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A large diversity of influenza A viruses (IAV) within the H1N1/N2 and H3N2 subtypes

circulates in pigs globally, with different lineages predominating in specific regions of

the globe. A common characteristic of the ecology of IAV in swine in different regions

is the periodic spillover of human seasonal viruses. Such human viruses resulted in

sustained transmission in swine in several countries, leading to the establishment of novel

IAV lineages in the swine host and contributing to the genetic and antigenic diversity

of influenza observed in pigs. In this review we discuss the frequent occurrence of

reverse-zoonosis of IAV from humans to pigs that have contributed to the global viral

diversity in swine in a continuousmanner, describe host-range factors that may be related

to the adaptation of these human-origin viruses to pigs, and how these events could

affect the swine industry.
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INTRODUCTION

Influenza is one of the most devastating respiratory pathogens of pigs and humans and continues
to threat animal and public health with the continuing possibility of outbreaks or a pandemic.
The intricacies of influenza A viruses (IAV) at the human-swine interface dates back to the 1918
pandemic. For several decades, it was hypothesized that pigs played a role in the origin of the 1918
H1N1 pandemic virus (1). Although there is evidence suggesting that the pandemic virus did not
originate from pigs and that the classical swineH1N1 virus was in fact derived from the 1918 human
virus (2), the bias perceiving swine as the source of IAV to humans still remains.

The ecology of IAV is complex and involves a broad range of avian and mammalian host
species. IAVs are enveloped, segmented RNA viruses in the family Orthomyxoviridae (3). The
virus genome is composed of eight negative-sense, single-stranded viral RNA (vRNA) segments
that encode between 10 and 17 viral proteins depending on the strain (4–6). Each RNA segment
forms the viral ribonucleoprotein complexes (vRNPs) with the nucleoprotein (NP) and the three
polymerase proteins (PB2, PB1, and PA). Two major glycoproteins are projected on the virus
envelope, hemagglutinin (HA), and neuraminidase (NA) (7). Based on the antigenic properties
of the HA and NA, IAV are divided into 18 HA subtypes (H1–H18) and 11 NA subtypes (N1–N11)
(7–9).

Influenza viruses have high mutation rates and are constantly changing, which enables the
virus to quickly adapt to changes in the host environment, as is the case during interspecies
transmission. The rapid evolution results from twomechanisms: reassortment and point mutations
(10). Reassortment occurs when two different strains infect the same cell of a given host, allowing
for exchange of intact gene segments. When reassortment involves either the HA or NA segments,
it is termed antigenic shift. Point mutations occur due to an error prone polymerase devoid of
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a proof-reading and correction mechanism. When point
mutations are fixed in the HA or NA segments, usually a result of
escape from immune pressure, it is termed antigenic drift. Both
of these mechanisms play pivotal roles in the emergence of novel
influenza viruses that could jump the host barrier. Once the virus
jumps into a new host, it must adapt and change to be able to
spread and become established in the new population.

In this review, we describe the role of pigs in the interspecies
transmission of influenza and how their susceptibility to different
viruses can affect the overall epidemiology of swine influenza.We
discuss the factors that have been implicated in the interspecies
transmission of influenza with an emphasis on the human-swine
interface. We then provide an overview of human-to-swine IAV
spillover events that significantly affected the epidemiology of
viruses circulating in swine and how these viruses can have a
negative effect on the control of influenza in pigs.

WHY PIGS BECOME INFECTED WITH
VIRUSES FROM OTHER SPECIES?

To result in a successful replicative cycle, influenza viruses must
efficiently infect the host cell, replicate, and produce functional
virus progeny that will be released and infect new cells. The first
step for infection is the attachment of the HA protein to the
cell receptor. The HA is a type I transmembrane glycoprotein,
present as a homotrimer on the virus’ surface, each monomer
carrying a transmembrane anchor and a small cytoplasmic tail.
The proteolytic cleavage of the precursor HA0 produces two
subunits, HA1 (globular head) and HA2 (stem). The receptor
binding site (RBS) forms a shallow pocket at the distal tip of the
HA1 head and consists of a base of four highly conserved amino
acid residues (Y98, W153, H183, and Y195, numbering based on
the H3 subtype) that are bordered by the 130-loop, the 190-helix
and the 220-loop (11–13).

