. Tree of pants

Let R be a compact Riemann surface. Fix a collection Cjy, ..., C; of closed
mutually disjoint geodesics on R. The universal covering of R is the Lobachevsky
plane.

The coverings of the cycles C; are geodesics on L. Thus we obtain the countable
family of mutually disjoint geodesics on L. They divide L into a countable collection
of domains.

Now we construct a tree. Vertices of the tree are enumerated by the domains on L
obtained above. Two vertices are connected by an edge, if the corresponding
domains have a common side.

The fundamental group 7 (R) of the surface R acts on this tree in the obvious way.

3. Hierarchomorphisms
3.1. Large group of hierarchomorphisms

Consider a group I acting on a simplicial (or metric) tree J. Consider a partition
of J into a finite collection of thicket-subtrees Si, ..., Sk; i.e., the subtrees §; are
mutually disjoint, and Vert(J) = (J Vert(S;). Let

g1:81>J, gk Sk—J, giel

be a collection of embeddings such that

(1) the subtrees g;(.S;) are mutually disjoint;
(2) UVert(g(s))) = Vert(J).

Thus we obtain the bijection

g ={4).5} : Vert(J) - Vert(J)
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given by
g(a) = gj(a) if aeVert(S)).
We call such maps o-hierarchomorphisms, see Fig. 2.
Lemma 3.1. The product of two o-hierarchomorphisms is a o-hierarchomorphism.

Proof. Consider o-hierarchomorphisms g = {g;,S;)} and h = {h, Ti}. Their pro-
duct hg has the form

{hgj. g7 (Ti) N S;}.
By Lemma 1.1, all the sets gj’l(Tk) N S; are thicket-subtrees. [J
Denote the group of all such o-hierarchomorphisms by Hier®(J, I').
3.2. Action of o-hierarchomorphisms on absolute

Consider a o-hierarchomorphism g = {g;, S;}. Let w€ Abs(J). Let aj,a, ... be a
way leading to . For a sufficiently large N and for some S;, we have

ay,an+1, ... €S;. Hence gj(ay), g;(an+1), ... €g;(S;) is a way leading to some point
veAbs(g;(S;)) = Abs(J).
We assume
v=g(w).

Fig. 2. An example of hierarchomorphism: a re-glueing of two branches.
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3.3. Pseudo-derivative
Fix a point e Vert(J). Under the previous notation, consider the sequence
ny = p(& an) — p(& gi(an)).

This sequence becomes a constant after a sufficiently large M. We denote this

constant (the pseudo-derivative of the o-hierarchomorphism ¢ at the point
weAbs(J)) by

n(g,w) = n(g,0).

The following statement is obvious.

Proposition 3.1. For g, heHier®(J,I'), e Abs(J),

n(gh, w) = n(h, ) + n(g, ho). (3.1)

3.4. Small group of hierarchomorphisms

Denote by Hier(J,I') the group of transformations of the absolute induced by
elements geHier®(J, I').
We have the obvious canonical map

Hier®(J, I') > Hier(J, I').

Its kernel 4 is a countable subgroup, and each element of 4 is a finite permutation of
the set Vert(J).

Example. (a) Let J = 7, be the Bruhat-Tits tree and I'~Aut(J,) be the whole
group of its automorphisms. In this case, the group 4 is the group of all the finite
permutations of the set Vert(7 ,). The same is valid for the tree J(F,) of the free
group (see 2.3).

(b) Let J = 7, be the Bruhat-Tits tree of the infinite order and I'~Aut(7 ., ) be
the whole group of its automorphisms. Then A consists of one element and the
groups Hier® and Hier coincide. The same is valid for the action of the free group on
T defined in 3.4.

(c) Consider a locally finite tree J and some group I' of its automorphisms. Let
Q1,€s, ... be the orbits of I" on the set Vert(J). Denote by S(Q;) the group of finite
permutations of the set Q;. Then

4 =TI s@).
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3.5. Shorter definition of the group Hier(J,I')

A homeomorphism g of Abs(J) is an element of the group Hier(J, I') if

(1) there exists a finite collection of bushes I;,...,I; such that the sets
Abs(I}), ..., Abs(I;) are mutually disjoint and Abs(J) = UADbs(l,);
(2) there exist elements of ¢i,..., gr €I such that

qo = g, for weAbs(l,).

