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RESEARCH Open Access

Pulmonary exposure to single-walled carbon
nanotubes does not affect the early immune
response against Toxoplasma gondii
Linda Swedin1†, Romanico Arrighi2,3†, Britta Andersson-Willman4, Ashley Murray5,7, Yunying Chen4,
Mikael C I Karlsson4, Susanna Kumlien Georén6, Alexey V Tkach5, Anna A Shvedova5,7, Bengt Fadeel1,
Antonio Barragan2,3 and Annika Scheynius4*

Abstract

Background: Single-walled carbon nanotubes (SWCNT) trigger pronounced inflammation and fibrosis in the lungs
of mice following administration via pharyngeal aspiration or inhalation. Human exposure to SWCNT in an
occupational setting may occur in conjunction with infections and this could yield enhanced or suppressed
responses to the offending agent. Here, we studied whether the sequential exposure to SWCNT via pharyngeal
aspiration and infection of mice with the ubiquitous intracellular parasite Toxoplasma gondii would impact on the
immune response of the host against the parasite.

Methods: C57BL/6 mice were pre-exposed by pharyngeal administration of SWCNT (80 + 80 μg/mouse) for two
consecutive days followed by intravenous injection with either 1x103 or 1x104 green fluorescence protein and
luciferase-expressing T. gondii tachyzoites. The dissemination of T. gondii was monitored by in vivo bioluminescence
imaging in real time for 7 days and by plaque formation. The inflammatory response was analysed in
bronchoalveolar lavage (BAL) fluid, and by assessment of morphological changes and immune responses in lung
and spleen.

Results: There were no differences in parasite distribution between mice only inoculated with T. gondii or those
mice pre-exposed for 2 days to SWCNT before parasite inoculum. Lung and spleen histology and inflammation
markers in BAL fluid reflected the effects of SWCNT exposure and T. gondii injection, respectively. We also noted
that CD11c positive dendritic cells but not F4/80 positive macrophages retained SWCNT in the lungs 9 days after
pharyngeal aspiration. However, co-localization of T. gondii with CD11c or F4/80 positive cells could not be
observed in lungs or spleen. Pre-exposure to SWCNT did not affect the splenocyte response to T. gondii.

Conclusions: Taken together, our data indicate that pre-exposure to SWCNT does not enhance or suppress the
early immune response to T. gondii in mice.

Keywords: Carbon nanotubes, Bioluminescence imaging, Inflammation markers, Lung and spleen
immunohistology, Dendritic cells, Macrophages, Toxoplasma gondii
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Background
Carbon nanotubes (CNT), with their unique physico-
chemical properties, yield numerous technological advan-
tages for novel applications that are expected to drive
industrial growth. As a consequence, large quantities of
CNTs may reach the environment, and this may inadvert-
ently result in human exposure. Hence, there is an urgent
need for the assessment of potential impacts and health
effects of CNTs [1]. The unusual properties of CNTs may
underlie unique biological activities that may be exploited
for biomedical applications, but insufficient research has
been undertaken to explore their potential adverse effects
on human health. Our earlier studies have shown that
SWCNT induced a robust acute inflammation with a very
early onset of the formation of granulomas and interstitial
fibrosis in the lungs of C57BL/6 mice [2,3]. Several lines
of evidence suggested that exposure to respirable CNT
could modulate innate immunity and intervene with host
resistance to microbial infections [2-5]. Thus, we have pre-
viously shown that exposure to SWCNT followed by Lis-
teria monocytogenes (LM) infection resulted in decreased
pulmonary clearance of bacteria [2].
Toxoplasma gondii is an obligate intracellular protozoan

parasite that infects virtually all warm-blooded vertebrates.
Up to one third of the global human population is chron-
ically infected [6]. Following primary infection, the tachy-
zoite stage of the parasite disseminates widely in the
organism. Differentiation of tachyzoites into tissue cyst
stages (bradyzoites), predominantly in the brain, results in
chronic asymptomatic infection. T. gondii is an opportun-
istic pathogen and reactivation of the infection can be le-
thal in individuals with acquired immune deficiencies,
e.g. HIV/AIDS, or in individuals with prolonged treat-
ments with immune suppressive drugs, e.g. recipients of
organ and bone marrow transplants. Severe manifestations
include toxoplasmic encephalitis [6-8] and neurological
damage in the developing fetus [6]. Infection in the airways
can manifest as severe atypical pneumonia [9-11].
The onset of cell-mediated immunity against T. gondii is

accompanied by the transformation of the parasite into
tissue cysts resulting in lifelong chronic infection. Cellular
immunity mediated by NK cells, T cells, dendritic cells
(DC), macrophages, and activity of type 1 cytokines (IL-12
and interferon (IFN)-γ) are essential to resist primary
infection and for maintenance of quiescence during latent
infection [12,13]. Mounting evidence indicates that the in-
herent migratory functions of leukocytes also make them
a suitable target (Trojan horse) for T. gondii to mediate its
dispersion in the organism [14-16].
Rodents are natural hosts for T. gondii and offer a

robust infection model [15]. The aim of the present study
was to determine whether pre-exposure of mice to
SWCNT using the same pharyngeal aspiration protocol as
in the infection model with the bacteria L. monocytogenes

[2] would affect the dissemination and host response to-
wards the parasite T. gondii. To evaluate the pathobiology
of the Toxoplasma infection in vivo, we used biolumines-
cence imaging (BLI) which provides a versatile tool for
non-invasive assessment with fine temporal resolution
[17,18]. We also aimed to investigate whether pre-
exposure of mice to SWCNT and T. gondii infection
would alter the inflammatory responses, measured as cell
counts and the cytokine profile in bronchoalveolar lavage
(BAL) fluid, and in lung and spleen histology changes. The
data presented here suggest that inhalation of SWCNT
before encountering Toxoplasma infection do not inter-
fere with the early immune response to T. gondii.