Through the RBS, influenza viruses bind to terminal sialic
acid (SA, N-acetylneuraminic acid) moieties in glycoprotein
or glycolipid receptors on the host cell surface. The SAs are
usually bound to the penultimate galactose (Gal) in two major
conformations: α2,3SA or α2,6SA (13). Differences in the type
of SA linkage found in receptors expressed in different host
species have a major impact on the host restriction of IAVs.
Sialic acids with α2,3-linkage are predominantly expressed on
epithelial cells in the intestinal and respiratory tracts of birds
while the epithelial cells in the upper respiratory tract of
humans contains predominantly α2,6-linked SA receptors (14–
17) (Figure 1). Most avian influenza viruses preferentially bind to
α2,3-SA, whereas human and other mammalian influenza viruses
preferentially recognize α2,6- SA receptors (21–23).

Pigs have been historically believed to be intermediary hosts,
or “mixing vessels,” of influenza viruses due to their susceptibility
to infection with both human-origin and avian-origin IAV and
their propensity for the generation of reassortant viruses (24–27).
Pigs have a similar distribution to humans of α2,3-SA and α2,6-
SA receptors in the respiratory tract (Figure 1). As in humans,
α2,6-linked SA receptors predominate in the upper respiratory
tract of pigs, but α2,3-SA receptors are present in low quantities

in swine tracheas, and the frequency increases toward the lower
respiratory tract (18, 19) (Figure 1). The presence of both types
of SA receptors in swine airways supports the potential role of
pigs as “mixing vessels.” However, such distribution of α2,3-
and α2,6-SA receptors is similar in swine and humans (15, 18),
and it must be noted that avian viruses do not usually transmit
from pig-to-pig as is also the case in humans (28, 29). Humans
can also become infected with avian-origin IAVs directly from
avian sources and could potentially provide the environment
for the adaptation of avian viruses (30–32). Hence, generation
of reassortant viruses with pandemic potential may not require
swine as intermediate hosts. However, as highlighted by the 2009
pandemic (33), while swine are not required, they may serve as
intermediate hosts for generation of reassortant viruses with the
ability to cause human pandemics. The 2009 pandemic has led
to an increased concern about the transmission of swine viruses
to humans. However, improved surveillance of swine IAV after
the pandemic has shown that human viruses are transmitted to
pigs, and have resulted in sustained onward transmission, far
more frequently than swine viruses have infected humans (34).
This lower host barrier observed for human viruses in pigs can
be explained in part by the similar receptor distribution in both
species and the shared preference for α2,6-linked SA receptors
between human and swine viruses (22, 26).

WHAT ARE THE MECHANISMS FOR
ADAPTATION OF HUMAN INFLUENZA
VIRUSES TO PIGS?

Although IAV transmission events from humans to pigs are
continually detected globally and despite the similarities of
receptor preference and distribution between the two species,
whole human IAV rarely become established in swine. Typically,
these viruses reassort and emerge with only some of the human-
origin viral gene segments persisting, often with marked genetic
differences from the precursor strain (34–36). This implies that
adaptation factors other than the receptor linkage-type specificity
are required for human-origin viruses to be transmitted and
subsequently become endemic in swine populations.

The adaptation of influenza viruses between humans and pigs
is likely driven by selective pressures or bottlenecks imposed to
the virus population during IAV host jump, as a result of the
changes in the host environment (37, 38). Several factors may
affect these selective pressures during interspecies transmission,
either within the virus or the host. Receptor-binding specificity
and affinity, balance between HA and NA content, temperature
of the host, and host-specific immune factors may be some of
these factors. However, the differences in the selective pressure
between humans and swine and how they may differently affect
virus adaptation are not entirely understood, and some of the
currently know differences are discussed below.