3.6. Example: p-adic diffeomorphisms

Consider the tree J (@12,) of p-adic lattices described in 2.7 and its boundary
IP’@},. We say that a bijection ¢ : P@},—»P@; is locally analytic diffeomoirphism
if it can be expanded into a Taylor series in a small neighborhood of each
point.

Proposition 3.2 (Neretin [26]). Any locally analytic diffeomorphism ¢ : IP’@I], - P@; is
a hierarchomorphism of the tree J(Qp).

3.7. Pseudo-derivative on Hier(J,I")

Obviously, the pseudo-derivative n(g, ) is well defined for geHier(J, I').

Consider the Bruhat-Tits tree 7 ,. Fix a vertex ¢ of the Bruhat-Tits tree .7 ,. Let
us introduce the canonical measure v on Abs(.7 ,). Consider a branch S of .7, such,
that £¢S. Let v be the root of S. We assume

1 1

v(BIS]) = T

The Radon—Nykodim derivative of the geHier(7 ,) at a point  is given by

g(0) =",

Thus, for the Bruhat-Tits trees, the pseudo-derivative is reduced to the Radon-—
Nykodim derivative.

But for general metric trees there is no canonical measure an the absolute, and
hence no the Radon—Nykodym derivative.

3.8. A variant: planar hierarchomorphisms

Assume a simplicial tree J be planar (this means, that for each vertex a we fix the
cyclic order on the set of edges containing «; it is the case in some of our examples.
Then also we have a canonical cyclic order on the absolute.

Now we can consider the group of hierarchomorphisms that preserves the cyclic
order on the absolute.
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4. Hilbert spaces 5 ;(J)
4.1. Definition

Let J be a metric tree, let 0<A<1. Denote by #,(J) the real Hilbert space
spanned by the formal vectors e,, where a ranges in Vert(J), with inner products
given by

Cegrepy =A@ va beVert(J). (4.1)

We must show that a system of vectors with the inner products (4.1) can be
realized in a Hilbert space.

4.2. Existence of #,(J)

Let a be a vertex of J. Let by, by, ... be the vertices adjacent to a. Consider an
arbitrary unit vector e, in a real infinite-dimensional Hilbert space . Consider a
collection Ly, , Ly,, ... of pairwise perpendicular two-dimensional planes® containing
eq. For each plane L;,, we draw a vector ep, € Ly, such that

Cepyeqy = Mbi,

see Fig. 3.
By the perpendicularity,

<ebk’eb/> = <ebk7eﬂ> ’ <eaaeb1> = 2#bi),

Then we apply the following inductive process. Assume that for a subtree S
the required embedding Vert(S)—.# is constructed, i.e., we have a subspace
H(S)=H . Let beVert(S), and c¢ Vert(J) be adjacent to b. Consider the two-
dimensional plane L.< # that contains e, and is perpendicular to #,(S). Let us
draw a unit vector e.€ L, such that

Ceerepy = 20,

Thus we obtained the required embedding Vert(S) | J{b} - #.
“There is lot of rooms left in Hilbert space”, and hence we obtain the embedding
Vert(J) > .

Remark. This geometric picture is especially pleasant, if lengths of all the edges
are equal.

>Subspaces M, M, in a Hilbert space are perpendicular iff there is an orthogonal system of vectors
Uy, U, ..., U1, 02, ..., Wi, Wa, ... such that M, is spanned by the vectors u;,v;, and M, is spanned by the
vectors wy, vj.
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Fig. 3.
Remark. Each finite collection of vectors e, ,..., ¢, is linear independent. This is

quite clear from our geometrical description.
4.3. More formal description of # ;(J)

Consider an affine real infinite-dimensional Hilbert space ¢, i.e., a Hilbert space,
where the origin of coordinates is not fixed. Denote by ||-|| the length in .
Consider a collection of points N, e #", where ae Vert(J), such that

(1) if [a, b], [c, d] are different edges of J, then N,N, L N Ny;

(2) for [a,b]eEdge(J),

||N11Nb||2 = O'p((l, b>7

where ¢ >0 is fixed.
The existence of such embedding is obvious (see Fig. 4).
By the Pythagoras theorem,

INyN||* = ap(b,c) Vb, ceVert(J).

