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Elastic calibration of a discrete domain using a proper generalized
decomposition

J. Girardot
1

· E. Prulière
1

Abstract

Current discrete/lattice methods can simulate a continuous mechanical behavior thanks to a network of bonds. The main

drawback of these approaches is the need of a calibration process to link the emerging behavior of the structure and the

parameters of the local mechanical bond. It is proposed in this work to use a fast and recent reduction model technique to

build once and for all an exhaustive data chart and thus to avoid the calibration process. The proper generalized decomposition

technique was used to build a parametric analysis in the case of a lattice beam structure. The results were in the range of

the current calibration values found in the literature and extend it by giving a global calibration curve. They also allowed

to discuss about the influence, in this specific case of lattice-beam structure, of the density of beams in terms of number of

discrete elements and connectivity.

Keywords Calibration · Lattice · Beam particle model · Discrete element method · Proper generalized decomposition

1 Introduction

The discrete approach was originally developed for granu-

lar media [6]. It consists in evaluating contact forces on a

multitude of discrete and generally spherical elements. The

monitoring of the position of these elements over time is

then carried out by integrating the accelerations, in the case

of the smoothed contact dynamic [12]. This approach has

been extended to continuous and homogeneous media by

several authors, [9,13,17] among others, by means of cohe-

sive links. In these different works, these links are positioned

thanks to their nodal extremities. The position of these nodes

is obtained through different algorithms that can be grouped

in two categories :

– algorithms based on a problem of granular stacking of

discrete elements [4];
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– algorithms based on a random spatial dispersion of a reg-

ular grid of nodes [21].

The final domain is therefore a so-called discrete medium,

but with a continuous and homogeneous emerging behavior.

The advantage of this type of representation is its ability to

easily represent (in a numerical sense) fracture and/or contact

mechanisms.

A calibration is nevertheless necessary to link the parame-

ters of the cohesive bond to those of the desired homogeneous

material [3,8]. With an elastic bond behavior based on a

Bernoulli beam kinematic, the calibration process links the

Young’s modulus, the Poisson’s ratio and the radius of the

beams (assumed with cylindrical shape) to the Young’s mod-

ulus E and the Poisson’s ratio ν of the material to simulate.

It was indeed observed that the micro-elastic parameters

needed for the beams are very different from the real ones at

the macro-scale. For example, to represent a homogeneous

elastic material with the following parameters EM = 30 GPa

and νM = 0.3, the micro-parameters are Eµ = 200 GPa,

νµ = 0.4 and a radius ratio of 0.4 (for a coordination num-

ber of 6.2 using the same packing technique used in [3]).

At present, this calibration step is carried out at each

new simulation work. Thanks to numerous parametric sim-

ulations, the recent work in [15] gives some data charts to

facilitate the calibration process but is limited by the range
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of the chosen parameters, and the same parametric study

needs to be done for out-of-range input parameters or behav-

ior (currently, only the elastic brittle behavior is taken into

account in the literature dealing with calibration processes

with also some attempts for orthotropic materials [7]).

So for a fast and global calibration, the point is to get the

macroscopic response for all possible microscopic parame-

ters. But this requires the resolution of a multi-parametric

problem in high dimension.

There are several strategies to build parametric response

of a system, mainly relying on meta-modeling (response sur-

faces, manifold learning, …). This kind of methods has in

common the need of several problem solutions for many sets

of parameters. These solutions are used to interpolate or to

approximate the multi-dimensional solution. By principle,

meta models do not rely on physical models, all the physics

being embedded in the entry data.

Another approach for solving multi-dimensional prob-

lems directly from the physical equations has been developed

during the last years. This approach uses the proper general-

ized decomposition (PGD) which is an efficient tool to solve

a problem for all parameters in only one step.

Originally, the PGD was devised as an a priori model

reduction method. The drawback of standards a posteriori

model reduction techniques, such as the proper orthogonal

decomposition (POD), is that they rely on some reduced

basis that are difficult to obtain. The reduced basis is gener-

ally computed by costly finite element simulations [10]. Two

approaches have been developed to get the reduced solution

of a problem without assuming the reduced basis (a priori

model reduction):

– The a priori hyper-reduction method (APHR), which con-

sists in enriching the reduced basis on the fly when the

norm of the residual becomes higher than a tolerance

value [20]

– In the LATIN method, where the spatial reduced basis

and the time evolution are computed at the same time

[14]. The PGD approach is similar to the strategy used in

the LATIN method.