Results
Pre-administration of SWCNT does not affect the parasitic
loads in the spleen and in the lung
In order to monitor the dissemination of the parasite
by non-invasive real-time imaging, we utilized PTG
Type II GFPluc tachyzoites. Mice were monitored over
7 days post T. gondii inoculation, and regardless of ini-
tial parasite inoculum, the presence of SWCNT did not
significantly affect the parasites development or dissem-
ination as measured by BLI (Figure 1A & B). The
higher inoculation dose of T. gondii led to higher para-
sitic loads over time as expected. Furthermore, strong
parasite signals could be clearly detected in the lungs
for all parasite treated groups, with the strongest signals
detected from the T. gondii 104 and SWCNT+T. gondii
104 groups (Figure 1A). Analysing total photonic emis-
sions from each group of mice showed that although
emissions increased over time, particularly after day 4,
there was no clear difference in total parasite photonic
emissions between T. gondii only and SWCNT+T.
gondii treated mice (Figure 1B, One-way ANOVA,
p > 0.05). The lungs were studied in more detail to de-
termine whether there was a difference in photonic
emissions in that region, but again, no clear differences
were detected between T. gondii only and SWCNT+T.
gondii groups on day 7 post-infection (Figure 1C,
One-way ANOVA, p > 0.05). In fact, similar photonic
counts between both groups were observed in mice
from day 4 onwards (data not shown). Quantification of
parasitic load by plaquing assays from lungs and spleens
extracted day 7 post-infection confirmed that both
organs were heavily infected, with the lungs showing a
higher burden per gram tissue than the spleen. How-
ever, there was no significant difference in the burdens
in relation to the mice pre-treated with SWCNT
(Figure 1D, One-way ANOVA, p > 0.05). We conclude
that the replication and dissemination of T. gondii in
our mouse model is not obviously hindered or exacer-
bated by the pre-exposure to SWCNT.
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No significant alterations in inflammatory markers in
bronchoalveolar lavage fluid following combination
exposure
The combined effect of SWCNT treatment and T. gondii
infection on the cellular inflammatory response was
measured via the accumulation of leukocytes in BAL
fluid. Following SWCNT challenge and T. gondii infu-
sion, the total cell number and the number of most leu-
kocytes subtypes, were markedly increased in BAL fluid
(One-way ANOVA, p < 0.05; Figure 2A) compared to
PBS controls. This was true for neutrophils, lympho-
cytes and especially for macrophages. When comparing
the combined treatment with respective controls, i.e.

T. gondii or SWCNT alone, there was a trend, albeit
not significant, towards increased total cells and also
the number of most leukocytes subtypes, with the
exception of eosinophils (One-way ANOVA, p > 0.05;
Figure 2A).
To determine cellular damage, total protein concentra-

tion and LDH was measured in BAL fluid. Exposure to
only SWCNT induced minimal changes in the levels of
total protein content and LDH levels compared to the
PBS controls (Figure 2B and C). There was a significant
increase in the total protein content and LDH levels in
mice infected with the higher concentration of T. gondii
(One-way ANOVA, p < 0.05). However, there were no

Figure 1 Effects of pre-adminstration of SWCNT on the replication and dissemination of T. gondii. A. Photonic emissions were assessed by
bioluminescence imaging (BLI) on day 0 and 7 after parasite inoculation of mice with two different doses (103 and 104). The colour scale
indicates photon emission (photons/s/cm2/sr) from T. gondii biomass over a 300 s exposure. Data are representative of mice from day 0 and 7
post-infection from two independent experiments. B. Total photon emission analysis from individual mice from day 2–7 post-inoculation, shows a
strong increase in parasite burden after day 4, but non-siginificant differences between T. gondii only or SWCNT+ T. gondii (ns, One-way ANOVA,
p > 0.05). Results are shown as mean± SEM (n = 6). C. Photon emission analysis from individual mice lung region of interest (ROI) on day 7 post-
inoculation shows non-significant differences between T. gondii only or SWCNT+ T. gondii groups (ns, One-way ANOVA, p > 0.05). Results are
shown as mean± SEM (n = 6). D. Parasite load in lungs and spleen day 7 after T. gondii inoculation quantified by plaquing assays as indicated
under Materials and Methods. Non-significant differences were observed between T. gondii only or SWCNT+ T. gondii (ns, one-way ANOVA,
p > 0.05). Results are shown as mean± SEM (n=6).
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differences between the groups only exposed to T. gondii
and those also pre-exposed to SWCNT, but a tendency to
higher LDH levels could be observed for the combination
in mice exposed to the higher concentration of T. gondii
(Figure 2C).
To clarify the possible contribution of inflammatory me-

diator cascades in the airway inflammation, a 7-plex panel
of cytokines, chemokines and growth factors and a 3-plex
panel of TGFβ, were measured in BAL fluid. Exposure to
only SWCNT generally induced no change in the levels of
mediators in BAL fluid compared to PBS controls at day 10,
except for IL-12p40 and TGFβ2, although not statistically
significant (Table 1, one-way ANOVA and further analysed
using Bonferroni’s Multiple Comparison post hoc test). Al-
though there were increases in all mediators measured after
T. gondii infection, these changes did not always reach sta-
tistically significant differences compared to PBS controls
and mice exposed to SWCNT only, probably due to the

small size of the groups (Table 1). Furthermore, there was
no clear effect of the combined treatments of SWCNT and
infection of T. gondii. The TGFβ-plex assay revealed
increased levels of TGFβ1 in mice exposed to SWCNTand/
or T. gondii compared to PBS controls, although not statisti-
cally significant (data not shown, one-way ANOVA). There
were significantly increased levels of TGFβ2 in BAL fluid in
mice exposed to SWCNT+T. gondii 104 compared to PBS
controls or mice exposed to SWCNT alone and compared
to T. gondii 103 alone or combined with SWCNT (Table 1,
one-way ANOVA, p<0.05). TGFβ3 levels were at the detec-
tion range for this particular mediator (data not shown).

