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a b s t r a c t

This article presents an efficient numerical strategy to simulate the damage in composite laminates under
low velocity impact. The proposed method is based on a separated representation of the solution in the
context of the Proper Generalized Decomposition (PGD). This representation leads to an important reduc-
tion of the number of degrees of freedom. In addition to the PGD, the main ingredients of the model are
the following: (a) cohesive zone models (CZM) to represent the delamination and the matrix cracking, (b)
a modified nonlinear Hertzian contact law to calculate the impact force, (c) the implicit Newmark inte-
gration scheme to compute the evolution of the solution during the impact. The method is applied to sim-
ulate an impact on a laminated plate. The results are similar to the solution obtained with a classical finite
element simulation. The shape of the delaminated area is found to be coherent with some experimental
results from the literature.

1. Introduction

The ever growing demand for lighter structures results in the
increasing replacement of metallic materials by composite materi-
als. While composite materials offer a number of superior design
characteristics, composite structures are much more sensitive to
impact damage than similar metallic structures. Impact can result
in numerous damage mechanisms, ranging from barely visible
impact damage (BVID) to complete penetration, which neverthe-
less severely reduces the stiffness and the residual strength of
the composite structures. Impacts caused by foreign objects may
arise during the life span of a structure including manufacturing,
service, and maintenance operations. In the present work only
low velocity impact events will be considered although the pro-
posed numerical strategy may be applied to other kind of dynamic
loads.

The development of efficient dynamic simulations for compos-
ite structures under low velocity impact is a very challenging issue.
There are many scientific locks, in particular:

� Composite structures have often a small dimension (thickness)
compared to the others (shell or plate structures). When using
3D elements, a fine mesh is required to keep a good precision
in the thickness which results in a very high number of ele-
ments to cover the entire volume.

� The modeling of damages can also lead to numerical difficulties.
For example, the use of cohesive elements is an appealing
choice. This kind of elements is particularly well adapted to
treat delamination and fibers/matrix decohesion. However,
cohesive elements need very fine meshes to ensure the numer-
ical stability.

� Explicit dynamic calculations lead to restrictive time steps to
satisfy the stability condition. In the other hand, the use of
implicit scheme causes solving some non linear problems many
times which is numerically costly. The strong non-linearities
related to the damage model are generally difficult to solve
and require high computational resources.

The main objective of this work is to propose an efficient
numerical solver able to simulate the complex behavior of compos-
ite laminates with reasonable computational time and accuracy. To
reach this objective, an approach based on model reduction is
chosen.
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1.1. Model reduction

The idea is to approximate the solution under a separated form.
If we consider a plate structure where z is the coordinate in the
direction normal to the plate, an unknown field (the displacement
in general) can be expressed with the following separated
representation:

uðx; y; zÞ ¼
Xn
i¼1

Fiðx; yÞ � GiðzÞ ð1Þ

where the functions Fi and Gi for i ¼ 1; . . . ; n need to be determined.
A few solvers exist to compute this kind of solution. Here, the
Proper Generalized Decomposition (PGD) will be considered.

This numerical method consists in building the separated repre-
sentation of the solution using a greedy algorithm with no a priori
knowledge of any reduced basis. If n is small enough, the total
number of degrees of freedom is significantly reduced. Only a 2D
mesh is required and the problem is greatly simplified in compar-
ison to the full 3D approach.

The PGD with a space-time separated representation was orig-
inally proposed by Ladeveze under the name ‘‘radial loading
decomposition” in the context of the LATIN method. The idea
was to develop a non-incremental solver [1,2]. Ammar et al. [3,4]
devised the first version of the PGD strategy for multi-
dimensional problems. It was originally applied to the high-
dimensional kinetic models of complex fluids. After that, the PGD
was successfully applied to a wide variety of problems. For
instance, the PGD procedure was applied by Ammar et al. [5] to
model the degradation of a plastic material which is a complex
transient problem. A separated representation was also used by
Chinesta et al. for solving the chemical master equation [6] and
stochastic equations within the Brownian configuration field
framework [7]. The PGD was applied in other studies for thermal
problems in composite materials [8]. Nouy used the PGD to study
stochastic problems [9,10]. This approach also allows for the fast
computation of problems defined in plate or shell domains. The
advantage is that 3D solutions can be obtained with a computa-
tional cost characteristic of standard 2D solutions [11]. This
approach has been applied to composites shell structures [12]
and have been improved using high order interpolation in the
thickness [13,14]. In this work the PGD will be adapted to simulate
a low velocity impact on a composite laminate involving damages.

1.2. Failure mechanisms in low velocity impact

Low velocity impact damage in composites is insidious due to
the invisible damages they can cause. These damages can drasti-
cally decrease the residual strength of composite structure, for
instance in compression after impact. For unidirectional (UD) lam-
inates under low velocity impact, significant amount of permanent
damage in the form of matrix cracking, delaminations and fiber
breakage may be present without being detectable by visual
inspection. The failure mechanisms usually occur in the listed
order with increasing impact energy. Matrix cracking has been
widely reported as the first type of failure induced by transverse
low velocity impact [15–17]. It acts as a starting point for the prop-
agation of delamination. Fig. 1 shows the typical matrix cracking
and delamination damage found in an impacted composite speci-
men. Matrix cracks appear parallel to the fibers due to tension or
shear.

The initiation and propagation of matrix cracks are strongly
dependent on the stacking sequence [18–20]. Two types of matrix
cracking can be observed: tensile matrix cracks and shear matrix
cracks. Tensile matrix cracks are formed by the flexural deforma-
tions due to the tensile bending stresses. These cracks are generally

located at the lower plies. Shear matrix cracks form in the upper
plies directly under the impact zone and are induced by the high
transverse shear stress through the material, and are inclined at
approximately 45�. The matrix cracks first appear in the lowest
ply [21]. Due to the coupling between delamination and matrix
cracking, the initiation of delamination is located on the matrix
cracks.