Now let us apply the following standard Fock—Schoenberg construction [9,36].
For an affine Hilbert space ¢, there exists a linear Hilbert space Exp(#") and an
embedding ¢ : # — Exp(X") such that for all X, Yext’

(P(X),$(Y))> = exp(—||XY|]*).

Fix any origin of the coordinates in .#" and fix an orthonormal basis ej, e, ... in A"
Denote by S¥(#) the symmetric powers of (). The vectors

efler ey, where N=1,2,... and oy + - +oy =k
form an orthogonal basis in S¥(#"), and

e} €5” i |[* = onl-ouy!



Yu.A. Neretin | Journal of Functional Analysis 200 (2003) 505535 519

d
C

Ng N
h b

q Nc

a

N, No

Na Nb Na

Fig. 4. Five points N,, Ny, N., Ny, N, span a four-dimensional subspace in the affine Hilbert space K. We
portray the relative positions of N,, Ny, N, N, in the corresponding three-dimensional space, and also the
relative positions N,, Np, N, N; in (another) three-dimensional space.

We can assume that Exp(%") is the direct sum of all the symmetric powers of 4
Exp(#) = ROA ®S*H ®S°H @ -
and

EPETILI PO P SaPe. S
pX) =e TR TR T

®--|.

It remains to apply the Fock—Schoenberg construction to the space .#" constructed
above. The vectors ¢(N,) satisfy relations (4.1) for 2 =e™°.

Remark. The spaces 2, associated with a tree are well known; they are present in
Haagerup’s paper [14] and Olshansky’s paper [32]. In an implicit form, they are
present in [15] (Hilbert space itself without the underlying tree).

Remark. The trees are analogues of rank 1 noncompact Riemannian symmetric
spaces. Consider the Lobachevsky plane L = U(1,1)/U(1) x U(1), i.e., the disc
|z|]<1in C. Denote by &’ the space of compactly supported distributions on L. Fix
A>0. Consider the scalar product in &’ given by

(1 —z2)"(1 — uir)*
(1 —uz)*

<X17X2> ::{ 7%1(2)m}7

where {-,-} denotes the pairing of smooth functions and distributions. Denote by
A ;(L) the Hilbert space associated with the pre-Hilbert space %'. Our spaces #;(J)
are an imitation of the spaces #,(L). The latter spaces were defined by Vershik et al.
[11,43].
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4.4. Action of the group of o-hierarchomorphisms in # ,(J)

Let a group I acts on J by isometries. Then I acts in #,(J) by the orthogonal
operators® of the Hilbert space #;(J) by the formula

U (g9)eq = ey (4.2)

Let now geHier®(J,I') be a o-hierarchomorphism. Define the operators U;(g) by
the same formula (4.2).

Theorem 4.1. (a) The operators U,(g) are well defined and bounded.
(b) Each operator U,(g) can be represented in the form U,(g) = A(1 + R), where A
is an orthogonal operator and R is an operator of finite rank.

The theorem is proved below in 4.6.

4.5. The subspaces H ;(S)

Let S be a subtree in J. Denote by #,(S) the subspace in #,(J) generated by
the vectors e., where ceVert(S). Denote by Pgs the operator of projection
H(J) > A (S).

Lemma 4.2. Let A, B be two disjoint subtrees in J. Let aeVert(A), be Vert(B) be the
nearest vertices of the subtrees A, B.

(a) The sum #,(A) + # ,(B) is a topological direct sum in # ,(J).

(b) Let Q: H,(A)— A ,(B) be the projection operator Pg restricted to H;(A).
Then the image of Q is the line spanned by ey, and the kernel of Q is the
orthocomplement in # ,(A) to e,.

Remark. Let V', W be subspaces in a Hilbert space H. We say that the sum V' + W is
a topological direct sum in H, if the operator Q : V@ W — H given by Q(v@®w) =
v+ w is injective and its image is closed. In particular, the operator Q' : V +
W — V@ W is bounded.

Denote by P the projector operator V' — W. The sum V 4+ W is direct if and only if
[|P|| <.

Proof. Let u be a vertex of A. Let v ranges in Vert(B). We have equality
Cey,ep) = Jplewer) — )Lﬂ("uv"b>/lp("b-"v)7
hence
<€uvev> = <€u,€},> : <ehaev>~

6 An orthogonal operator is an invertible operator in a real Hilbert space preserving the inner product.
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Thus, for each he #,(B),
Cew, iy = Cewsepy - ep h).