Co-exposure to T. gondii and SWCNT yields no novel
histological changes in the lungs as compared to mice
infected with T. gondii or exposed to SWCNT alone
To further examine the effect of a combined treatment
of SWCNT and infection of T. gondii on the

Figure 2 Analysis of cell number and composition in BAL fluid. A. Total number of cells and composition of cells in BAL fluid in C57BL/6
mice after exposure of SWCNT and T. gondii infection (n = 5-8). Data are presented as mean± SEM. B. Protein content of BAL fluid. Results are
presented as percentage of control (PBS treated mice) ± SD from triplicate of six mice divided into two experiments. C. LDH content of BAL fluid.
Results are presented as percentage of control (PBS treated mice) ± SD from triplicate of five-six mice divided into two experiments. Statistical
significance was determined with one-way ANOVA or Kruskal-Wallis test using Gaussian approximation and Bonferroni’s Multiple Comparison test.
* = p < 0.05, indicate significant differences between groups. In panel A, * = p< 0.05 significant differences to PBS controls.
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inflammatory response, histopathology of the lungs was
performed on hematoxylin/eosin stained sections from
formalin fixed specimens. The PBS control mice were
unaffected and all had normal lungs. The lungs of mice
exposed to only SWCNT contained variable numbers of
foci of particle-laden macrophages forming distinct

granulomas (Figure 3A). SWCNT-treated animals had
between 0 and 33 (mean = 20.4) foci of particle-laden
macrophages in their lungs (Figure 4A). These foci
generally originated in bronchi and bronchioles and
extended into alveoli from these airways (Figure 3A).
The two groups of mice infected with T. gondii alone

Figure 3 Pulmonary inflammation after SWCNT and/or T. gondii exposure. Representative photomicrographs of pulmonary changes in
mouse lungs. A. High magnification image of an airway containing a large amount of pigmented particulate matter both free and within
macrophages. The macrophages surround the material forming a small granuloma and spread out of the airway into adjacent alveoli. There is
mild epithelial hyperplasia (arrow). B. High magnification view of a lung characteristic of those infected with T. gondii with loss of alveolar spaces
due to pyogranulomatous inflammation and alveolar necrosis with intra-lesional protozoal vacuoles (inset). C. Lung from a mouse administered
SWCNT and infected with the higher dose of T. gondii. There is focally extensive pleuritis (arrow), one large area of inflammation obliterating
normal pulmonary architecture (box) and multifocal smaller nodules. D. Higher magnification view of the boxed area in (C) shows a combination
of particle-laden macrophages filling airways (large arrow) and mild epithelial hyperplasia (small arrow). This is combined with vasculitis (asterisk)
and necrosis with a pyogranulomatous inflammatory cell infiltrate as seen in the T. gondii infected animals.

Table 1 Levels of cytokines, chemokines and growth factors in BAL fluid in mice exposed to SWCNT and inoculation
with the parasite T. gondii

Group of animals
(n = 6-8)

Cytokine release in BAL fluid (pg/mL)

IL-1β IL-6 IL-10 IL-12p40 INFγ TNFα MCP-1 TGFβ2

PBS 55 ± 29 18 ± 9 34± 12 458 ± 67 45 ± 9 48 ± 30 61 ± 37 84 ± 10

SWCNT 8 ± 0 18 ± 7 10± 4 1173 ± 146 25 ± 9 9 ± 2 51± 22 165 ± 23

T. gondii 103 432 ± 227* 408 ± 136 552 ± 236#* 3468 ± 688#* 5769 ± 1799#* 1016 ± 466 2569± 978 124 ± 17

SWCNT/ T. gondii 103 165 ± 56 497 ± 84 502 ± 108 3752 ± 292#* 9090 ± 1807#* 720 ± 199 3558± 745 187 ± 22

T. gondii 104 229 ± 40 1058± 208#* 612 ± 130#* 2587 ± 409# 8977 ± 966#* 859 ± 246 8214± 2180#* 286 ± 58#$

SWCNT/ T. gondii 104 288 ± 51 1186± 387#* 798 ± 138#* 2696 ± 565# 7245 ± 1023#* 1048 ± 296* 11406± 2167#*$f 358 ± 52 #*$f

Results are presented as mean ± SEM. Statistical significance was determined with one-way ANOVA and Bonferroni’s Multiple Comparison test. # = p< 0.05
indicates significant differences from PBS, * = p< 0.05 indicates significant differences from SWCNT, $ = p< 0.05 indicates significant differences from T. gondii 103,
and f=p< 0.05 indicates significant differences from SWCNT + T. gondii 103. BAL fluid samples were obtained at 7 days post-exposure.

Swedin et al. Particle and Fibre Toxicology 2012, 9:16 Page 5 of 15
http://www.particleandfibretoxicology.com/content/9/1/16



showed no evidence of granulomas as seen in the
SWCNT group, but rather had multiple foci of necrotiz-
ing pyogranulomatous pneumonia (Figure 3B). Inflam-
mation extended into the alveolar interstitium and
multifocally involved the pleural surface with variable
degrees of pleuritis (Figure 3B and 4B-D). Animals given
higher doses of T. gondii organisms were more severely
affected (Figure 4B-D). In animals administered both
SWCNT and T. gondii there was a mixture of those
lesions seen in the SWCNT-treated and T. gondii-
infected animals with foci of particle-associated granu-
lomas and foci of necrotizing pneumonia (Figure 3C and
D and Figure 4). For animals co-infected with the lower
dose of T. gondii, animals had scores between 0 and 22

(mean = 12.3). At a higher dose of T. gondii, animals had
between 0 and 30 (mean = 12) foci of particle-laden
macrophages in their lungs (Figure 4A). Both SWCNT+
T. gondii groups approached significance and a higher
number of animals would likely have confirmed statisti-
cally the obvious decrease in pigmented foci. In some
areas, these lesions were distinct from one another while
in others they overlapped. The animals also displayed
pleuritis due to the T. gondii infection (Figure 4D). In
general, the number of necroinflammatory foci was
dependent on the infectious dose of T. gondii and did
not depend on the administration of SWCNT. While
animals administered T. gondii and SWCNT had
fewer particle-associated granulomas overall, this could