Delamination is often considered to be the most energy con-
suming damage mechanism during a low velocity impact. The
majority of the energy absorbed in the laminate during impact dis-
sipates into delamination propagation. Delaminations occur at the
interfaces between plies with different fiber orientations and tend
to initiate at the bottom interface and progressively becomes smal-
ler towards the impact face. The shape of the delaminated area
changes with the orientation of plies and is usually a peanut with
its major axis oriented in the fiber direction of the lowermost layer
at the interface, as depicted in Fig. 2. The peanut shape is a result of
the shear stress distribution around the impactor, the interlaminar
shear strength in the fiber direction and the matrix cracking. Fiber
failure mostly appears after matrix cracking and delamination. This
failure mode may occur under the impactor due to locally high
stresses and indentation effects.

2. Problem statement

2.1. Governing equation

The weak form of the equilibrium equation in a domain Xwith-
out body force and neglecting the damping effects reads:ZZ

X
qu� � €udXþ

ZZ
X
eðu�Þ � ðAeðuÞÞdX ¼

Z
C
Textu�dC ð2Þ

where u ¼ ðu;v ;wÞT is the displacement field, €u ¼ ð€u; €v ; €wÞT is the
acceleration field, u� is the virtual displacement and e is the strain
tensor using the vectorial form:

e ¼

exx
eyy
ezz
2eyz
2exz
2exy

0
BBBBBBBB@

1
CCCCCCCCA

ð3Þ

Text is the external force on the boundary C. A is a matrix related to
the material law in each layer. For a linear orthotropic material, A is
defined by Eq. (4).

A�1 ¼

1
Ex

� mxy
Ex

� mxz
Ex

0 0 0

� mxy
Ex

1
Ey

� myz
Ey

0 0 0

� mxz
Ex

� myz
Ey

1
Ez

0 0 0

0 0 0 1
Gxz

0 0

0 0 0 0 1
Gxz

0

0 0 0 0 0 1
Gxz

2
666666666664

3
777777777775

ð4Þ

Ex; Ey; Ez are the elastic modulus, mxy; mxz; myz are the Poission’s
ratio and Gxy; Gxz; Gyz are the shear modulus expressed in the
orthotropic basis ðx; y; zÞ.

After assembling all mass and stiffness matrices with a finite
element approximation, the discretized motion equations of the
laminate take the following form:

½M�f€ug þ ½K�fug ¼ fFg ð5Þ
where ½M� and ½K� are the coherent mass and stiffness matrices of
the composite laminate, fug and f€ug are respectively the nodal
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displacement and acceleration vectors. In the following fgg denotes
the column vector containing the nodal values of any function g.

fFg is the external force vector. For a low velocity impact, fFg
contains the impact force between the impactor and the plate:

fFg ¼ f0 0 0 . . . Fc . . .0 0 0gT ð6Þ
where Fc is the contact force supposed to be concentrated on a sin-
gle node. In general, the magnitude of the contact force is not
known a priori and needs to be calculated using a contact law.

2.2. Time integration

There are many methods to solve Eq. (5) in time. In the present
work the solution of the problem is determined by applying the
implicit Newmark’s integration scheme [22]. The time dimension
is divided into time increments Dt. The system is then solved
incrementally.

Eq. (5) can be written at time t þ Dt as:

½M�f€utþDtg þ ½K�futþDtg ¼ fFtþDtg ð7Þ
The acceleration and velocity vectors at time t þ Dt are expressed
as:

f€utþDtg ¼ 1

bðDtÞ2
futþDtg � futg � ðDtÞf _utg½ � � 1

b
1
2
� b

� �
f€utg ð8Þ

f _utþDtg ¼ f _utg þ ðDtÞ ð1� cÞf€utg þ cf€utþDtg½ � ð9Þ
b and c are numerical parameters that allow to control both the sta-
bility and the amount of numerical damping introduced into the

system by the method. For c ¼ 1
2 there is no numerical damping,

for c P 1
2 numerical damping is introduced.

Newmark method is unconditionally stable when 1
2 6 c 6 2b

and it is unstable when c < 1
2.

To avoid numerical instability, high frequency dissipation is

required. It is achieved when: b ¼ 1
4 ðcþ 1

2Þ
2.

In this work, the constant average acceleration version of New-
mark method is used, which is implicit and unconditionally stable.
Thus, c is 1

2 and b is 1
4. Substituting Eq. (8) into Eq. (7), we obtain a

set of nonlinear equations in which the unknowns are futþDtg and
fFtþDtg. The terms at time ðtÞ are all known. The new system can
then be formulated as:

½K��futþDtg ¼ fF�
tþDtg ð10Þ

where ½K�� is the effective stiffness matrix, and fF�
tþDtg is the force

vector, which are defined as:

½K�� ¼ ½K� þ 1

bðDtÞ2
½M�

" #
ð11Þ

fF�
tþDtg ¼ fFtþDtg þ ½M� 1

bðDtÞ2
futg þ 1

bðDtÞ f _utg þ 1
2b

� 1
� �

f€utg
( )

ð12Þ
The calculation of fFtþDtg will be detailed in the next section.

2.3. Calculation of the contact force

As indicated by Trousset [23], during finite element simulations
of low velocity impact, about 90% of the total computation time is
spent in the contact treatment. To avoid contact management dur-
ing the impact simulation, the Hertzian contact law is commonly
employed to deal with the contact between the impactor and the
laminate.

Various researchers have developed finite element models in
conjunction with the Hertzian contact law to study the impact
response of laminated composite plates. Some important works
on this subject can be found in Refs. [24–29].