Binding Determinants of Host Range
Specific amino acid residues at the influenza HA are required
for binding to either α2,3-SA or α2,6-SA receptors and specific
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FIGURE 1 | Overall distribution of α2,6-linked sialic acid (SA; green long arrow) and α2,3-linked SA (blue short arrow) in the epithelium of the respiratory tract of pigs

(18, 19) and humans (14, 15). Adapted from de Graaf and Fouchier (20).

amino acid substitutions at the RBS of the HA can alter receptor-
binding specificity and facilitate host jump (Figure 2A). In H1
subtype viruses, positions 190 and 225 were shown to have an
impact in receptor specificity. The combination of E190/G225,
E190/D225, or D190/G225 in the RBS of the HA, found in
avian viruses and late stage 2009 pandemic H1N1 strains, results
in dual receptor-binding specificity, whereas D190/D225 and
D190/E225, combinations found in seasonal human viruses,
results in human-type receptor specificity (40–42). As for H3
and H9 viruses, positions 226 and 228 in the HA are critical
for receptor specificity. Avian-adapted viruses usually present
Q226/G228 and show dual-binding or α2,3-SA preference,
but amino acid substitutions Q226L/G228S leads to receptor
specificity switch to human-type receptor preference and is,
therefore, more commonly found in human viruses (22, 43).
Analysis of H1, H3, and H9 virus sequences from swine using
the Influenza Research Database (44) revealed that swine viruses
have mostly D190/D225 in H1 viruses, a fairly equal distribution
between Q226/G228 and L226/G228 in H9 viruses, and the
unique combination of amino acids in H3 viruses V226/S228
(Figure 3).

Receptor-binding specificity of influenza HA is not only
mediated by changes in the sialic acid linkage, the structural
length and topology of the glycans can also determine the binding
specificity and affinity of IAV. Avian viruses were shown to bind
to α2,3-linked SA carrying a shorter carbohydrate chain whereas
human viruses bind preferentially to long α2,6-linked SA (45, 46).
Moreover, avian HA binds to narrow α2,3-SA in a “cone-like”
topology and human HA binds to long α2,6-SA in an “umbrella-
like” topology, which are predominantly expressed in the human
upper respiratory tissues (47). In general, human and swine
viruses have been shown to recognize similar glycan structures
on glycan microarrays, mainly branched α2,6-SA (48, 49).

NA and M as Determinants of Host-Range
While the HA is involved with binding to SA receptors, the NA
cleaves α2-3 and α2-6-linked SA residues from cellular surfaces

and mucus through its sialidase enzymatic activity and mediates
the release of newly synthesized viruses from the host cells (7).
For an optimal viral replication, balanced activities between the
HA binding affinity and the NA enzymatic function are expected.
The ideal HA-NA balance seems to be an important factor in host
adaptation (Figure 2B). The HA-NA balance was shown to be
crucial for the adaptation of the 2009 pandemic H1N1 virus to
humans, since balanced HA and NA activities were seen in the
human strains but not in precursor swine viruses (50) and this
balance resulted in increased replication and transmissibility in
ferrets (51). Additionally, adaptation of H5 and H7 viruses from
wild birds to chickens led to selective changes in both HA and
NA, maintaining a balance between binding and cleavage that
was important for replication and transmission in the new host
(52). These chicken-adapted H5 and H7 viruses possess a shorter
NA due to the deletion of several residues in the stalk domain that
were shown to enhance replication and virulence in chickens but
block respiratory transmission in ferrets (53, 54).

In addition to the NA, the matrix (M) gene segment
has been shown to be a critical determinant of respiratory
transmission efficiency of IAV in new hosts. The M segment
was implicated with the increased transmissibility of the 2009
pandemic H1N1 virus in animal models (55, 56), suggesting it
played an important role on the spread of the virus in humans.
In pigs, the combination of the NA and M genes from the 2009
pandemic virus was essential to facilitate efficient replication and
transmissibility (57). Interestingly, reassortant H1 and H3 swine-
origin viruses containing the M gene of the 2009 pandemic virus
have caused almost yearly zoonotic outbreaks in humans, more
frequently than was observed prior to the pandemic, confirming
that the M gene plays a role in adaptation and transmission of
swine viruses in humans (58–60).

