127 research outputs found

    On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition

    Get PDF
    This paper focuses on the efficient solution of models defined in high dimensional spaces. Those models involve numerous numerical challenges because of their associated curse of dimensionality. It is well known that in mesh-based discrete models the complexity (degrees of freedom) scales exponentially with the dimension of the space. Many models encountered in computational science and engineering involve numerous dimensions called configurational coordinates. Some examples are the models encoun- tered in biology making use of the chemical master equation, quantum chemistry involving the solution of the Schrödinger or Dirac equations, kinetic theory descriptions of complex systems based on the solution of the so-called Fokker–Planck equation, stochastic models in which the random variables are included as new coordinates, financial mathematics, etc. This paper revisits the curse of dimensionality and proposes an efficient strategy for circumventing such challenging issue. This strategy, based on the use of a Proper Generalized Decomposition, is specially well suited to treat the multidimensional parametric equations

    The proper generalized decomposition for the simulation of delamination using cohesive zone model

    Get PDF
    The use of cohesive zone models is an efficient way to treat the damage, especially when the crack path is known a priori. This is the case in the modeling of delamination in composite laminates. However, the simulations using cohesive zone models are expensive in a computational point of view. When using implicit time integration scheme or when solving static problems, the non-linearity related to the cohesive model requires many iterations before reaching convergence. In explicit approaches, the time step stability condition also requires an important number of iterations. In this article, a new approach based on a separated representation of the solution is proposed. The Proper Generalized Decomposition is used to build the solution. This technique, coupled with a cohesive zone model, allows a significant reduction of the computational cost. The results approximated with the PGD are very close to the ones obtained using the classical finite element approach

    Elastic calibration of a discrete domain using a proper generalized decomposition

    Get PDF
    Current discrete/lattice methods can simulate a continuous mechanical behavior thanks to a network of bonds. The main drawback of these approaches is the need of a calibration process to link the emerging behavior of the structure and the parameters of the local mechanical bond. It is proposed in this work to use a fast and recent reduction model technique to build once and for all an exhaustive data chart and thus to avoid the calibration process. The proper generalized decomposition technique was used to build a parametric analysis in the case of a lattice beam structure. The results were in the range of the current calibration values found in the literature and extend it by giving a global calibration curve. They also allowed to discuss about the influence, in this specific case of lattice-beam structure, of the density of beams in terms of number of discrete elements and connectivity

    A reduced model to simulate the damage in composite laminates under low velocity impact

    Get PDF
    This article presents an efficient numerical strategy to simulate the damage in composite laminates under low velocity impact. The proposed method is based on a separated representation of the solution in the context of the Proper Generalized Decomposition (PGD). This representation leads to an important reduction of the number of degrees of freedom. In addition to the PGD, the main ingredients of the model are the following: (a) cohesive zone models (CZM) to represent the delamination and the matrix cracking, (b) a modified nonlinear Hertzian contact law to calculate the impact force, (c) the implicit Newmark integration scheme to compute the evolution of the solution during the impact. The method is applied to simulate an impact on a laminated plate. The results are similar to the solution obtained with a classical finite element simulation. The shape of the delaminated area is found to be coherent with some experimental results from the literature.Ecole Nationale Supérieure d’Arts et Métiers, Campus de Bordeaux, I2M-DuMAS Ecole Nationale Supérieure d’Arts et Métiers, Campus d’Angers, LAMP

    A multiscale separated representation to compute the mechanical behavior of composites with periodic microstructure

    Get PDF
    The requirements for advanced numerical computations are very high when studying the multiscale behavior of heterogeneous structures such as composites. For the description of local phenomena taking place on the microscopic scale, the computation must involve a fine discretization of the structure. This condition leads to problems with a high number of degrees of freedom that lead to prohibitive computational costs when using classical numerical methods such as the finite element method (FEM). To overcome these problems, this paper presents a new domain decomposition method based on the proper generalized decomposition (PGD) to predict the behavior of periodic composite structures. Several numerical tests are presented. The PGD results are compared with those obtained using the classical finite element method. A very good agreement is observed.Arts et MĂ©tiers ParisTech, Centre de Bordeaux, I2M-DuMA

    Model reduction by separation of variables: A comparison between hierarchical model reduction and proper generalized decomposition

    Get PDF
    Hierarchical Model reduction and Proper Generalized Decomposition both exploit separation of variables to perform a model reduction. After setting the basics, we exemplify these techniques on some standard elliptic problems to highlight pros and cons of the two procedures, both from a methodological and a numerical viewpoint

    Empirical Natural Closure Relation for Short Fiber Suspension Models

    Get PDF
    L'auteur Francisco CHINESTA faisait parti en 2007 du Laboratoire de Mécanique des Systèmes et des Procédés (LMSP). Depuis 2010, le LMSP a fusionné avec deux autres unités de recherche en un seul laboratoire intitulé PIMM (Procédés et Ingénierie en Mécanique et Matériaux).This work focuses on the resolution of the Fokker-Planck equation that governs the evolution of the fibers orientation distribution. To reduce the computing time, that equation is solved along some flow trajectories in order to extract the significant information of the solution from the application of the Karhunen-Loève decomposition. Now, from this information one could solve the Fokker-Planck equation everywhere in the flow domain or simply adjust a closure relation that becomes optimal for such flow, solving the evolution of some orientation moments which require a less amount of computation. This paper focuses on this last strategy. For this purpose we start introducing the Karhunen-Loève decomposition that is applied later to automatically extract the main solution characteristics for adjusting empirically a natural closure relation

    Modélisation de la microstructuration dans les polymères chargés. Application à la mise en forme.

    No full text
    This document deal with the possibility to perform a simulation of a complex fluid flow (short fibres suspension, viscoelastic flow, short fibres reinforced polymer) taking into account the microstructural state in the kinetic theory background. There is a strong coupling effect between the microstructural state and the kinematics at the macroscopic scale. Classical deterministic approaches fail to solve the Fokker-Planck equation describing the fluid microstructure because of the high degree of freedom involved. To overcome this difficulty, this work present and test some techniques of dimensional reduction. These methods are applied to recirculating flows. The recirculation add a difficulty because nor initial conditions nor boundary conditions are known. And some recirculating areas appear in many industrial flows during the materials forming. That is why we have developed some numerical methods dealing with these kinds of flows.Finally, a part of this work is dedicated to an experimental study allowing to validate the numerical results and to focus on some physical phenomenons that occur during the material forming.Cette thèse étudie la possibilité de simuler des écoulements complexes (polymères chargés, suspensions de fibres courtes, polymères) en prenant en compte la structure à l'échelle microscopique dans le cadre de la théorie cinétique. Il y a un couplage fort entre la structure microscopique et la cinématique à l'échelle macroscopique. Le caractère multidimensionnel de l'équation de Fokker-Planck décrivant la microstructure du fluide rend la simulation difficile avec des approches déterministes classiques. Pour palier ce problème, plusieurs méthodes visant à réduire les dimensions sont développées et testées. Ces méthodes sont appliquées en particulier dans le cas des écoulements recirculants. Le cas d'une recirculation ajoute une difficulté supplémentaire car nous ne connaissons ni les conditions initiales, ni les conditions aux limites. Or les recirculations se trouvent dans beaucoup d'écoulements industriels, lors de la mise en forme des matériaux. Pour cette raison nous avons développé des méthodes numériques spécifiques à ce type d'écoulement.Finalement, une partie de la thèse est dédiée à une étude expérimentale permettant de valider les résultats numériques obtenus et d'étudier les phénomènes physiques entrant en jeu dans la mise en forme des polymères chargés
    • …
    corecore