In the present work, the contact force is calculated using a mod-
ified nonlinear Hertzian contact law proposed by Tan and Sun [24].
The impactor is hemispherical with isotropic properties: Young’s
modulus Ei, Poisson’s ratio mi, radius Ri and mass mi. The stiffness
of the impactor is assumed to be higher than the one of the com-
posite plate in the direction of impact. The initial velocity and dis-
placement of the impactor are _wi ¼ V0 and wi ¼ 0. The dynamic
equation of the impactor is obtained through Newton’s second
law, where €wi is the acceleration of the impactor:

mi €wi ¼ �Fc ð13Þ

Fig. 1. Typical matrix cracking and delamination damage in a [0/90/0] UD laminated composite (a- longitudinal view, b- transverse view).

Fig. 2. Shape of the delamination.
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In this model, an interpenetration between the plate and the
impactor is possible which corresponds to a local indentation of
the plate by the impactor. The local identation a is defined as the
difference between the displacement of the impactor wiðtÞ and
the deflection of the plate at the contact point wpðtÞ:
aðtÞ ¼ wiðtÞ �wpðtÞ ð14Þ

The contact force Fc is related to the local indentation a accord-
ing to a contact law (Fig. 3).

During the loading and unloading, the contact force is expressed
as follows:

Fc ¼
ka3=2 loading

Fm
a�a0
am�a0

� �5=2
unloading

8<
: ð15Þ

where Fm is the maximum contact force at the beginning of unload-
ing, am is the indentation corresponding to Fm. For laminated plate
with orthotropic layers, the modified Hertz constant stiffness k can
be calculated as [24]:

k ¼ 4
3

ffiffiffiffi
Ri

p
1�m2

i
Ei

þ 1
Ez

� � ð16Þ

where Ez is the transverse modulus normal to the fiber direction in
the uppermost composite layer. The permanent indentation a0 is
zero when the maximum indentation am is less than a critical value
acr , otherwise a0 is expressed as:

a0 ¼
0 am < acr

am 1� acr
am

� �2=5� �
am P acr

8<
: ð17Þ

The velocity _wnþ1
i and displacement wnþ1

i of the impactor at the
time step nþ 1 are determined by applying the implicit Newmark’s
integration scheme described on Section 2.2 (c ¼ 1

2 and b ¼ 1
4):

_wnþ1
i ¼ _wn

i þ €wn
i

Dt
2

� �
� Fnþ1

c
Dt
2mi

� �
ð18Þ

wnþ1
i ¼ wn

i þ _wn
i Dt þ €wn

i
Dt2

4

� �
� Fnþ1

c
Dt2

4mi

� �
ð19Þ

Hertz’s law is applied at each time step to calculate the contact
force. The contact force at time step nþ 1 is calculated from the
impactor and plate displacements of the previous time step n. Sub-
stituting Eq. (19) into Eq. (15), we obtain the contact force at time
step nþ 1:

Fnþ1
c ¼

k q�wnþ1
p � Dt2

4mi

� �
Fnþ1
c

h i3=2
loading

Fm
ðam�a0Þ5=2

q�wnþ1
p � a0 � Dt2

4mi

� �
Fnþ1
c

h i5=2
unloading

8><
>:

ð20Þ

where q ¼ wn
i þ _wn

i Dt þ €wn
i

Dt2
4

� �
.

To seek the solution of the nonlinear problem defined in Eq.
(20), the Newton-Raphson iteration technique is adopted. Using
the initial conditions ( _wi ¼ V0 and wi ¼ wp ¼ 0) and a root finding
algorithm (Newton-Raphson method), an approximate value of the
impact force Fc is obtained from the implicit expressions of the
modified nonlinear Hertzian contact law (the first equation of Eq.
(20)). This force is now applied as external load at the contact point
of the plate. The nodal displacement wp of the laminated plate is
next found from Eq. (10). Using this value of wp, the impact force
Fc is recomputed from Eq. (20). The process is repeated until the
required accuracy is achieved. The convergence criteria for the sat-
isfaction of the local equilibrium related to the contact force is:

j Fnþ1
c j � j Fn

c j6 1:0� 10�6 ð21Þ
The contact force is then used to calculate acceleration, velocity,
and displacement of the impactor for the next time step.

2.4. Damage modeling

Several models based on the fracture mechanics are used in the
literature to predict the damage evolution in composites. For
instance, the virtual crack closure technique (VCCT) is widely con-
sidered [30]. In this work, the modeling of damages is based on a
cohesive zone model which has the advantage to account at the
same time for the initiation and the propagation of a crack. This
model is well adapted when the crack path is known a priori, for
instance when considering interface damages like delaminations.
Cohesive zone models required the definition of a cohesive law
that describe the behavior of a predefined interface. Here, we
choose the Crisfield law [31,32] shown in Fig. 4 which presents lin-
ear elastic and linear softening behavior. Three parameters are
required to define the cohesive law for each pure mode: mode I
(opening) and mode II (shear). These parameters are the maximum
stress (rIc and rIIc), the critical strain energy release rate (GIc and
GIIc) and the interface element stiffness (KI and KII).

The critical value of the energy release rate of the interface is
equal to the area under the interfacial stress-separation curve.
The critical separations (dIc and dIIc ) are defined when the interfacial
stress reaches maximum, and the maximum separations (dIm and
dIIm) are defined when the stress becomes zero. These separations
can be evaluated by the following expressions:

dIc ¼
rIc

KI
; dIIc ¼ rIIc

KII
ð22Þ

dIm ¼ 2GIc

rIc
; dIIm ¼ 2GIIc

rIIc
ð23Þ

The relation between local separation (dI and dII) and interface
stress (rI and rII), shown in Fig. 4, can be expressed as:

ri ¼
Kidi di < dic

ð1� diÞKidi dic 6 di < dim
0 di P dim

8><
>: ; i ¼ I; II ð24Þ

di ¼ dimðdi � dicÞ
diðdim � dicÞ

; i ¼ I; II; di 2 0;1½ � ð25Þ
Fig. 3. Schematic Illustration of the impact procedure.



where di is the damage variable whose value evolves from 0
(undamaged) to 1 (full damaged).