Figure 4 Histological findings in lung tissue of exposed animals. A. The number of foci of particle-laden macrophages forming granulomas
in the lungs. Animals infected with T. gondii alone were not included as no foci of particle-laden macrophages were observed. B. The number of
foci of necrosis and inflammation unassociated with pigment and consistent with T. gondii infection. C. Difference in interstitial inflammation
scores for the various groups. D. Pleuritis scores for each group. Data are represented as mean± SEM. Statistical significance was determined with
Kruskal-Wallis one-way ANOVA and Dunn’s post-test. * = p< 0.05, indicate significant differences from PBS controls and f=p< 0.05, indicate
significant differences from SWCNT.
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partially be explained by larger sized lesions with fewer
distinct granulomas as shown by the percent alveolar
loss being markedly higher in the jointly treated groups
than those administered SWCNT alone (data not
shown).
When examining MPO positive neutrophils, it was

clear that differences occurred between mice that
were exposed to SWCNT and mice infected with T.
gondii (Figure 5A-D). Whereas there was an extensive

accumulation of neutrophils in the granulomas from
mice infected with T. gondii, only a few neutrophils
were detected in the granulomas from mice exposed
only to SWCNTs. Lung sections from mice infected with
T. gondii clearly showed that MPO positive neutrophils
were concentrated to the more extensive granulomas, most
likely as a result from T. gondii infection. When examining
co-localization of MPO positive neutrophils and T. gondii,
it was revealed that MPO positive neutrophils could be

A B

C D

DAPI+ MPO DAPI+ MPO

75 µm

E

75 µm

F

DAPI + T. gondii + MPO

75 µm

G
DAPI + T. gondii + MPO

75 µm

H

Figure 5 Co-localisation of MPO positive neutrophils and T. gondii in lung tissue. A-D. Histological staining of MPO positive neutrophils in
lung tissue from C57BL/6 mice after exposure of SWCNT and/or T. gondii inoculation. Representative pictures of (A) PBS control, 40x magnification
(B) SWCNT, 40x magnification (C) T. gondii 104, 20x magnification (D) SWCNT+ T. gondii 104 20x magnification. E-H. Representative
photomicrographs of fluorescence stained cells within pulmonary tissue of (E) PBS control, (F) SWCNT, (G) T. gondii 104, (H) SWCNT+ T. gondii 104.
Sections were mounted in medium for fluorescence including DAPI (blue). MPO positive neutrophils stained in red and T. gondii parasites stained
in green in lung tissue.
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detected in neither the PBS control group nor the SWCNT
exposure group (Figure 5E-H). Even though there were
many more MPO positive neutrophils in the presence of
T. gondii, there were no obvious differences between
SWCNT pre-treated mice infected with T. gondii. The
staining of MPO positive neutrophils was more intense
with the higher parasite dose and the MPO staining was
quite intense in the vicinity of high parasite burdens
(Figure 5E-H). Parasites were present in both T. gondii
groups (presence/absence of SWCNT), with no difference

between the two T. gondii concentrations (Figure 5G-H).
The presence of large intracellular vacuoles following lung
section staining with anti-toxoplasma Ab is indicative of
parasite replication (data not shown).
To study co-localization of dendritic cells and/or macro-

phages with SWCNT or T. gondii, double immunofluores-
cence staining of lung sections was performed. The
SWCNT in lungs were visualized by light microscopy. The
SWCNT co-localized with CD11c positive dendritic cells
(DCs) in lungs of both SWCNT and SWCNT±T. gondii

Figure 6 Co-localization of dendritic cells and/or macrophages with SWCNT or T. gondii in spleen and lung. Representative pictures of A.
visualization of nanoparticles and CD11c or F4/80 positive cells in lungs of both SWCNT and SWCNT+ T. gondii 104 treated mice. 40x
magnification B. Double staining with anti-toxoplasma Ab and anti-CD11c or anti-F4/80 mAb in lungs of both SWCNT and SWCNT+ T. gondii 104

treated mice. C. MAdCAM-1 and B-cell staining (B220) in frozen spleen sections. D. Triple staining with anti-toxoplasma, anti-B220 and anti-CD11c
or anti-F4/80 in frozen spleen sections.
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treated mice, indicating that CD11c positive DCs can en-
gulf the SWCNT (Figure 6A); however, the particles did
not co-localize with F4/80 positive cells (macrophages).
The F4/80 positive macrophages accumulated around the
SWCNT and participated in the formation of granuloma.
Double staining with anti-toxoplasma Ab and anti-CD11c
or anti-F4/80 mAb showed that the CD11c and F4/80 posi-
tive cells did not co-localize with T. gondii in lungs from
mice irrespective of SWCNT pre-treatment (Figure 6B).
To further study lung pathology, PAS staining was per-

formed to assess mucin-containing goblet cells. There
was a slight increase in the number of goblet cells in
mice challenged with SWCNTs based on representative
lung sections whereas hardly any goblet cells were
detected in control mice or mice infected with T. gondii
(data not shown).

Pre-exposure to SWCNT did not affect the splenocyte
response to T. gondii localized in both the follicle and red
pulp of spleen
To investigate systemic effects of SWCNT on T. gondii
infection, spleen tissue were examined. MAdCAM-1
staining was used to show the marginal sinus structure
of spleen, which separates the follicle (inside) and red-
pulp (outside). Double immunofluorescence staining
showed that toxoplasma infection impaired the struc-
ture of the spleen. The marginal sinus and follicles in T.
gondii infected mice showed a defective structure com-
pared with mice receiving PBS or SWCNT (Figure 6C).
Triple staining with anti-toxoplasma, anti-B220 (B cell
marker) and anti-CD11c or anti-F4/80 showed that T.
gondii localized in both the follicle and red pulp of
spleen; no co-localization (double staining) was seen
with anti-toxoplasma and anti-CD11c or anti-F4/80

mAb (Figure 6D). Furthermore, there was no co-
localization between the MARCO (scavenger receptor)
positive macrophage population and T. gondii or
SWCNT (data not shown).
Splenocytes from PBS control mice and mice exposed

to only SWCNT showed an increased proliferation to
ConA, but did not respond to the T. gondii antigen as
expected (Figure 7). However, spleen cells from mice
exposed to T. gondii with or without pre-exposure to
SWCNT demonstrated a decrease in cell proliferation
after ConA and T. gondii antigen stimulation (Figure 7).
The quality of the T. gondii antigen was confirmed with
the release of IFN-γ into the cell culture medium of sin-
gle cell suspensions from spleens of T. gondii infected
mice (See Additional file 1; [19]).