Hence the projection of e, onto #,(B) is e, for all the vertices ue Vert(A). This
proves (b).
The norm of the projector Pg: #;(A)— # ;(B) is JP€) < 1. This implies (a).

4.6. Proof of Theorem 4.1

Denote by #5(J) the space of all linear combinations of the vectors e,, where v

ranges in J. Our operator U;(g) was defined on the space #1(J).
For a given o-hierarchomorphism g, consider the Hermitian form

O(hi,hy) = CU(g)h1, Ui(g)hy ) — {hi,hy) (4.3)

on #M(J) x #M(J). It is sufficient to prove that Q is a bounded Hermitian form
on #'M(J) x #(J) and the rank of Q is finite.

Let g = {g;, S;} eHier°(J) be a o-hierarchomorphism. Without loss of generality
(see Lemma 1.1), we can assume that S; are bushes or single-point sets.

By Lemma 4.2, the decomposition

is a topological direct sum, i.e. the equality is an isomorphism of topological
vector spaces.
The matrix of Q in the basis ¢, is

Qea,er) = {egaregsy — eaeny = AP — jPLeh),
The matrix Q(e4, ep) has the natural block decomposition
0 = {0y}
corresponding to the partition
Vert(J) = UVert(S,).

It is sufficient to prove that each block Qj has finite rank.

Thus, let a ranges in Vert(S;), b ranges in Vert(S;). If S; is an one-point space,
then the required statement is obvious. Hence, we assume that §;, S; are bushes. Let
u;,u; be their roots. If S; = S;, then Qj(e,, ¢p) is the identical zero. Thus, assume
S;#S;. Then

pla,b) = pla,u;) + p(ui, u;) + p(u;,b),
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p(ga, gb) = p(ga, gu;) + p(gui, gu;) + p(gu;, gb)
= p(a,u;) + p(gui, gu;) + p(u;, b).
Thus,
O(eq, ep) = [221i01) _ jpui)] . gplau) . pbay)

=const - <ell,'7€a> ' <euj7eb>'

Hence we obtain that the Hermitian form Q; on #5"(S;) x #"(S)) is given by
the formula

Qii(h1,hn) = const - ey, i ) - ey ha).

Thus the form Q; on #,(S;) x #;(S;) is bounded and its rank is <1. This finishes
the proof.

4.7. Remark. Spaces A ; associated with R-trees

Let we have a countable family Ji, Js, ... of metric trees and let we have isometric
embeddings 1 : Jr > Jrig:

Te—1 U Tet1 Uet2
= S = et = kg =

Let J be the direct limit (the union) of Ji. Such spaces are called R-rrees.’
Obviously, we have the chain of inclusions

(k) A (Jsr) S H ) (Jpga) <o

Denote the inductive limit of this chain by #,(J). Thus the Hilbert
spaces #, survive for R-trees. Nevertheless, the analogue of Theorem 4.1 is
wrong.

First, Lemma 4.1(a) becomes noncorrect, since the norm of the projector
H,(A)— A ,(B) can be 1 (if for each ¢>0 there exists a pair of vertices ue A, ve B
such that p(u,v) <e).

In fact, for an R-tree we have also the form Q given by (4.3) on the space J/f“.
This form has a finite rank, but Q is unbounded.

5. Boundary spaces

In Sections 5 and 6, we construct a canonical Hier°-invariant subspace &, < ;. In
fact, this gives a triangular representation of the operators U,(g) defined in the

"Up to a possible minor variation of terminology.
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previous section
P
Ui(g) = ( @) Q(g)> 6 ®E,~EDE. (5.0)

Thus we obtain two representations of Hier®, the first is the representation 7'(g) in
&, the second is the representation P(g) in the quotient space #; /&, (the operators
U,(g) are not unitary and hence the subspace & /l is not Hier°-invariant).

The object of our interest is the representation 7'(g) and the subspace &;. We
show, that elements of the space &; are some kind of “distributions” on the absolute
of a metric tree. These spaces can be considered as analogues of the Sobolev spaces
on the spheres.

The representation 7'(g) is trivial on the subgroup 4 and thus it is a representation
of the quotient group Hier = Hier®/4.