The interface element stiffness (KI and KII) are purely numerical
parameters. Their values are chosen by compromise considering
than: (i) too high values lead to spurious stress oscillations, (ii)
too low values lead to non physical behavior (discontinuity of
the displacement in the undamaged state) [33].

The description of the cohesive law under mixed-mode loading
requires: (i) the definition of the interfacial stress and the critical
energy release rate for each pure mode and, (ii) the proposition
of criteria or laws relating these parameters for mixed loading
[34]. From these laws, the critical and maximum separations (dmc
and dmm) under mixed-mode loading can be determined. Each fail-
ure mechanism consists of two parts: a damage initiation criterion
and a damage evolution law.

The damage initiation can be predicted using the quadratic fail-
ure criterion, defined as:

rIh iþ
rIc

� �2

þ rII

rIIc

� �2

¼ 1 ð26Þ

rIh iþdenotes the positive value of rI (if rI<0, rIh iþ ¼ 0).
This mixed-mode criterion assumes the coupling between the

failure modes and considers that compressive normal stresses have
no influence on the delamination onset.

The ‘‘power law criterion” appears to be the most reliable in
order to predict delamination propagation in composite laminates
carbone/epoxy under mixed-mode loading. It states that the dam-
age under mixed loading is governed by a power law interaction
between the energies of pure modes.

GI

GIc

� �2

þ GII

GIIc

� �2

¼ 1 ð27Þ

where GI and GII are the energy release rates respectively in mode I
and mode II, GIc and GIIc are the critical energy release rates.

The total mixed-mode relative displacement dm can be defined
as the norm of the two normal and tangential relative
displacements:

dm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dIh i2þ þ d2II

q
ð28Þ

3. Separated representation of the solution

In order to develop the PGD formulation, the full displacement
field is approximated at a given time using the following separated
form:

uðx;y;zÞ	
Xn
i¼1

Fiðx;yÞ�GiðzÞ¼
Xn
i¼1

Fi
uðx;yÞ�Gi

uðzÞ
Fi
vðx;yÞ�Gi

vðzÞ
Fi
wðx;yÞ�Gi

wðzÞ

0
BB@

1
CCA 8ðx;y;zÞ 2X

ð29Þ

where � is the Hadamard product, uðx; y; zÞ ¼
uðx; y; zÞ
vðx; y; zÞ
wðx; y; zÞ

0
@

1
A is the

displacement vector, Fiðx; yÞ ¼
Fi
uðx; yÞ

Fi
vðx; yÞ

Fi
wðx; yÞ

0
B@

1
CA are functions of the

mid-plane coordinate, and GiðzÞ ¼
Gi

uðzÞ
Gi
vðzÞ

Gi
wðzÞ

0
B@

1
CA are functions involving

the thickness coordinate. The domain is X ¼ Xxy �Xz where Xxy and
Xz are respectively the mid-plane and the thickness of the plate.

A same kind of separated representation is used for the velocity
and the acceleration:

_u 	
Xnv
i¼1

_Fiðx; yÞ � _GiðzÞ 8ðx; y; zÞ 2 X ð30Þ

€u ¼
Xn
i¼1

€Fiðx; yÞ � €GiðzÞ 8ðx; y; zÞ 2 X ð31Þ

Now the discrete problem Eq. (5) must be rewritten using these
separated approximations.

3.1. Mass matrix in a separated form

To express the mass matrix, we consider the inertia term from
the weak form of the equilibrium equation (Eq. (2)):ZZ

X
qu� � €udX ¼

ZZ
X
qu�€udXþ

ZZ
X
qv�€vdXþ

ZZ
X
qw� €wdX ð32Þ

We assume for sake of simplicity that q is constant. It gives:ZZ
X
qu� � €udX ¼ q

X
u¼u;v;w

ZZ
X
u� €udX ð33Þ

This weak formulation is valid for every u� kinematically admis-
sible. In particular, the virtual field can be chosen on the following
separated form:

u� ¼
u�ðx; y; zÞ
v�ðx; y; zÞ
w�ðx; y; zÞ

0
B@

1
CA ¼ R�ðx; yÞ � S�ðzÞ 8ðx; y; zÞ 2 X ð34Þ

Fig. 4. Crisfield cohesive law for the mode I and mode II.
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where R� and S� may be any kinematically admissible functions
(leading to kinematically admissible u�) respectively on the sub-
space Xxy and Xz.

Eq. (33) can then be rewritten as:

ZZ
X
qu� � €udX ¼ q

X
u¼u;v;w

Xn
i¼1

Z
Xxy

R�
u
€Fi
udxdy

! Z
Xz

S�u€G
i
udz

� �
ð35Þ

A finite element approximation can be used on the two sub-
space Xxy and Xz. After discretization, the finite element operators
Mxy and Mz are defined such as:

q
R
Xxy

R�
u
€Fi
udxdy 	 fR�

ugTMxyf€Fi
ugR

Xz
S�u€G

i
udz 	 fS�ugTMzf€Gi

ug

8<
: ð36Þ

where f€Fi
ug; f€Gi

ug, fR�
ug and fS�ug are some column vectors contain-

ing the nodal values of €Fi
u, €G

i
u;R

�
u and S�u respectively.