Discussion
It has been previously reported that pulmonary exposure
to SWCNT induced robust inflammation, early granu-
lomatous lesions and interstitial fibrosis in the lungs of
mice [2,3]. The histological data obtained from the
current study exposing mice to respirable SWCNT are
very consistent with the previously reported (Figure 4).
Notably, the architecture of mouse lungs after exposures
to SWCNT and SWCNT+T. gondii groups demon-
strated an increase in pigmented foci after exposure to
SWCNT and SWCNT+T. gondii. No granulomatous
lesions were observed in lungs of mice treated with T.
gondii. There were also no differences in severity of
granulomatous lesions seen in SWCNT and SWCNT+
T. gondii exposure groups. Several recent reports indi-
cated that SWCNT exposure was able to modify out-
comes to infectious agents. In particular, it was
demonstrated that sequential exposure to SWCNT and

Figure 7 Impaired immune response after T. gondii exposure. Single cell suspensions from spleens from mice exposed to SWCNT and/or T.
gondii in two doses (103 or 104 parasites) were cultured for 66 h with or without ConA (1 μg/ml) or T. gondii antigen (1 or 10 μg/ml). 3[H]-
Thymidine was added during the last 18 h and incorporation was determined by scintillation counting. Results are expressed as mean counts per
minute (cpm) from six mice/group± SD. Level of significance *** p < 0.001 determined with two-way ANOVA, and Bonferroni’s Multiple
Comparison test.
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L. monocytogenes (LM) amplified lung inflammation and
collagen deposition in mouse lungs [2]. The pulmonary
clearance of LM from the lungs of SWCNT pre-exposed
animals was markedly delayed. The reduced ability of
macrophages to phagocytose LM in the presence
of SWCNT was found to be related to a reduction of
macrophage production of nitric oxide in response to
LM [2]. However, it has to be emphasized that in the
LM+SWCNT study, both agents were concomitantly
administered to mice via aspiration route. While T. gon-
dii can elicit pathology in the pulmonary tissues [9-11],
inhalation is not the natural route of access. During
natural infections or reactivated acute infection, the para-
site reaches the lung tissue through the systemic circula-
tion. In contrast with the administration route from the
LM study, we infected our mice intravenously with T.
gondii, providing widespread haematogenic dissemin-
ation of parasites and enhanced parasite infection in the
lungs compared to other administration routes [17]. Even
with enhanced parasite migration, the lungs allowed for a
better assessment of parasite replication as opposed to
other organs such as the spleen, where replication is usu-
ally much more extensive. Thus, despite haematogenous
access of parasites to lung tissue, the parasitic loads in
SWCNT-exposed mice were not significantly higher
compared to untreated mice. To this end, our current
data have revealed that the progression of an initially
generalized T. gondii infection was not significantly
modified by an acute pulmonary response to respirable
SWCNT administrated prior to the infection. Reciprocal
approaches have shown that immune responses to T.
gondii can mediate protective effects on concomitant in-
flammatory conditions in the lungs [20-22] and are indi-
cative of the complexity of the immune response. In
contrast, the experimental protocol applied here assessed
whether the host response following pharyngeal aspir-
ation of SWCNT affects T. gondii infection. In our study,
pre-exposure to SWCNT did not enhance or suppress
the early immune response to T. gondii in mice. Rather,
the absence of accentuated pathology in the lungs indi-
cates that the deposition of SWCNT in the lung tissue
may have a different impact on immune responses de-
pending on the route of access for the pathogens, with a
relatively minor impact on haematogenously spread in-
fection compared to airway exposure.
The selected dose range for exposure to respirable

SWCNT (160 μg/mouse) in the current study was based
on previously found immune suppression reported in
mice [20]. The calculated exposure levels in this study
are relevant to those found in actual workplace condi-
tions and, are in fact lower than those levels that could
be achieved during life-time work exposures [23]. The
cumulative SWCNT doses we used were given to mice
on day 1 and 2 and T. gondii was administered on day 3.

However, further investigations are warranted to deter-
mine whether prolonged pre-exposure to SWCNT
would have a more discernible impact on the establish-
ment and development of T. gondii infection in vivo.
Several lines of evidence suggest that migrating DC

play a critical role during T. gondii infection as systemic
carriers of T. gondii tachyzoites [14,16,24,25]. In
addition, DCs function as both antigen-presenting cells
as well as the main source of IL-12 and TNF-α in re-
sponse to T. gondii antigens [26]. IL-12 induces early
IFN-γ production in NK cells and facilitates subsequent
Th1 development, whereas TNF-α is involved in mediat-
ing resistance to acute and chronic T. gondii infections
[27-30]. Infection with T. gondii did not give any imme-
diate sign of unhealthyness but there was a significant
weight loss by day 10 in the T. gondii infected mice
without any differences related to whether mice had been
pre-exposed to SWCNT or not (See Additional file 2).
Our measurements of inflammatory mediators in BAL
fluid showed that there were some increases in several
mediators measured after T. gondii infection, albeit not
statistically significant when compared to PBS controls
and mice exposed to SWCNT only. Furthermore, there
was no clear difference following co-exposure to SWCNT
and T. gondii. Exposure to SWCNT alone induced no
changes in the levels of mediators in BAL fluid. Hence,
while it has been clearly established that infection with T.
gondii results in interplay between the parasite and the
host [31], resulting in a complex cascade of pro- and anti-
inflammatory responses [32], we could not reveal any
effects of SWCNT exposure on the parasite-induced
responses.
Notably, we have recently found that SWCNT-induced

inflammation facilitated the recruitment of DCs to the
lung and redistribution of DCs to lymphoid tissues [23].
In the present study, nanoparticles co-localized with
CD11c positive DCs in lungs of both SWCNT and
SWCNT±T. gondii treated mice, however, they did not
co-localize with F4/80 positive cells (macrophages), indi-
cating that CD11c positive DC interact with the parti-
cles. We have previously shown uptake of SWCNT by
DCs in vitro using murine DCs generated from
hematopoietic progenitors isolated from bone marrow
[23]. Our finding here on the in vivo uptake of SWCNT
in the lung by CD11c positive DCs but not by F40/80
positive macrophages is to our knowledge novel data.
Moreover, previous findings [28,33] indicate that
infected DCs are compromised in their ability to activate
T cells, suggesting that the arrival of infected DCs in
lymphoid tissues will not result in efficient priming of a
T cell response. In our recent study, direct effects of
SWCNT on DCs resulted in suppressed spleen T cell
responses upon pulmonary exposure [23]. Pulmonary
exposure to multi-walled carbon nanotubes (MWCNT)
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was also reported to suppress spleen cells responses to
mitogen stimulation (17, 18). In the current study, we
observed even greater suppression of splenocyte prolif-
eration in all groups infected with T. gondii, which has
been described previously [19]. In addition, it was found
that T. gondii was not taken up by the macrophage (F4/80
or MARCO positive) or DCs (CD11c positive) populations
in the spleen. Unfortunately, the data for SWCNT was not
conclusive since the spleen is filtering red blood cells result-
ing in iron deposits thus making it impossible to specifically
detect the nanoparticles using light microscope. It remains
to be investigated which population of cells respond to T.
gondii infection and produce IFNγ in the spleen. However,
there was no evidence of any modulatory effect on T. gondii
proliferation or dissemination in the host in the presence of
SWCNT in the current model.
As expected, the lungs of mice exposed to only