This construction is valid under some conditions on the tree and on 4. Conditions
on the tree are not restrictive, conditions on the parameter 4 are essential. It turns
out to be, that there is a critical value ¢ such that 0<o<1; for A> ¢ the boundary
space &, and the triangular representation (5.0) exist, and the space &, is trivial
for 1<ao.

We obtain upper and lower estimates for o.

In this section, the term tree means a locally finite tree such that each vertex is
contained in >3 edges, the both restrictions are not really important, we only trying
simplify the text.

Constructions of this section are an imitation of the work [30] on the level
of trees.

5.1. Balls in absolute

Let S be a branch of J. A ball B[S]<Abs(J) is the absolute of the branch S. If we
delete the root of the S and all the edges containing the root, then S will be
disintegrated into a finite collection of branches S, §? ..., S®) Hence the ball
B[S] admits the canonical partition

B[S] = B[SW] U --- UB[SW)] (5.1)

into the balls B[S®¥)].

We define the topology on Abs(J) by the assumption that all the balls B[S] are
open-and-closed subsets in Abs[J]. Obviously, Abs(J) is a completely discontinuous
compact set.

Remark. Hierarchomorphisms locally preserve hierarchy of balls on the absolute.®
Obviously, hiearchomorphisms are homeomorphisms of the absolute. But preserving
of the hierarchy of balls is a very rigid condition on a homeomorphism.

8 Firstly, this hierarchy structure on p-adic manifolds was mentioned in Addendum in Serre’s book [37].
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5.2. New notation in the space # ;(J)

Let us fix a vertex &eVert(J). Let a,beVert(J). Consider the way ay=
a,ay, ...,a; = b connecting a, b. Assume

0(a,b) = 2min p(&, gj).

We emphasis that this function has sense also if a or b are points of the absolute,
and the value 0(a, b) is finite except the case a = be Abs(J).
For aeVert(J), consider the vector f, € #,(J) given by

fu= i_”(f'”)ea.
Then

oty y = 270,

Remark. Let S be a subtree in J containing &. For ce Vert(J), consider the nearest
vertex be Vert(S). Then the projection of f, to #,(S) is fp.

5.3. Measures on Abs(J) and compatible systems of measures on Vert(J)
Let R<J be a finite subtree. We say that R is complete if any ae Vert(R) satisfies
one of two following conditions (see Fig. 5):

1. Any vertex b of J adjacent to a is contained in R.
2. Only one vertex of J adjacent to a is contained in R.

Let OR denote the boundary of R, i.e., the set of all vertices of the second type.
We also assume

EeVert(R)\OR.

Fig. 5. A complete subtree in the dyadic Bruhat-Tits tree 7 5.
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Consider a real-valued measure (charge) u of a finite variation on Abs(J). Recall
that any measure u of a finite variation admits the canonical representation

po=p =,

where ut are nonnegative finite measures, and for some (noncanonical) Borel subset
U cAbs,

o (U)=0, u"(Abs\U) =0.
The variation of the measure u is
var(u) = pt(U) + = (Abs\U).

For a complete subtree R, denote by u,us, ... the points of OR. For any uy, there
exists a unique branch §,, =J such that u is the root of S, and ¢S, .
Consider the measure pp defined on the finite set OR by

tr(w) = u(B[Sy))-
Consider also the vector

¥[ulR] = Z /‘(B[Suj-])f;ﬁ-

ujedR
Let R, D R; be complete subtrees. Then we have the obvious retraction

nﬁf . Vert(Ry) - Vert(Ry)

defined by the condition: if aeVert(R;), then nﬁ? (a) is the nearest vertex of R
(see Fig. 6).

Lemma 5.1. (a) pg, is the image of g, under the retraction nﬁf (a).

Fig. 6. The tree R, and the retraction nﬁf. Vertices of R; are black.
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(b) The vector Y[u|R1] is the projection of P[u|Ry] to the subspace #,(Ry). In
particular,

[Pl Rl <[P [ul Ra][[-

Proof. Assertion (a) is obvious, and assertion (b) follows from the last remark
from 5.2. O

Conversely, consider a family of complete subtrees
RicRycR3c -,
R;:
such that |J R; = J. Let for each j we have a measure v; on OR;, and nRj_“ Vvir1 = v; for

all j. If supvar(v;) < oo, then there exists a unique measure v on Abs such that
Vi = VR;-

5.4. Boundary spaces &, <K,

Let RjcRy<--- be a sequence of complete subtrees in J, and |JRy = J (the
construction below do not depend on choice of the sequence).