Temperature Determinants of Host-Range
The virus polymerase (comprised of viral proteins PB1, PB2, and
PA) was also shown to be a major determinant for host range
of influenza viruses (61) (Figure 2C). This host restriction has
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FIGURE 2 | Host range determinants of influenza A viruses (IAV). (A) Avian influenza virus HA protein recognize short α2,3-linked sialic acid (blue), whereas HA from

human and swine IAV recognize long α2,6-linked sialic acid (green). (B) The balance between the HA binding affinity and the NA activity to cleave sialic acid receptors

is important for replication and adaptation to a new species. If a virus has strong biding affinity but low cleavage activity replication may be reduced. (C) The PB2

polymerase has an impact in the optimal replication temperature of IAV and can restrict host range. K627 increases replication at the low temperature of human or

swine upper airway. E627 decreases replication at low temperatures, unless in combination with A271 or N701. (D) The sensitivity of a virus to host-specific innate

immune factors can restrict interspecies transmission of IAV. To be able to replicate and spread in a new host, IAV must become resistant to the antiviral activity of

interferon-induced Mx protein or to the neutralizing activity of surfactant protein D (SP-D) from that particular host. Adapted from Cauldwell et al. (39).

been attributed to a single residue in the PB2 gene, amino acid
627, and is largely associated with the optimal temperature of
replication of IAVs (62, 63). While the human upper respiratory
tract temperature is around 33◦C, in the avian intestinal tract the
temperature is closer to 41◦C. Therefore, enhanced replication
at lower temperature should correlate with enhanced replication
in the upper airway of humans and consequently improve
transmission. Lysine (K) at position 627 in PB2, present in the
vast majority of human viral isolates (64), was correlated with
increased polymerase activity, virus replication and transmission
in mammals (65–67), including enhanced replication of an avian
virus in pigs (68). Replication and polymerase activity of different
avian viruses, which predominantly possess glutamic acid (E) at
position 627, were reduced at low temperature in mammalian
cells (65, 66, 69).

The temperature of the upper respiratory tract of pigs is
approximately 37◦C and higher (approximately 39◦C) in the
lower respiratory tract. Interestingly, most swine isolates that
have a PB2 of avian-origin retain the avian signature E627,
including the predominant North American triple reassortant
internal gene (TRIG) constellation viruses, the predominant
Eurasian avian-like viruses, and even the 2009 pandemic H1N1
viruses (70, 71). The presence of the avian-like E627 in swine
viruses usually does not result in the temperature sensitivity
observed for avian viruses in mammalian cells (69), suggesting
that these viruses can replicate at temperatures of avian intestines
and human airways. Other residues, such as A271 and N701,
were shown to compensate for the absence of K627 in these

swine or swine-origin viruses and contribute to virus growth and
transmission in swine and other mammalian species, including
humans (71–74).

Immune Determinants of Host-Range
Following influenza infection in respiratory epithelial cells, acute
inflammation leads to activation of the innate immune response
through pro-inflammatory cytokines or chemokines (75). Type-
I interferons (IFN-α/β) are cytokines quickly secreted after IAV
infection. Type-I IFN mediated responses to IAV results in
the expression of several antiviral proteins (76, 77). The Mx
proteins are a family of large GTPases that are central to the
antiviral activity of IFN against IAV by blocking nuclear entry of
the vRNPs (78, 79). Sensitivity to interferon-induced Mx varies
among different IAV strains and represents a barrier against
transmission of avian influenza viruses to mammals: avian
isolates are more susceptible to the antiviral action of murine Mx
and human MxA proteins than human viruses (80, 81). The Mx
sensitivity was shown to be determined by a cluster of surface-
exposed amino acids on the viral NP (81, 82). Interestingly, serial
passage in mice of a virus that is sensitive to murine/human Mx
activity leads to a single amino acid adaptive NP mutation that
results in escape from the Mx activity, and the same mutation is
also seen in human H7N9 isolates (83). Not surprisingly, some
swine IAV strains with avian-origin NP tend to have a higher
sensitivity to mouse Mx1 than human isolates (84). However,
the 1918 pandemic H1N1 and the 2009 pandemic H1N1 viruses
acquired resistance-associated substitutions on the NP protein
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FIGURE 3 | Proportion of amino acids found in influenza A viruses circulating in pigs globally at the HA receptor-binding site positions previously shown to impact

receptor-specificity for H1, H3, and H9. Analysis was performed using the Influenza Research Database Sequence Variation (SNP) tool (44). Sequences with 100%

identity were removed resulting in a set of 8076 H1 HA, 2287 H3 HA, and 46 H9 HA swine IAV sequences. The amino acids previously shown to change

receptor-binding specificity are displayed on the right.

that allow escape from human Mx (82). The functional Mx1
protein is expressed in the lungs of pigs experimentally infected
with IAV (85). It seems that the precursor of the 2009 pandemic
H1N1 virus acquired Mx-resistance mutations driven by the
porcine Mx1 during its circulation in pigs prior to the pandemic,
being able to partially resist the human MxA (82). The Eurasian
avian-like viruses are similarly resistant to humanMxA, however
different mutations were attributed to this phenotype (86). It
remains unknown whether human and swine viruses would have
different sensitivities to the porcine Mx protein.