SWCNT contained variable numbers of foci of particle-
laden macrophages forming distinct granulomas. The
two groups of mice infected with T. gondii alone showed
no evidence of granulomas; instead, multiple foci of nec-
rotizing pyogranulomatous pneumonia were found in
the lung, and mice receiving higher doses of T. gondii
organisms were more severely affected. The co-exposure
to T. gondii and SWCNT appeared to yield a mixture of
histological changes in the lung with foci of particle-
associated granulomas as well as foci of necrotizing
pneumonia. In general, however, the number of necroin-
flammatory foci was dependent on the infectious dose of
T. gondii and did not depend on the administration of
SWCNT. In addition, the increased numbers of neutro-
phils were a result of inoculation of T. gondii rather than
SWCNT exposure, whereas CD11c positive DC co-
localized with SWCNT exposure possibly due to engulf-
ment of the particles.

Conclusions
In synopsis, the current analysis of infection parasite dis-
tribution and parasite burden using non-invasive BLI as
well as plaquing assays shows that administration of
SWCNT via pharyngeal aspiration prior to infection with
T. gondii has no discernable effect on the establishment,
dissemination, and proliferation of infection. This, how-
ever, does not preclude the possibility that exposure to
SWCNT may affect the establishment of the chronic
phase of infection. Further studies are warranted to ad-
dress this question. In conclusion, our data suggest that
exposure to SCWNT does not affect the early immune
response against T. gondii.

Materials and methods
Animals and parasites
Female C57BL/6 mice (6–8 weeks of age) were pur-
chased from Charles River (Sulzfeld, Germany) and

maintained under pathogen-free conditions at the
Swedish Institute for Communicable Disease Control
animal facility (The animals were housed in ventilated
filtered plastic cages with absorbent bedding material
and were maintained on a 12 h daylight cycle). Food and
water were provided ad libitum. All animal experiments
were approved by the regional committee of animal ex-
perimentation ethics (Dnr: N15/11; Stockholm North
ethical committee for animal welfare, Stockholm,
Sweden).
Tachyzoites from the green fluorescence protein (GFP)

and luciferase-expressing T. gondii type II line PTGluc
(cloned from ME49/PTG-GFPS65T) [17] were main-
tained by serial 2-days passage in human foreskin fibro-
blast (HFF) monolayers. HFFs were propagated in
Dulbecco's modified Eagle's medium (DMEM; Invitro-
gen, Carlsbad, CA, USA) with 10% fetal bovine serum
(FBS), gentamicin (20 μg/ml, Gibco), glutamine (2 mM,
Gibco) and Hepes (0.01 M, Gibco).

Single walled carbon nanotubes
SWCNT (CNI, Houston, TX) produced by the high-
pressure CO disproportionation (HiPco) process,
employing CO in a continuous-flow gas phase as the car-
bon feedstock and Fe(CO)5 as the iron-containing catalyst
precursor and purified by acid treatment to remove metal
contaminants were used in the study. Morphology of the
SWCNT is presented in Figure 8 and the detailed
characterization of the utilized SWCNT is provided else-
where [23]. Stock suspensions (1 mg/ml) were prepared
before each experiment in PBS or culture medium and pH
was adjusted to 7.0. Endotoxin content in SWCNT sam-
ples was assessed using the Limulus amebocyte lysate
(LAL) enzyme assay (DataChem Inc, Salt Lake City, UT).
The endotoxin content of SWCNT suspensions was lower
than 0.11 EU/ml. The amount of endotoxin received by
mice was 0.006 EU, a dose equivalent to 0.6 pg endotoxin.
A similar level of endotoxin was found in the vehicle
(pharmaceutical grade). To obtain a more homogenous
and dispersed suspension, SWCNT were ultrasonicated
(30 sec × 3 cycles). Scanning electron microscopy of the
samples showed that sonication resulted in the production
of well-dispersed SWCNT (Figure 8B).

Experimental design
The study was divided into two separate experiments
starting on two consecutive days. Mouse pharyngeal ad-
ministration was used for instillation of the SWCNT
particles. Briefly, after anesthetization with a mixture of
ketamine and xylazine (62.5 and 2.5 mg/kg, respectively),
the mouse was placed on a board in a near vertical pos-
ition and the tongue was extended with forceps. A sus-
pension of 40 μl particles in PBS was placed in the
throat, and the tongue held until the suspension was
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aspirated into the lungs. A total dose of 160 μg/
mouse (80 + 80 μg) or PBS was aspirated on day 1
and 2. At day 3, the mice were infected intravenously
in the tail with either 1 × 103 or 1 × 104 freshly
egressed tachyzoites resuspended in 200 μl PBS
(PTG-GFPluc). Control mice were injected intraven-
ously in the tail with 200 μl PBS only. The six
experimental groups (n = 6-8 per group) were: PBS-
animals pre-treated and injected with PBS; SWCNT-
animals pre-treated with 160 μg SWCNT and injected
with PBS; T. gondii 103-infected animals pre-treated
with PBS; SWCNT+T. gondii 103-infected animals
pre-treated with 160 μg SWCNT; T. gondii 104-
infected animals pre-treated with PBS; and SWCNT+
T. gondii 104-infected animals pre-treated with
160 μg SWCNT. On day 10, the weight of the ani-
mals was assessed. Thereafter, the animals were sacri-
ficed immediately whilst under anaesthesia via
cervical dislocation, bronchoalveolar lavage (BAL) was
performed, followed by dissection of the spleen and
lungs.