Now we want to express the global mass matrix from Mxy and
Mz. We simply define the nodal acceleration vector f€ug by stacking
the column vectors f€ug; f€vg and f €wg:

f€ug ¼
f€ug
f€vg
f €wg

2
64

3
75 ð37Þ

The nodal vector fu�g is defined in the same way.
In the following, the Kronecker product denoted 
 will be used

to build the global nodal vectors from the separated representa-
tion. This formalism has been introduced by Ammar et al. in [35].
In particular, f€ug and fu�g can be built with the following
expressions:

f €ug ¼
Xn
i¼1

f€Fi
ug 
 f€Gi

ug

fu�g ¼ fR�
ug 
 fS�ug

8><
>: for u ¼ u;v ;w ð38Þ

From Eqs. (35), (36), (38) and the properties of the Kronecker
product, the inertia term can be rewritten as:

Z Z
X
qu� � €udX¼

X
u¼u;v ;w

Xn
i¼1

fR�
ugTMxyf€Fi

ug
� �

� fS�ugTMzf€Gi
ug

� �

¼
X

u¼u;v ;w
fR�

ugT 
fS�ugT
� �

Mxy
Mz
	 
 Xn

i¼1

f€Fi
ug
f€Gi

ug
!

¼
X

u¼u;v ;w
fu�gT Mxy
Mz

	 
f €ug

ð39Þ

The mass matrix in a separated form is deduced from Eq. (39)
with a global matrix assembly on the subspace Xxy and Xz:

½M� ¼
Mxy 0 0
0 0 0
0 0 0

2
64

3
75


Mz 0 0
0 0 0
0 0 0

2
64

3
75þ

0 0 0
0 Mxy 0
0 0 0

2
64

3
75



0 0 0
0 Mz 0
0 0 0

2
64

3
75þ

0 0 0
0 0 0
0 0 Mxy

2
64

3
75


0 0 0
0 0 0
0 0 Mz

2
64

3
75

ð40Þ

The 0 in the previous equation represent null bloc matrices of
the dimension equivalent to Mxy or Mz.

3.2. Rigidity matrix in a separated form

In the weak form of the equilibrium equation, the term related
to the strain energy is:

E ¼
ZZ

X
eðu�Þ:ðAeðuÞÞdX ð41Þ

The rigidity matrix is build with a finite element discretization
of E. The strain tensor with the small strain assumption can be
expressed from the separated representation Eq. (29):

eðuÞ ¼

@xu
@yv
@zw

@zv þ @yw
@zuþ @xw
@yuþ @xv

0
BBBBBBB@

1
CCCCCCCA

¼
Xn
i¼1

@xF
i
u � Gi

u

@yF
i
v � Gi

v

Fi
w � @zG

i
w

Fi
v � @zG

i
v þ @yF

i
w � Gi

w

Fi
u � @zG

i
u þ @xF

i
w � Gi

w

@yF
i
u � Gi

u þ @xF
i
v � Gi

v

0
BBBBBBBBB@

1
CCCCCCCCCA

ð42Þ

@x; @y and @z denotes respectively the derivative with respect to x; y
and z.With Eq. (34), the strain tensor related to the virtual field gives:

eðu�Þ ¼

@xR
�
u � S�u

@yS
�
v � S�v

R�
w � @zS

�
w

R�
v � @zS

�
v þ @yR

�
w � S�w

R�
u � @zS

�
u þ @xR

�
w � S�w

@yR
�
u � S�u þ @xR

�
v � S�v

0
BBBBBBB@

1
CCCCCCCA

ð43Þ

E can be developed in a sum of simple integrals:

E ¼
X6
i¼1

X6
j¼1

ZZ
X
Aijeiðu�ÞejðuÞdX ð44Þ

If we assume that Aij can be written in a separated form, i.e.
Aijðx; y; zÞ ¼

P
kA

xy
ijkðx; yÞ � Az

ijkðzÞ, and using Eq. (42)–(44), we can
write E as a sum of products of integrals defined on the subspace
Xxy by integrals defined on Xz. With a finite element approxima-
tion on each subspace Xxy and Xz, we can build some finite element
operators Kp

xy and Kp
z such as:

E ¼
Xm
p¼1

Xn
i¼1

fR�gTKp
xyfFig

� �
� fS�gTKp

zfGig
� �

¼
Xm
p¼1

fR�gT 
 fS�gT
� �

Kp
xy 
 Kp

z

� �
�

Xn
i¼1

f€Fig 
 f€Gig
!

¼
Xm
p¼1

fu�gT Kp
xy 
 Kp

z

� �
fug

ð45Þ

m depends on the non zero terms of A. fR�g, fS�g; fFigand fGig con-
tain respectively the nodal values of R�; S�, Fi and Gi. Finally, the
finite element rigidity matrix is:

½K� ¼
Xm
p¼1

Kp
xy 
 Kp

z ð46Þ

3.3. Cohesive zone

The introduction of the cohesive zones in the separated repre-
sentation of the rigidity matrix have been widely described in
[36] for simple static problems.

In the presence of a cohesive surface Ccoh the weak form Eq. (2)
becomes:ZZ

X
qu�:€udXþ

ZZ
X
eðu�Þ:ðAeðuÞÞdXþ

Z
Ccoh

Tcohd
�dC ¼

Z
C
Textu�dC

ð47Þ
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where d� is the virtual separation vector and Tcoh is the cohesive
stress vector. The term

R
Ccoh

Tcohd
�dC represent the virtual work

related to the cohesive surface.
Two cases are treated in the following:

1. The cohesive surface Ccoh is parallel to the mid-plane surface of
the plate (delamination) that have already been described in
[36].

2. The cohesive surface Ccoh is normal to the mid-plane surface of
the plate (ply failure).

3.3.1. Cohesive surface parallel to the mid-plane surface
As said, this case have been widely described in [36]. In this

paragraph, we briefly recall the main contribution of our former
article. This case, the cohesive surface is normal to the z axis so that
Ccoh � Xxy. With the Crisfield model, the relation between the
stress vector Tcoh and the relative displacement vector d is given by:

Tcoh ¼
rxz

ryz

rzz

0
B@

1
CA ¼

kKIIdx
kKIIdy
kKIdz

0
B@

1
CA ð48Þ

where the relative displacement reads:

d ¼
dx
dy
dz

0
B@

1
CA ¼

uðx; y; zþÞ � uðx; y; z�Þ
vðx; y; zþÞ � vðx; y; z�Þ
wðx; y; zþÞ �wðx; y; z�Þ

0
B@

1
CA ð49Þ

The superscripts + and � in exponent indicate the two sides of
the cohesive zone. The initial positions of the two faces of the cohe-
sive zone are defined by their coordinates on Xz denoted zþ and z�

for all x; y 2 Xxy. After discretization, zþ and z� define the coordi-
nates of two nodes on Xz that are in general at the same initial
position.