Surfactant protein D (SP-D) is a collectin of the innate
immune system that also has early strong antiviral activity
against IAVs. SP-D binds to carbohydrate moieties on the surface
of influenza viruses (HA and/or NA), blocking attachment to
epithelial cells and inducing phagocytic responses, resulting
in non-specific virus neutralization and clearance (87). The
susceptibility of different IAV to SP-D activity was shown to be
dependent on the glycosylation pattern of the virus, particularly
on the HA (88–90). Influenza strains of the H3 subtype tend to
acquire and accumulate more glycosylations on the HA head as
a mechanism to evade the antibody response in humans, but
this in turn may make them more susceptible to the antiviral
effect of SP-D. Interestingly, porcine SP-D has a higher affinity

to bind IAV glycans than human or rat SP-D, resulting in
stronger neutralization activity (91, 92). Therefore, differences in
susceptibility to Mx or SP-D could be an important component
in host restriction of influenza viruses that needs to be overcome,
usually by changes in specific viral proteins, in order for a virus
to adapt to a new species (Figure 2D).

The IAV NS1 protein plays an important role as an antagonist
of the host IFN response by preventing the activation of retinoic
acid-inducible gene 1 (RIG-I) or inhibiting processing of mRNA
(93). Differences between the NS1 amino acid sequences may
affect the functional IFN-antagonistic properties of the NS1 (94,
95). Consequently, NS1 and its ability to control IFN response
could play a role in host range of IAV. Indeed, although the avian
NS1 protein was able to control IFN-α/β response in human cells,
the human type I IFN response appeared to limit the replication
of the avian viruses, suggesting that the NS1 also contributes to
the host specificity of IAV (96).

The adaptive immunity of an individual or population can
also have a role in host range restriction of IAV. Even when
a novel virus contains an ideal combination of factors that
allow replication in the new host, as discussed above, previous
cross-protective immunity might block even the initial infection.
In some cases, the level of cross-protective immunity of the
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population may still allow infection but might block virus
dissemination; however, naïve individuals will be at a higher risk
for infection and may serve as sources of transmission. That was
the case for the zoonotic infections with swine-origin viruses in
recent years, in which the majority of affected individuals were
children (58, 59). For these outbreaks, infection was observed
in people with close contact with pigs, and transmission from
human-to-human was rare, which was attributed to low levels
of cross-protective immunity in the human population due to
previous exposure to seasonal viruses (97). In pigs, however, there
is a continuous introduction of naïve individuals and themajority
of the population does not have previous immunity to viruses
circulating in humans, increasing the chances of those viruses
that have ability to infect pigs to become widespread.

HOW DO HUMAN VIRUSES RELATE TO
THE EVOLUTION OF SWINE INFLUENZA
VIRUSES?

Human-origin viruses have been repeatedly transmitted to swine
worldwide and have had a major role on the epidemiology
of swine IAV (34) (Figure 4). The classical swine H1N1 virus
that emerged around the 1918 pandemic remained relatively
antigenically stable for eight decades without causing major
problems to swine producers. A novel triple-reassortant virus
with human seasonal H3N2 surface genes emerged in the late
1990’s in North America (27, 98) and led to reassortment with
the classical viruses and subsequently gave rise to different
antigenically distinct H3N2, H1N1, and H1N2 strains (99,
100). The triple-reassortant internal gene (TRIG) constellation,
containing gene segments from a complex reassortment history
among swine-, human- and avian-origin IAVs, became the
predominant backbone of the viruses circulating in pigs in the
U.S. (101, 102). Shortly after, two additional introductions of
human-origin H1N1 resulted in the establishment of two new
lineages of H1N1 and H1N2 viruses after reassortment with
the TRIG strains, termed δ-lineages (103). After the spread
in humans, the H1N1 pandemic 2009 virus (H1N1pdm) was
quickly transmitted to swine in North America (104). And
recently, a novel virus derived from 2010 to 2011 human
seasonal H3 IAV led to establishment of a new H3-lineage that is
genetically and antigenically distinct from previously circulating
strains (105). The current scenario for the epidemiology of IAV
circulating in North American swine consists of a highly diverse
pool of viruses, with 14 phylogenetic clades of HA co-circulating
(36, 101, 105, 106). It is clear how impactful the human-to-
swine transmissions were to this current epidemiology: at least
10 of these phylogenetic clades have evolved from a human
virus. If considering the hypothesis that the classical swine virus
originated from the human 1918 pandemic virus, all of those
clades should be considered of human-origin.

