102 research outputs found

    Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States

    Get PDF
    Several lineages of influenza A viruses (IAV) currently circulate in North American pigs. Genetic diversity is further increased by transmission of IAV between swine and humans and subsequent evolution. Here, we characterized the genetic and antigenic evolution of contemporary swine H1N1 and H1N2 viruses representing clusters H1-α (1A.1), H1-β (1A.2), H1pdm (1A.3.3.2), H1-γ (1A.3.3.3), H1-δ1 (1B.2.2), and H1-δ2 (1B.2.1) currently circulating in pigs in the United States. The δ1-viruses diversified into two new genetic clades, H1-δ1a (1B.2.2.1) and H1-δ1b (1B.2.2.2), which were also antigenically distinct from the earlier H1-δ1-viruses. Further characterization revealed that a few key amino acid changes were associated with antigenic divergence in these groups. The continued genetic and antigenic evolution of contemporary H1 viruses might lead to loss of vaccine cross-protection that could lead to significant economic impact to the swine industry, and represents a challenge to public health initiatives that attempt to minimize swine-to-human IAV transmission

    South American H4N2 influenza A virus improved replication in chicken trachea after low number of passages

    Get PDF
    Introduction of influenza A viruses (FLUAV) into poultry from waterfowl is frequent, producing economic burden and increasing the probability of human infections. We have previously described the presence of FLUAV in wild birds in Argentina with unique evolutionary trajectories belonging to a South American lineage different from the North American and Eurasian lineages. Adaptability of this South American lineage FLUAV to poultry species is still poorly understood. In the present report, we evaluated the capacity of an H4N2 FLUAV from the South American lineage to adapt to chickens after low number of passages. We found that five mutations were acquired after five passages in 3-days-old chickens. These mutations produced a virus with better infectivity in ex vivo trachea explants but overall lower infection in lung explants. Infection of 3-week-old chickens persisted for a longer period and was detected in more tissues than the parental virus, suggesting adaptation of the H4N2 influenza A virus to chicken.Instituto de VirologĂ­aFil: Ferreri, Lucas. University of Georgia. College of Veterinary Medicine. Poultry Diagnostic and Research Center; Estados UnidosFil: Ferreri, Lucas. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). Instituto de VirologĂ­a; ArgentinaFil: Carnaccini, Silvia. University of Georgia. College of Veterinary Medicine. Poultry Diagnostic and Research Center; Estados UnidosFil: Olivera, Valeria Soledad. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). Instituto de VirologĂ­a; ArgentinaFil: Pereda, Ariel Julian. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). Programa Nacional Salud Animal; ArgentinaFil: Rajao, Daniela. University of Georgia. College of Veterinary Medicine. Poultry Diagnostic and Research Center; Estados UnidosFil: Perez, Daniel R. University of Georgia. College of Veterinary Medicine. Poultry Diagnostic and Research Center; Estados Unido

    Adaptation of Human Influenza Viruses to Swine

    Get PDF
    A large diversity of influenza A viruses (IAV) within the H1N1/N2 and H3N2 subtypes circulates in pigs globally, with different lineages predominating in specific regions of the globe. A common characteristic of the ecology of IAV in swine in different regions is the periodic spillover of human seasonal viruses. Such human viruses resulted in sustained transmission in swine in several countries, leading to the establishment of novel IAV lineages in the swine host and contributing to the genetic and antigenic diversity of influenza observed in pigs. In this review we discuss the frequent occurrence of reverse-zoonosis of IAV from humans to pigs that have contributed to the global viral diversity in swine in a continuous manner, describe host-range factors that may be related to the adaptation of these human-origin viruses to pigs, and how these events could affect the swine industry

    Benznidazole biotransformation and multiple targets in <i>Trypanosoma</i> cruzi revealed by metabolomics

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methodology/Principal findings&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, Îł-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions/significance&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi

    A social-ecological approach to identify and quantify biodiversity tipping points in South America’s seasonal dry ecosystems

    Get PDF
    ropical dry forests and savannas harbour unique biodiversity and provide critical ES, yet they are under severe pressure globally. We need to improve our understanding of how and when this pressure provokes tipping points in biodiversity and the associated social-ecological systems. We propose an approach to investigate how drivers leading to natural vegetation decline trigger biodiversity tipping and illustrate it using the example of the Dry Diagonal in South America, an understudied deforestation frontier. The Dry Diagonal represents the largest continuous area of dry forests and savannas in South America, extending over three million km² across Argentina, Bolivia, Brazil, and Paraguay. Natural vegetation in the Dry Diagonal has been undergoing large-scale transformations for the past 30 years due to massive agricultural expansion and intensification. Many signs indicate that natural vegetation decline has reached critical levels. Major research gaps prevail, however, in our understanding of how these transformations affect the unique and rich biodiversity of the Dry Diagonal, and how this affects the ecological integrity and the provisioning of ES that are critical both for local livelihoods and commercial agriculture.Fil: Thonicke, Kirsten. Institute for Climate Impact Research ; AlemaniaFil: Langerwisch, Fanny. Institute for Climate Impact Research ; Alemania. Czech University of Life Sciences Prague; República ChecaFil: Baumann, Matthias. Humboldt Universität zu Berlin; Alemania. Technische Universitat Carolo Wilhelmina Zu Braunschweig.; AlemaniaFil: Leitão, Pedro J.. Humboldt Universität zu Berlin; Alemania. Technische Universitat Carolo Wilhelmina Zu Braunschweig.; AlemaniaFil: Václavík, Tomáš. Helmholtz Centre for Environmental Research; Alemania. Palacký University Olomouc; República ChecaFil: Alencar, Anne. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Simões, Margareth. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA); BrasilFil: Scheiter, Simon. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA); Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Langan, Liam. Senckenberg Biodiversity and Climate Research Centre; AlemaniaFil: Bustamante, Mercedes. Universidade do Brasília; BrasilFil: Gasparri, Nestor Ignacio. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Ecología Regional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Hirota, Marina. Universidade Federal de Santa Catarina; Brasil. Universidade Estadual de Campinas; BrasilFil: Börner, Jan. Universitat Bonn; AlemaniaFil: Rajao, Raoni. Universidade Federal de Minas Gerais; BrasilFil: Soares Filho, Britaldo. Universidade Federal de Minas Gerais; BrasilFil: Yanosky, Alberto. Consejo Nacional de Ciencia y Tecnología; ParaguayFil: Ochoa Quinteiro, José Manuel. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; ColombiaFil: Seghezzo, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Conti, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: de la Vega Leiner, Anne Cristina. Universität Greifswald; Alemani
    • …
    corecore