In pure modes (mode I or II), the values of k is computed from
Eq. (24).

k ¼
1 dj < d j

c

ð1� djÞ d j
c 6 dj < d j

m

0 dj P d j
m

8><
>: ; j ¼ I; II ð50Þ

In this case, dI ¼ dz and dII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x þ d2y

q
.

In mixed mode (mode I and II), k is computed from the relations
given in Section 2.4.

To use the Proper Generalized Decomposition, the relative dis-
placement vector must be expressed in a separated form. This
expression is deduced from Eqs. (29) and (49):

dx ¼
Xn
i¼1

Fi
uðx; yÞ Gi

uðzþÞ � Gi
uðz�Þ

� �

dy ¼
Xn
i¼1

Fi
vðx; yÞ Gi

vðzþÞ � Gi
vðz�Þ

� �

dz ¼
Xn
i¼1

Fi
wðx; yÞ Gi

wðzþÞ � Gi
wðz�Þ

� �

8>>>>>>>>><
>>>>>>>>>:

ð51Þ

The virtual separation d� can also be expressed as:

d�x ¼ R�
uðx; yÞ S�uðzþÞ � S�uðz�Þ

	 

d�y ¼ R�

vðx; yÞ S�vðzþÞ � S�vðz�Þ
	 


d�z ¼ R�
wðx; yÞ S�wðzþÞ � S�wðz�Þ

	 

8><
>: ð52Þ

The term related to the cohesive zone in the weak formulation
Eq. (47) becomes with Eqs. (48), (51) and (52):

Z
Ccoh

Tcohd
�dC¼

Xn
i¼1

Z
Xxy

kKIIR
�
uðx;yÞFi

uðx;yÞdxdy
!
� S�uðzþÞ� S�uðz�Þ
	 
"

� Gi
uðzþÞ�Gi

uðz�Þ
� � Z

Xxy

kKIIR
�
v ðx;yÞFi

v ðx;yÞdxdy
 !

� S�v ðzþÞ� S�v ðz�Þ
	 


Gi
v ðzþÞ�Gi

v ðz�Þ
� �

�
Z
Xxy

kKIR
�
wðx;yÞFi

wðx;yÞdxdy
 !

� S�wðzþÞ� S�wðz�Þ
	 


� Gi
wðzþÞ�Gi

wðz�Þ
� �i

ð53Þ

Each integral over Xxy gives a finite element operator after a
finite element assembly. The parts related to z are already discrete
and therefore easy to assemble in a global matrix. The finite ele-
ment operator related to the cohesive zone can then be built under
a separated form and added to the rigidity matrix. In general, 3
terms are added to the sum defined in Eq. (46).

3.3.2. Cohesive surface normal to the mid-plane surface
In this case, the cohesive surface is normal to the plane

Xxy � ðx; yÞ. We assume for sake of clarity and without loss of gen-
erality that the cohesive surface is normal to the x axis, ie
Ccoh � Xyz ¼ ðy; zÞ. The relation between the stress vector Tcoh and
the relative displacement vector d is then given by:

Tcoh ¼
rxx

rxy

rxz

0
B@

1
CA ¼

kKIdx
kKIIdy
kKIIdz

0
B@

1
CA ð54Þ

The initial positions of the two faces of the cohesive zone are
defined by their coordinates on the x axis denoted xþ and x� for
all y; z 2 Xyz. The relative displacement can then be written as:

dx
dy
dz

0
B@

1
CA ¼

uðxþ; y; zÞ � uðx�; y; zÞ
vðxþ; y; zÞ � vðx�; y; zÞ
wðxþ; y; zÞ �wðx�; y; zÞ

0
B@

1
CA ð55Þ

The symbols + and � indicate the two sides of the cohesive sur-
face. Using 29, the relative displacement reads:

dx ¼
Xn
i¼1

Fi
uðxþ; yÞ � Fi

uðx�; yÞ
� �

Gi
uðzÞ

dy ¼
Xn
i¼1

Fi
vðxþ; yÞ � Fi

vðx�; yÞ
� �

Gi
vðzÞ

dz ¼
Xn
i¼1

Fi
wðxþ; yÞ � Fi

wðx�; yÞ
� �

Gi
wðzÞ

8>>>>>>>>><
>>>>>>>>>:

ð56Þ

And with Eq. (34) the virtual separation d� can be written as:

d�x ¼ R�
uðxþ; yÞ � R�

uðx�; yÞ
	 


S�uðzÞ
d�y ¼ R�

vðxþ; yÞ � R�
vðx�; yÞ

	 

S�vðzÞ

d�z ¼ R�
wðxþ; yÞ � R�

wðx�; yÞ
	 


S�wðzÞ

8><
>: ð57Þ

Finally, the term related to the cohesive zone in the weak for-
mulation Eq. (47) becomes:
Z
Ccoh

Tcohd
�dC ¼

Xn
i¼1

Z
Xy

kKI R�
uðxþ; yÞ � R�

uðx�; yÞ
	 


Fi
uðxþ; yÞ � Fi

uðx�; yÞ
� �

dy

 !"

�
Z
Xz

S�uðzÞGi
uðzÞdz

� � Z
Xy

kKII R�
v ðxþ; yÞ � R�

v ðx�; yÞ
	 


Fi
v ðxþ; yÞ � Fi

v ðx�; yÞ
� �

dy

 !

