81 research outputs found

    Noise expresses exponential growth under regime switching

    Get PDF
    Consider a given system under regime switching whose solution grows at most polynomially, and suppose that the system is subject to environmental noise in some regimes. Can the regime switching and the environmental noise work together to make the system change signicantly? The answer is yes. In this paper, we will show that the regime switching and the environmental noise will make the original system whose solution grows at most polynomially become a new system whose solution will grow exponentially. In other words, we reveal that the regime switching and the environmental noise will exppress the exponential growth

    Extinction and recurrence of multi-group SEIR epidemic

    Get PDF
    In this paper, we consider a class of multi-group SEIR epidemic models with stochastic perturbations. By the method of stochastic Lyapunov functions, we study their asymptotic behavior in terms of the intensity of the stochastic perturbations and the reproductive number R0R0. When the perturbations are sufficiently large, the exposed and infective components decay exponentially to zero whilst the susceptible components converge weakly to a class of explicit stationary distributions regardless of the magnitude of R0R0. An interesting result is that, if the perturbations are sufficiently small and R0ā‰¤1R0ā‰¤1, then the exposed, infective and susceptible components have similar behaviors, respectively, as in the case of large perturbations. When the perturbations are small and R0>1R0>1, we construct a new class of stochastic Lyapunov functions to show the ergodic property and the positive recurrence, and our results reveal some cycling phenomena of recurrent diseases. Computer simulations are carried out to illustrate our analytical results

    Geometric integrator for Langevin systems with quaternion-based rotational degrees of freedom and hydrodynamic interactions

    Get PDF
    We introduce new Langevin-type equations describing the rotational and translational motion of rigid bodies interacting through conservative and non-conservative forces, and hydrodynamic coupling. In the absence of non-conservative forces the Langevin-type equations sample from the canonical ensemble. The rotational degrees of freedom are described using quaternions, the lengths of which are exactly preserved by the stochastic dynamics. For the proposed Langevin-type equations, we construct a weak 2nd order geometric integrator which preserves the main geometric features of the continuous dynamics. The integrator uses Verlet-type splitting for the deterministic part of Langevin equations appropriately combined with an exactly integrated Ornstein-Uhlenbeck process. Numerical experiments are presented to illustrate both the new Langevin model and the numerical method for it, as well as to demonstrate how inertia and the coupling of rotational and translational motion can introduce qualitatively distinct behaviours
    • ā€¦
    corecore