In vivo bioluminescence imaging (BLI)
BLI was performed 2, 4, 6 and 7 days after T. gondii injec-
tion, as described previously [17]. Briefly, mice were
injected i.p. with 3 mg D-luciferin potassium salt (Caliper
Life Sciences, Hopkinton, MA, USA) and anaesthetized
with 2.3% isoflurane prior to BLI. Ten min after injection
of D-luciferin, biophotonic images were acquired at a bin-
ning of 8 (medium) for 300 s with an In Vivo Imaging Sys-
tem Spectrum (IVIS Spectrum Caliper Life Sciences,
Hopkinton, MA, USA). Analysis of images and assessment
of photons emitted from a region of interest (ROI) was
performed with Living Image software (version 3.2; Caliper
Life Sciences, Hopkinton, MA, USA).

Bronchoalveolar lavage (BAL)
BAL was performed after IVIS measurements on day 10.
A total volume of 1 ml PBS was used to lavage the lungs
via trachea, by using a prefilled 1 ml syringe which was
inflated and aspirated three times with the same fluid.
When required, red blood cells were removed by resus-
pending the BAL fluid cells in 100 μl lysis buffer
(150 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA, pH
7.2) for 2 min at RT followed by washing in 1 ml PBS.
The total number of cells was then counted and adjusted
to cells�ml-1 BAL fluid. For differential cell counts, cells
were stained with May Grünwald-Giemsa and a mini-
mum of 300 cells were counted per BAL fluid sample.

Protein concentration
The total protein concentration in BAL fluid was mea-
sured with the BioRad DC protein assay (BioRad Life
Science Research, Hercules, CA, USA) according to
manufacturer’s instruction. Triplicate of samples were
read at 650 nm using a Spectrophotometer (Multiskan
Ascent, Thermo Scientific, Waltham, MA, USA). Results
are presented as % of control treated mice ± SD.

Lactate dehydrogenase (LDH)
To determine the release of LDH in BAL fluid, the Cyto-
Tox 96W Non-Radioactive Cytotoxicity Assay (Promega
Corporation, Madison, WI, USA) was used. Triplicates
of BAL fluid aliquots (50 μl, 2 times diluted in PBS) was
transferred to a 96-well flat bottom plate. Assay buffer
and substrate was mixed according to manufacturer’s in-
struction to constitute Substrate mix. 50 μl of Substrate
mix was added to all wells and the plate was incubated
in dark in a humidified atmosphere at 37°C. After
30 min incubation, 50 μl of stop solution was added to
all wells and the absorbance was recorded at 492 nm
using a Spectrophotometer (Multiskan Ascent, Thermo

Figure 8 Particle characterization. A. Transmission electron microscopy (TEM) image of individual SWCNT confirmed a length of approximately
1–3 μm; B. Scanning electron microscopy (SEM) of the samples showed that sonication resulted in the production of well-dispersed SWCNT.
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Scientific, Waltham, MA, USA). Results are presented as
% of control treated mice ± SD.

Plaquing assays
Directly after BAL was done on day 10, the lungs and
spleens were extracted. Organ homogenization (half of the
spleen and one lobe on the right side of the lung) was per-
formed under conditions that did not affect parasite viabil-
ity [34]. The number of viable parasites was determined by
plaque formation on human foreskin fibroblast monolayers
as described [34].

Measurement of released mediators in BAL fluid
The levels of selected cytokines/chemokines and growth
factors were measured in duplicates in BAL fluid using a
mouse plex-assay (BioRad, Hercules, CA, USA) and
assayed by LuminexW (BioRad, Hercules, CA, USA). La-
belled antibodies against IL-1 β, IL-6, IL-10, IL-12p40,
MCP-1, IFN-γ TNF-α and TGF-β1-3 were used for ana-
lyses of multiple cytokine responses according to provided
instructions. Results below the detection limits were set as
the absolute threshold for statistical evaluation.

Lung histology
Left lung was inflated with 4% formalin (Sigma-Aldrich, St.
Louis, MO, USA) at a pressure of 20 cmH2O and fixed for
24 h. Five μm-thick lung sections were cut and assessed
with hematoxylin and eosin to evaluate the extent of cellu-
lar infiltration in the lung tissue. Slides (one section per
lung, several fields of view for each slide to secure the con-
clusions) were examined under non-coded conditions and
were assessed for histopathologic changes. Bronchiolar epi-
thelial hyperplasia was scored on a scale from 0–5, where
0=no change and 5= severe change. The number of foci of
particle-laden macrophages were counted in the samples.
For animals infected with T. gondii, the number of necroin-
flammatory foci were counted, the degree of bronchiolar
hyperplasia, pleuritis, and the amount of interstitial inflam-
mation were scored on a scale of 0–5 as above. For animals
infected with T. gondii and administered SWCNT, a com-
bination of findings were recorded including counts of the
number of foci of particle-laden macrophages, necroinflam-
matory foci and scores for bronchiolar hyperplasia, pleuri-
tis, and interstitial inflammation. In addition, slides were
stained with periodic acid-Shiffs staining (Sigma-Aldrich,
St. Louis, MO, USA) to assess mucin-containing goblet
cells.