�
Z
Xz

S�v ðzÞGi
v ðzÞdz

� � Z
Xy

kKII R�
wðxþ; yÞ � R�

wðx�; yÞ
	 


Fi
wðxþ; yÞ � Fi

wðx�; yÞ
� �

dy

 !

�
Z
Xz

S�wðzÞGi
wðzÞdz

� ��
ð58Þ



Each integral over Xz gives a finite element operator after a
finite element assembly. Some 2D cohesive elements can also be
assembled in a global operator on Xxy. Finally, the finite element
operator related to the cohesive zone can be built under a sepa-
rated form and added to the rigidity matrix in the sum defined in
Eq. (46).

3.4. Proper generalized decomposition

In this work, the time is treated incrementally with the New-
mark’s scheme. A Proper Generalized Decomposition is required
at each time step to build the solution.

Firstly, the dynamical system at a time t (Eq. (10)) must be
rewritten in a separated form. This is trivial when we get the dis-
cretized operators (mass and rigidity matrix) in a separated form.
The effective stiffness matrix can then be expressed as:

½K�� ¼ ½K� þ 1

bðDtÞ2
½M�

" #
¼
Xm
p¼1

K�p
xy 
 K�p

z ð59Þ

The force matrix at a time t þ Dt must also be written in the fol-
lowing separated form:

fF�
tþDtg ¼

Xmf

p¼1

ff �pxyg 
 ff �pz g ð60Þ

The Galerkin method with the classical greedy algorithm is used
to build the Proper Generalized Decomposition. The method is
briefly described in the following.

We consider the weak form of the dynamical equation Eq. (10):

fu�gT ½K��fug ¼ fu�gTfF�
tþDtg 8fu�g ð61Þ

The n first terms of the separated approximation of the solution
are assumed known. Then we want to enrich the solution, ie to add
a new term nþ 1 such as:

fug ¼
Xn
i¼1

fFig 
 fGig þ fFnþ1g 
 fGnþ1g ð62Þ

Of course, at the beginning when n ¼ 0 nothing is known a pri-
ori. The problem consists in finding fFnþ1g and fGnþ1g. This is a
non-linear problem that needs to be linearized. To solve it, an alter-
nate direction strategy is used:

Fig. 5. Numerical models used for impact analysis.

Table 1
Material properties of the laminate and impactor properties.

Laminated plate EL ¼ 157;380 MPa; ET ¼ 11;873 MPa
GLT ¼ GTT ¼ 5051 MPa

mLT ¼ mTT ¼ 0:31

Impactor Ei ¼ 207 GPa; mi ¼ 0:30
qi ¼ 7800 kg=m3; Ri ¼ 12:5 mm

Fig. 6. Location of cohesive elements.

Table 2
Cohesive properties.

Cohesive properties KI ¼ 1:104 N=mm3; KII ¼ 5:104 N=mm3

rc ¼ 60 MPa; sc ¼ 139 MPa
GIc ¼ 0:3 N=mm; GIIc ¼ 1:6 N=mm

41



1. Initialize the values for fFnþ1g and fGnþ1g to a random values.
2. Update fFnþ1g knowing fGnþ1g.
3. Update fGnþ1g knowing fFnþ1g.
4. Check the convergence, for instance in comparing two succes-

sive values of fFnþ1g and fGnþ1g.
5. If not converged, return to 2.

Only step 2 is described now, step 3 being very similar.

fFig and fGig are known for i ¼ 1 . . .N. fGnþ1g is also known and
we want to computefFnþ1g. Therefore the virtual displacement can
be written as:

fu�g ¼ fF�
nþ1g 
 fGnþ1g ð63Þ

With Eqs. (62) and (63) the weak form of the dynamical equa-
tion Eq. (61) can be expressed as:

Fig. 7. Comparison of contact force-time history.

Fig. 8. Velocity of the impactor.

Fig. 9. Comparison of plate central displacement-time history.
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fF�
nþ1g 
 fGnþ1g

	 
T ½K�� fFnþ1g 
 fGnþ1gð Þ

¼ fF�
nþ1g 
 fGnþ1g

	 
fF�
tþDtg � fF�

nþ1g 
 fGnþ1g
	 
T ½K��

Xn
i¼1

fFig 
 fGig
!

ð64Þ
By splitting ½K�� and fF�

tþDtg with Eqs. (59) and (60) and using
the properties of the Kronecker product we get:

Xm
p¼1

K�p
xyfFnþ1g � fGnþ1gTK�p

z fGnþ1g
� �

¼
Xmf

p¼1

ff �pxyg � fGnþ1gTff �pz g
� �

�
Xn
i¼1

Xm
p¼1

K�p
xyfFig � fGigTK�p

z fGig
� �

ð65Þ
Eq. (65) is a simple linear system from which fFnþ1g can be
computed.

Once futþDtg have been computed on a separated form, f _utþDtg
and f€utþDtg can be computed from Eqs. (8) and (9).

Remark. The number of terms in the separated representation of
fF�tþDtg is generally very high due to the sum in Eq. (60). This
strongly penalizes the computational time. To overcome this
problem, the separated representations of fF�tþDtg may be recom-
puted using a Singular Value Decomposition or using a PGD with
the identity operator, ie by solving with the PGD algorithm the
equation:

fF�
tþDtgnew ¼ fF�

tþDtgold
¼ fFtþDtg þ ½M� 1

bðDtÞ2 futg þ 1
bðDtÞ f _utg þ ð 1

2b
� 1Þf€utg

( )

ð66Þ

Fig. 10. Displacement of the impactor.

Fig. 11. Force history for an impact of 1.5 J compared with experimental results.

Fig. 12. Delamination areas for the lower interface 0�=90� of the laminate ½903=03� s
subjected to impact energy 1:5 J.