In Europe, a human-origin H3N2 virus descendent from the
1968 pandemic virus was introduced in the 1980’s. This virus
became widespread after reassorting with an avian-origin H1N1
virus that was introduced to European swine in 1979 and remains
endemic to date (107, 108). Another human-origin virus, an

H1N2, was detected in 1994, containing the H1 that evolved
from a 1980 human seasonal H1N1 virus and a human-origin N2
that is distinct from the previously introduced H3N2 human-like
virus. This virus acquired the internal gene constellation of the
1979 avian-like virus after reassortment and is now endemic in
Europe (109, 110). As in the U.S., the H1N1pdm virus has been
transmitted from humans to pigs in Europe establishing a new
endemic lineage (108, 111). Recently, a triple-reassortant H3N2
virus with a human-origin HA from a 2004–2005 seasonal virus,
N2 from endemic swine viruses, and the internal genes from
H1N1pdm has spread in Denmark swine herds (112). In China
and other countries in Asia, importation of live animals has
resulted in the co-circulation of both European (or Eurasian) and
North American TRIG virus lineages that contain human-origin
genes (113–115). Additionally, reassortant genotypes between
these lineages containing HA and/or NA genes from H1N1 and
H3N2 human viruses have been detected in Asia since the 1960’s
and have become established in pigs (34, 116, 117).

Human-origin IAVs have been reported circulating in pigs
in other countries where surveillance is limited (34, 118–120),
including countries with large swine populations like Brazil
(121, 122), Vietnam (123), Mexico and Chile (124). But, even in
some of these cases where human-origin viruses or viral genes
were reported in swine, it is not possible to infer if they have
become endemic or predominant. However, in several cases, such
as in Latin America, the human-origin swine viruses were most
closely related to human seasonal strains that circulated many
years earlier and were separated by long phylogenetic branches,
suggesting that these viruses have circulated undetected in pigs
for years prior to their recent detection (34, 118, 121, 124).
Considering the frequency of human-to-swine transmissions in
highly surveilled areas, it is likely that additional human-origin
viruses have gone undetected in countries with low surveillance
efforts.

In addition to the recurrent seasonal virus spillover events
into swine populations, the H1N1pdm has been repeatedly
transmitted from humans to swine globally (125). TheH1N1pdm
virus originated in Mexico from the reassortment between
Eurasian and North American swine viruses and this novel
virus may have circulated undetected for approximately 10 years
before it gained the ability to infect humans (33). Soon after the
initial spread of the H1N1pdm in the human population, the
H1N1pdm virus was detected in pigs and since then transmitted
from human to pigs throughout the world (104, 126–131). The
virus has now become endemic in humans and circulates as a
seasonal strain, increasing the possibility of spillovers to swine
populations during influenza season each year. Owing to its
swine-origin and yearly circulation in humans, continuous and
frequent detection of the H1N1pdm virus in pigs has been
reported globally (125, 132). The constant circulation and re-
introduction of H1N1pdm globally has led to reassortment with
endemic swine viruses and changed the genotypic characteristics
of swine IAV by contributing several genes, most commonly the
internal genes. In the U.S., the surface genes of the H1N1pdm are
not frequently maintained, however most genotypes of H1 and
H3 viruses contain at least one internal gene of pandemic lineage
(133, 134). In Europe, the H1N1pdm virus has reassorted with
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FIGURE 4 | Different subtypes/lineages of human-origin influenza viruses circulating in swine in different continents. The map is colored according to pork production

in 1,000 metric tons. Map created with mapchart.net.