Immunohistochemical stainings of lung and spleen
Immunohistochemical staining for detection of T. gondii
and neutrophils (myeloperoxidase, MPO) on the formalin
fixed lung sections was performed. Initially, lung sections
were hydrated with tap water, followed by antigen re-
trieval, pretreatment of 3% hydrogen peroxide and 2.5%

normal horse serum (Vector Labs, Burlingame, CA, USA)
to block nonspecific reactivity. Sections were incubated
with rabbit-anti-mouse MPO (ab9535, AbCam, Cam-
bridge, UK; 1:100, 4°C overnight) and with a peroxidase
conjugated anti-rabbit as secondary antibody (ImmPRESS,
MP-7401, Vector labs, Burlingame, CA, USA; 30 min,
RT). After washing, color was developed by adding AEC
(3-amino-9-ethylcarbazole) chromogen for 10 min (SK-
4200, Vector Labs, Burlingame, CA, USA). Finally, slides
were counterstained with hematoxylin and mounted using
faramount (DAKO, Glostrup, Denmark). Negative control
sections were treated in the same way but primary
antibodies were omitted. Sections were also double-
stained with rabbit-anti-mouse MPO (ab9535, AbCam,
Cambridge, UK; 1:100, 4°C ON) primary antibody and pri-
mary human-polyclonal anti-T. gondii antibodies (1:500,
WHO’s standard, Statens Serum Institute, Copenhagen,
Denmark) followed by a secondary anti-rabbit Alexa 594
(1:400, Molecular Probes, Eugene, OR, USA) and Alexa
Fluor 488 goat anti-human IgG (1:400, Molecular Probes,
Eugene, OR, USA), respectively, to detect co-localization
of MPO positive neutrophils and parasites. Sections were
mounted in medium for fluorescence including DAPI
(Vector labs, Burlingame, CA, USA). Stained sections
were examined using light microscope and images were
capture at 20x or higher magnifications.
In addition, 8 μm thin cryosections of snap frozen

spleen or lung specimens were fixed in acetone. After
blocking with goat serum (DAKO, Glostrup, Danmark)
and avidin/biotin blocking kit (Vector labs, Burlingame,
CA, USA), sections were incubated with primary Ab, fol-
lowed by several washes in PBS and incubation with
fluorescently-labelled secondary Abs or Alexa-555-
conjugated streptavidin (Molecular Probes, Eugene, OR,
USA). The following Abs were used: anti-mouse F4/80
(CI:A3-1, rat IgG2b, AbD Serotec, Oxford, UK); biotin
conjugated anti-mouse.
CD11c (HL3, hamster IgG1, BD biosciences, San

Jose, CA, USA), visualized by Alexa-555-streptavidin
(Invitrogen, California, USA); anti-toxoplasma (WHO’s
standard, Statens Serum Institute), anti-mouse MARCO
(ED31, rat IgG1, AbD Serotec, Oxford, UK), Alexa-488-
conjugated goat anti-human IgG (Molecular Probes,
Eugene, OR, USA) Alexa-555-conjugated goat anti-rat
IgG (Molecular Probes, Eugene, OR, USA). Stainings with
isotype controls were performed to confirm the specificity
of the immunostainings. Images were acquired using a
confocal laser scanning microscope (TCS SP2; Leica
Microsystems, Mannheim, Germany) or Leica application
suite (Leica Microsystems).

Splenocyte culture and proliferation
Spleen samples (one third of the spleen) were collected in
complete medium consisting of RPMI 1640 medium
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(Sigma Aldrich, St. Louise, MO) supplemented with
2 mmol/L L-glutamine, 100 IU/ml penicillin, 100 μg/
ml streptomycin (Gibco Invitrogen Corporation, Cali-
fornia USA), 50 μM β-mercaptoethanol (KEBO-lab,
Spånga, Sweden), and 10% heat inactivated fetal calf
serum (HyClone SH30071.03, Thermo Scientific, Wal-
tham, MA, USA) and kept on ice until processing.
The spleens were processed individually by gentle
mashing with a plunger of a 5 ml syringe in 2 ml
complete medium on a 70 μm cell strainer on a Petri
dish. After washing the plunger and the cell strainer
with 3 ml additional medium, the cell suspension was
transferred to a Falcon tube and centrifuged for
10 min at 300 g at room temperature. The super-
natant was discarded and the cell pellet was resus-
pended in 1 ml ACK lysis buffer for 1 min (0,15 M
NH4Cl, 10 mM KHCO3, 0,1 mM Na2EDTA, pH
adjusted to 7.4). Following red blood cell lysis, the
remaining cells were washed once with complete
medium at 300 g for 10 min and kept on ice until
further processing. The cells were counted with try-
pan blue exclusion and the cell viability was
87.4 ± 3.7%. (n = 36). 200 μl of cell suspension
(2 × 105 viable cells)/well was placed in a round bot-
tom 96 well plate in triplicates with or without stim-
uli; Concanavalin A (ConA) 1 μg/ml or T. gondii
antigen 1 or 10 μg/ml made in house [35]. After
48 h or 72 h, 1 μCi 3[H]-thymidine (Amersham,
Buckinghamshire, UK) was added to each well for
additional 18 h where after the thymidine incorpor-
ation was determined by scintillation counting.
Results are expressed as mean counts per minute
(cpm) ± SD.

IFN-γ ELISA
IFN-γ levels were determined in cell culture superna-
tants from the splenocyte proliferation study using a
mouse IFN-γ ELISA kit from MabTech (Nacka Strand,
Sweden) according to manufacturer’s instructions.
Results are presented as mean pg/mL± SD of triplicates.

Statistical analysis
Differences among the treatment groups were
assessed by oneway or two-way analysis of variance
(ANOVA). Significant ANOVAs were further analysed
using Bonferroni, Tukeys pairwise comparison, Dunn’s
post hoc test or Kruskal-Wallis test using Gaussian
approximation. A p-value of less than 0.05 was con-
sidered significant. Statistical analysis and graphs
were performed in Graph Pad Prism (version 5.0
GraphPad software Inc., San Diego, CA, USA) and
Minitab version 15 (Minitab Inc, PA, USA).

Additional files

Additional file 1: Increased IFN-γ production in T. gondii infected
mice. Single cell suspensions of spleens from mice exposed to PBS or T.
gondii in two doses (103 or 104 parasites) were cultured for 48 h with or
without ConA (1 μg/ml) or T. gondii antigen (1 or 10 μg/ml). Thereafter
the culture supernatants were subjected to IFN-γ ELISA. Results are
presented as mean IFN-γ pg/mL ± SD from triplicates of six-eight mice
divided on two experiments. Level of significance * p < 0.05, ** p < 0.01
and *** p < 0.001 determined with two-way ANOVA, and Bonferroni’s
Multiple Comparison test.

Additional file 2: Weight loss in mice after T. gondii infection. The
weight of mice was measured on day 10. Data are presented as
mean± SEM. Statistical significance was determined with one-way
ANOVA and Bonferroni’s Multiple Comparison test. * = p < 0.05 compared
to PBS controls, f=p< 0.05 compared to SWCNT.
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