Let u be a measure of finite variation on Abs(J). We say that u belongs to the class
é&,=6,J)if

lim [ [ul R[] -, < o0.
j— o '

Proposition 5.2. For u, ' €&, the following statements hold:
(a) There exists the following limit in the space H# ;(J)

Plu] = lim ¥[ulRy] (5.2)
(b) 11, = Jim 1Pl R, (5.3)
(© CPU, P w, = lim CPUIR] PR - (54)

Proof. All statements follow from Lemma 5.1. O

Thus we obtain the embedding &,(J)— #;(J) given by ¥ : ur> ¥[u]. We define
the inner product in &,(J) by

St 6,0y = <P, Pl v, 0)-
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Denote by €, = #; the image of the embedding ¥. Denote by €, the closure of €,

in #;, and also denote by &; the completion of the space &; with respect to the
norm (5.3).

5.5. More direct description of &,

We can write formally

W, = [ [ e duon) duen), (5.5)
. AbsxAbs

Cetizde, = [ [ dyg (o) o). (5.6)

These integrals are very simple, since the integrand 2~%“1“2) has only countable set

of values. Nevertheless, generally (even for the Bruhat-Tits tree 7 ,) for u;, €6,
these integrals diverge as Lebesgue integrals, i.e., the integral

/ / O (e (1) + dpc (1) (dpt () + dp- (02))
Absx Abs

can be infinite.

Our limit procedure is equivalent to the Riemann improper integration in the
following sense. Consider a complete subtree R<J such that (e R. Then J\R is a
union of disjoint branches Sy, ..., S;. Thus

Abs(J) = B[Si]u -+ UB[Sk].

Let us define the integral sum

SRl 1) = Z

. 5 0(@1.0) B[S; B[S;]).
i {CUIGBIS{R{EGB[SJ] BB

Obviously,

S R(s o) = <P |R], Pl R -

Remark. If i#/, then the value -2 is a constant on B[S;] x B[S)].
By Lemma 5.1, we have

RyDRy = Ir (1, W) ST Ry (115 ). (5.7)
Now we can define integral (5.5) as the limit of these integral sums under refinement

of the partition. A measure p is contained in & iff the Riemann integral (5.5) is
finite.
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After this, we can define the inner product in {u;, i, » ¢, as the Riemann improper
integral (5.6).

This definition coincides with formula (5.4) for {¥[u], P[], but it is given
independently on the space ;.

Nevertheless, the space #°, was essentially used in the justification of this
construction, since the convergence of integral sums and positiveness of integral (5.5)
are not obvious.

5.6. Nontriviality of &)

Theorem 5.3. (a) There exists o, which belongs to 0< o<1, such that the space &) is
zero for .<a and the space &) is not zero for .>a.

(b) If lengths of edges of J are bounded, then ¢ <1.

(c) Let J contain a subtree I that is isomorphic to the Bruhat-Tits tree I, as a
simplicial tree, and lengths of all edges of I are <t. Then a<1/3/p.

(d) Assume lengths of edges of J are bounded away from zero. Denote by s(N) the
number of aeVert(J), satisfying dsmp(&,a) < N. Assume that s(N) has exponential
growth, i.e., s(N)<exp(aN) for some constant o. Then ¢>0.

The proof of the theorem is contained below in 5.7-5.11

5.7. Expansion of ||P||* into series with positive terms

Let Ry= Ry =Ry < -+ be a sequence of complete subtrees in J, and | JR,, = J. We
say that the sequence R; is incompressible if

1. Ry consists of the vertex &;

2. for each m, there exists uedR,, such that Vert(R,)\Vert(R,) consists of
vertices adjacent to u.

Fix a measure (charge) u on Abs.

Obviously, P[u|Ro] = u(Abs)f:, and hence

|12 [l Ro)||* = u(Abs).
Let us evaluate
M) = 1P| RIS, — 112 [l R
z Hl B 1]l I ]|, -

Let u be the vertex defined in 2. Let vy, ..., v, € OR,, 11 be the vertices adjacent to u, see
Fig. 7.
Let pg, . (0k) = & (these numbers can be negative), respectively, ug, (1) =11 +
-+ + t,. It is readily seen that
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k#l1 k

=N () 1) g (5.8)
k

Zm () = ( 5 20(Ew) Z 1oty + 5 20EW Z - 20(u0g) ti) _ (Z Zk)z

First, we observe that this expression is completely determined by the measure p and
the vertex u. The subtrees R,,, R, are nonessential. Hence it is natural to denote
(1) by z,(A).