endemic European viruses and gave rise to genotypes containing
the internal genes from pandemic origin and some genotypes
have maintained one or both surface genes of pandemic lineage
(135). Interestingly, there is recent evidence of the independent
antigenic evolution of the swine H1N1pdm virus in European
pigs (136). In China, although Eurasian and North American
viruses circulated prior to the 2009 pandemic without substantial
evidence of reassortment, the introduction of the H1N1pdm
led to the establishment of reassortant genotypes containing
several internal genes from pandemic lineage (117). The
H1N1pdm has been reported throughout the world in swine with
frequent reassortment (137–139), even in countries that were
previously considered influenza free like Australia and Norway
(128, 140).

HOW DO HUMAN-ORIGIN VIRUSES
AFFECT CONTROL OF INFLUENZA IN
SWINE?

The repeated transmission of human seasonal viruses to pigs
has resulted in the establishment of several human-origin virus
lineages globally, adding to the antigenic diversity of swine
viruses. Global antigenic characterization has revealed that the
antigenic diversity of H1 and H3 viruses circulating in pigs was
largely a result of the frequent introductions of human-origin
IAV into swine (35). These viruses then evolved antigenically,
independent from human strains and often confined to their
geographic areas, contributing to the overall global diversity,
which consequently contributes to the challenges for effective

vaccination programs in swine. Most vaccines used against
influenza in swine are whole inactivated virus (WIV) vaccines
combined with oil-in-water adjuvants typically given to sows
to allow transfer of maternally derived antibodies to piglets
(141). Recently, two novel platforms were licensed for use
in pigs in the U.S. as alternatives to improve the efficacy of
swine vaccines, a non-replicating alphavirus RNA vectored-
vaccine and a live-attenuated influenza virus (LAIV) vaccine
(142, 143).

Because most vaccines rely on the effective stimulation of
the immune response against the surface HA glycoprotein, any
changes that lead to antigenic drift, such as the incursion of
novel human-origin viruses, can lead to vaccine mismatch. It
was demonstrated that changes in only 6 amino acids in the
HA account for major antigenic changes of swine H3 influenza
viruses, and a single amino acid change can lead to significant
antigenic drift (144, 145). Amino acids in similar positions
at the HA were also associated with antigenic characteristics
of H1 viruses (36). It is not surprising, therefore, that when
novel human-origin viruses become established in pigs there
are considerable antigenic differences from the circulating swine
strains (105), and any vaccines available at the time are unlikely to
provide immunity against these novel viruses. In addition to the
lack of protection, vaccine mismatch can also have detrimental
effects. When the vaccine stimulates a cross-reactive antibody
response that fails to neutralize the virus, it can result in severe
immune-mediated disease termed vaccine-associated enhanced
respiratory disease (VAERD). Therefore, more effective vaccine
technologies and vaccination strategies that improve the breadth
of the immune response and avoid any negative effects are needed
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to increase protection against the antigenically diverse human-
origin viruses that are continuously introduced in pigs.

CONCLUDING REMARKS

Since the 2009 pandemic, renewed attention has been given
to the interspecies transmission of influenza viruses between
pigs and humans, bringing back the attention to the theory
that pigs can serve as “mixing-vessels” of influenza viruses.
However, it is not entirely clear if swine are in fact more
susceptible to infection with avian viruses than humans. There is
compelling evidence, though, that human viruses are frequently
transmitted to pigs, and have had a significant impact on the
diversity of viruses that circulate in pigs globally. Additional
surveillance is necessary to understand the diversity of IAVs
circulating in different regions and the participation of human-
origin strains in this overall diversity. Surveillance is also critical
for antigenic characterization of the strains that are circulating in
a particular area to allow an accurate selection of representative
vaccine strains that will provide an optimal protection.Moreover,
despite the increasing evidence of the important role that human
seasonal viruses have played in driving the genetic and antigenic

diversity of IAV in swine, vaccine and sick leave policies for
swine industry workers are not consistently employed but should
be considered. Furthermore, understanding the mechanisms
involved with host-range specificity and the adaptation to swine
allows assessment of the risks posed by the introduction of
novel viruses into the swine population, which is crucial for
preparedness and to improve biosecurity measures to reduce the
IAV burden to the swine industry.
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