4. Numerical simulation

4.1. Geometrical modeling and Boundary conditions

In our previous works [36], we have demonstrated that the PGD
can be used as an alternative to overcome the computational draw-
backs of FEM such as the rapid increase in the number of degrees of
freedom, the large computational time, and the storage limitation.
In this work, the predictive capabilities of the PGD approach are
evaluated by simulating the low velocity impact response of
cross-ply laminates. The impact response analysis is also per-
formed using a standard FE approach.

We consider a rectangular plate 60� 40� 3 mm made of unidi-
rectional carbon/epoxy material, with stacking sequence ½903=03� s.
The cross-ply laminate is assumed to be clamped along all the four
edges and impacted at the center by a 12.7 mm diameter alu-
minum sphere. An initial velocity V0 is applied to the impactor.
All the nodes of the plate edge are fixed in all directions (x, y, z)
to simulate the experimental clamped conditions. The main advan-
tage of the PGD approach in comparison with the basic FEM
approach is the reduction of the computational time. To do that,
the 3D mesh is separated into 2D and 1D meshes as represented
in Fig. 5. The boundary conditions are also shown in the same fig-
ure. The material properties used in the simulations are listed in
Table 1 where the subscript L and T denotes respectively the direc-
tion of fibers and the transverse direction.

4.2. Results

In the PGD model, the smallest element size in the impact zone
is 0:3� 0:3 mm. The size of elements was selected by sensitivity
analysis in terms of convergence, structural response and damage
propagation. The sensitivity analysis showed that the PGDmodel is
less sensitive to mesh size than the FE model. The fine mesh region
on the laminate plane is 40 mm � 20 mm, as shown in Fig. 6. Each
element layer represents one lamina ply.

As discussed previously, under low-velocity impact, damage is
initiated by matrix cracking in the lowest ply of the laminate,

which create delaminations at interfaces between plies with differ-
ent fiber orientations. Based on this analysis and as done in [37],
two rows of vertical cohesive elements are placed on the symmetry
plane parallel to the 90� direction to simulate the initiation and
growth of the major intralaminar matrix crack (bending crack),
typically developing along the fiber direction in the lower block
of layers (Fig. 6). To simulate the initiation and propagation of
the delamination, cohesive elements are also inserted at the inter-
faces between layers with different fiber orientations (0�=90� and
90�=0� intarfaces). The properties of the cohesive elements are pre-
sented in Table 2. The cohesive elements share nodes with the
solid elements and have zero thickness.

The PGD discretization allows a reduction of the number of
interface elements in comparison with the FEM discretization,
which minimizes modeling complexity.

The impact simulation described previously were performed
with two different initial impact velocities: 1 m s�1 and 3 m s�1.
The mass of the impactor is equal to 2.3 kg. The time step used
for the implicit newmark algorithm is 10�4 ms. The evolution of
the impact force for the two initial impact velocities obtained
with the PGD and the FEM are depicted in Fig. 7. The PGD and
the FEM gives very similar results. Fig. 8 shows the velocity of
the impactor-time history. In Figs. 9 and 10 the deflexion of
the plate at the contact point and the displacement of the
impactor versus time are shown. All the results shows a good
agreement between FEM and PGD. The PGD is adapted to
perform impact simulation using an incremental implicit new-
mark scheme.

4.3. Comparison with experimental results

The simulation have also been launched using the parameters
corresponding to the experimental configuration developed by
Aymerich et al. in [37]. This test case concerns carbon/epoxy com-
posite plateswith afiber volume fractionVf ¼ 50%. and thematerial
properties havebeen set accordingly (EL ¼ 127;000 MPa,ET ¼ 9370
MPa, GLT ¼ 3900 MPa, GTT ¼ 3358 MPa, mLT ¼ 0:31; mTT ¼ 0:39). The
impactor is the same as in previous section (2.3 kg) and the cohesive
properties proposed in [37] have been used.

We can see in Fig. 11 that the resulting force history for a
impact energy of 1.5 J (impactor initial velocity	 1:14 m/s) is quite
coherent with the experimental one (maximal force around 1750 N
at t = 2.2 ms). The damage shapes of the lower interface 0�/90� and
the upper interface 0�/90� are similar to the experimental damage
given by Ayemrich et al. (Fig.).

The delamination shapes obtained from the PGD simulation at
the upper and lower interfaces are shown in Figs. 12 and in 13
using the same scale. The length and width of the delaminated area
are respectively 21.4 mm and 6.8 mm for the experimental results
and 20.5 mm and 6 mm for the PGD model. The propose model is
thus satisfactory to give and estimation of the shape of delami-
nated area.

5. Conclusion and perspectives

In this article, we have shown the ability of the PGD to predict
the impact response of a ½903=03�s cross-ply laminate under a low
velocity impact. The PGD have been implemented in conjunction
with CZM to represent delamination and matrix cracking. A close
agreement is observed between the PGD and the FEM. The two
methods have been compared with regard to the contact force,
the damage variables, the displacement and velocity of the impac-
tor. In addition, the method have been compared with experimen-
tal results and shows a good ability to predict the force history and
delamination shape.

Fig. 13. Delamination areas for the upper interface 90�=0� of the laminate ½903=03� s
subjected to impact energy 1:5 J.



However, the method may be improved in some future works:

� For this example, the computational cost of the PGD remains of
the same order of magnitude as the one of the FEM. A significant
gain is expected for more complex simulations with more
degrees of freedom in the thickness. Some improvement in
the algorithm that build the separated representation should
be developed in order to increase the computational efficiency
of the proposed strategy.

� The proposed model only accounts for delamination and local-
ized matrix crack. This is not always sufficient to study complex
damage in industrial structures. Therefore, the model should be
improved to consider the different damage types and the inter-
action between them. In particular the use of the extended
finite element method (XFEM) should be investigated to model
damages without modifying the mesh.

� The proposed approach developed in plate structures could be
extended to shell structures with the strategy proposed in [12].
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