Thus,

WP = u(Abs) + 3 (2) (59)

m=1

= u(Abs)* + zu(2). (5.10)
ueVert(J)u#¢

We emphasis that
(a) all summands of these series are nonnegative;
(b) all summands z,(1) are decreasing functions on A for 0<A<1.

5.8. Existence of ¢

The Statement (a) of Theorem 5.4 follows from the last observation of the
previous subsection.

5.9. Existence of &,

It is sufficient to prove (c), since (b) is a corollary of (c). Furthermore,
it is sufficient to prove nontriviality of &;(I) for the subtree /. Denote by Ry the
subtree of I, consisting of all vertices ael such that the simplicial distance
dsimp(é;a)glﬁ
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Consider the uniform measure ug on Ry, i.e., the measure of each point is

1/(p*="(p +1)). Obviously, the measures y, form a compatible system of the
measures, denote by u the inverse limit of the measures pp, .

Let us estimate

P[u| Ry 227 £
[l Re] T, %A

1
(P'i'l) 2D SR,

1 k . { number of pairs (a,b) €ORy }

J20(ab)

s )V72‘L'j .
(p + 1) p2k=1) z(; such that dgmp(a, b) = 2(k —j)

k—1

DS 2 p (= 1)

J=1

If 2*p>1, then these sums are uniformly bounded in k; hence ueé,(I)c=é,(J)
(Fig. 7).

5.10. Localization

Lemma 5.4. Let pe&;, and let B[S|=Abs be a ball. Let v be the restriction of u to
B[S] (i.e., v(4) = u(A (N B([S]) for any Borel subset A< Abs). Then ved;.

Proof. We can assume ¢ .S (otherwise we divide the ball B[S] into a finite collection
of smaller balls B[S;] satisfying the property ¢¢ B[S;]). Denote by v the root of the

branch S. The quantity ||,u|\§/ is the sum of the series > z,(/) given by (5.8) and

(5.10). The series for ||v||§/ is obtained from the series for ||,u||i/ by the following
operations:

(1) For u lying between ¢ and v, the summands z,(1) are changed in a
nonpredictable way.
(2) For any ue S, the summand z,(/) does not change.
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(3) All other summands become zero.
Obviously, the new series Y z,(1) is convergent. [

Remark. Consider a Borel subset U in the absolute. Let v be the restriction of ueé;
to U. Generally, v¢ &;. Also, generally, ut ¢¢&;.

5.11. Lower estimate of ¢

By Lemma 5.4, if &0, then there exists a measure ue&; such that u(Abs)#0.
For definiteness, assume u(Abs) = 1.

Let ¢ be a lower bound for lengths of edges. Consider a complete subtree Rc=J
defined by the condition dmp(&,a)<N. Consider the measure pup on OR. In
Section 5.7,

||'P[:u]||2:1+ Z Zy = Z Zy

ueVertJ u#¢ uedR
> 7707 = 1) Y pg(w)*  (by formula (5.8)). (5.11)
uedR

The number of points of OR is less than exp{aN}, where o is a constant.
Furthermore, ), g #z(%) = 1, hence the last expression is larger than

7N ()72 — 1)exp{—aN}.

For a sufficiently small A>0, the last expression tends to oo as N — oo, and thus
&, =0.

5.12. Bruhat-Tits trees

In this case, the space &, coincides with the following well-known construction

(see [3]).

Consider the scalar product in the space of real functions on Abs(7,) given by

ik = / /A o) dv(o) dy(@n). (512)

This space is the space of the representation of Aut(J ,) of the complementary series
(see [3,7,31]).
If we assume in (5.6)

duy = fi(w) dp(o),  duy = fr(w) du(w)

then we obtain exactly expression (5.12).
Nevertheless, this can not be repeated for a general metric tree, since the
construction uses a canonical measure on the boundary of tree, and there is no visible
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way invent such canonical measures for arbitrary metric tree. But our construction
of the spaces &, is canonical.

6. Action of groups of hierarchomorphisms in &

Let J satisfy the same conditions as in Section 5, i.e., J be locally finite and any
vertex of J belong to >3 edges.

Let #,(J) D€, (J)~&,(J) be the same spaces as above. Let a group I' act on J by
isometries. Let Hier®(J,I'), Hier(J,I') be the corresponding hierarchomorphisms
groups. The group Hier®(J, ') acts in #;(J) by the operators U,(g) given by (4.1).

6.1. Action of hierarchomorphisms in &,

Proposition 6.1. (a) The space €;(J) < # ;(J) is invariant with respect to Hier(J, T').
(b) For geHier°(J,T), the restriction of the operator U,(g) to €, depends only on

the corresponding element jeHier(J, T).
(c) The action of Hier(J,I') in &,(J)~€,(J) is given by

T (5 u(w) = 2g:0) - u(gw), where geHier(J,I'), (6.1)

where the pseudo-derivative n(g, ®) = n(g,®) of a hierarchomorphism on the absolute
was defined in 3.2, 3.1, and p(gw) is the image of the measure p under the
transformation w— gw.

Proof. Fix geHier°(J,I'). Let RycR;<=--- be an incompressible sequence of
complete subtrees as in 5.7, | J Ry = J. Consider the sequence g - ORy, g - ORy, ... .
There exists / such that for all k>/

g-OR, = 0Ty, where T} is a complete subtree.
Hence,
Ui(9)¥[u|Re] = PV|Ti],
where v is some measure on Abs(J).

We must show that the numbers ||¥[v|T%]|| are bounded. Consider the expansion
of ||¥[u]||* and ||®[v]|]* into the series 3 zF(4), see (5.9) and (5.10). The summands
with numbers </ are essentially different, but this do not influence on the
convergence. Other summands are rearranged and multiplied by the factors ().

But 2"9“) has only finite number of values and hence the series 3 z¥(1) for the
measure v is also convergent. Thus ve&(J).

Statement (a) is proved, statement (b) is obvious, and statement (c) follows from
the same considerations.
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6.2. Almost orthogonality

Theorem 6.2. Let geHier(J, I'). The operators T;(g) in &,(J) given by (6.1) admit the
representation T)(g) = A(1 4+ Q), where A is an orthogonal operator and Q is a finite
rank operator.

This statement follows from Theorem 4.1. This can also be proved directly from
the explicit formulas (5.6) and (6.1) in the same way as in [20].

6.3. Action of I'

For ger, the operator T)(g) is unitary in &,. Thus we obtained a series 7 of
unitary representations of the group I'.

If I is the group Aut(,) of automorphisms of Bruhat-Tits tree, then this
construction is nothing but the complementary series representations (see [3,7,31]).

Nevertheless, possibly our construction of representations of I' in a general case is
new and I’ll try to describe its position with respect to known constructions.

There are many ['-quasiinvariant measures on Abs, and for each quasiinvariant
measure x we have a series of unitary representations of I' in L?(Abs, x) (‘“boundary
representations’).

There arise two questions.

(1) Is it possible to realize a representation 7 as a boundary representation?

(2) Is it possible to obtain 7, as an analytic continuation of boundary
representations (see [8])?

We will discuss the case of free groups, which is relatively well understood
(see [21,22)).

The answer to the first question is negative. Indeed, the boundary representations
are weakly contained in L?(F;), see [21,22]. A representation p of F, is weakly
contained in L? if for any vector v,

Z efs:l(g) <p(g)y, U> < oo for all &,

ger

where /(g) is the length of g.

It is easy to see that for sufficiently large A our representations U;, T, are not
weakly contained in L?.

The second problem seems more complicated.

(o) In some cases answer is affirmative. For instance, this is correct for the tree
J(F>) from 2.3 in the case /, = h, see [6].

(p) Definitely, answer is negative for the action of F> on nonlocally finite tree 7  ;
in this case, T, = U, (see also [32], where a ““complementary series’ that is not an
analytic continuation of the “principal series” is constructed).

(y) Consider the tree 7 (F) from 2.3 and the corresponding representations T, of
F,. Unfortunately, I do not understand the position of these “‘complementary series”
T, with respect to the “principal series” of Kuhn—Steger [22].
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