Both of these methods were originally designed to solve

space/time problems. After that, the PGD has been devel-

oped to solve the Fokker–Plank equation encountered in the

statistical description of complex fluids based on the Kinetic

theory with a drastic reduction of the computational cost [1].

Then, it has been used in a wide range of applications like, for

instance, the mechanical behavior of thin structures [19] or

to simulate an electromagnetic coupling [11]. In particular,

the PGD has proven very efficient to solve parametric equa-

tions [16]. In [18], an original use of the PGD is proposed to

perform a parametric analysis of a mechanical problem. The

PGD opens the possibility to build in only one simulation, the

solution of a problem for a wide number of parameter sets.

This hyper-solution can be seen as a computational vade-

mecum and can be used for real-time applications and fast

design procedures [5]. Based on these former works, we pro-

pose to develop a model reduction approach to build in very

short computation times a complete parametric analysis of a

discrete domain. This study is a proof of concept and will be

limited to:

– cohesive links of the elastic Bernoulli beam type

– a nodal positioning strategy of granular type based on the

work of André et al. [4].

After detailing the parametric PGD implementation applied

to a network of beams, the calibration results will then be

compared to a literature reference. Finally, the influence on

the calibration curves of the cohesive bond density within the

discrete domain will be analyzed.

2 Domain generation

2.1 Granular packing

In this work, the generation of the domain is based on the

work of André et al. [3,4]. A granular packing is achieved in

a three-dimensional cylindrical geometry in order to obtain

the position of the discrete elements respecting classic gran-

ular filling properties such as the coordination number which

is close to 6.2 in this case. These granular arrangement prop-

erties ensure a homogeneous positioning of the elements

in a 3D volume. Then, a cohesive link is inserted between

each particles in contact (i.e., when an interpenetration is

recorded). Figure 1 shows the final result of this operation to

create the positioning of discrete elements (whose radius is

randomly drawn according to a Gaussian distribution) with

the resulting network of cohesive links.

2.2 Beammodel

A simple linear homogeneous beam based on the Navier–

Bernoulli model is considered. The beam local coordinates

(x, y, z) are defined such as the beam axis is set along the x

axis. The displacement and rotation of the beam section in

local coordinates are noted, respectively, u, v, w, θx , θy , and

θz . The displacement vector u is defined as:

u =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

u

v

w

θx

θy

θz

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (1)



Fig. 1 One of a cylinder sample (3D orthographic view) used in the present work meshed with a granular packing of spheres (left) and its

corresponding bond network (right)

The beam is assumed to be a perfect cylinder whose length

and diameter are noted L and D. The quadratic momentum

following y and z is:

Iyy = Izz = I =
π D4

32
. (2)

The quadratic polar momentum is then J = I/2, and the

cross section area is S = π
4

D2. The material constitutive

equation is linear elastic with an elastic coefficient E and a

Poisson ratio ν. The second Lame coefficient is then:

µ =
E

2(1 + ν)
. (3)

The weak form of the beam equilibrium equation without

inertia is given by:

∫ L

0

(

E S
du∗

dx

du

dx
+

µI

2

dθ∗
x

dx

dθx

dx

+E I
dθ∗

y

dx

dθy

dx
+ E I

dθ∗
z

dx

dθz

dx

)

dx = Wext(u
∗), (4)

where Wext(u
∗) is the virtual work associated with the exter-

nal loads as a function of the virtual displacements u∗, θ∗
x ,

θ∗
y and θ∗

z . Neglecting the shear deformation, the rotational

degrees of freedom are related to the displacements one by

θy = dw
dx

and θz = dv
dx

.

The parametric PGD formulation will be described in the

next section.

2.3 Tensile test

A monotonic pure tensile test is applied on the cylindrical

discrete sample. Displacements on x-direction are applied

on both extremities as 0 on the left side and 0.1 on the right

to reach 10% of global deformation. We can notice then,

since the model is linear, no large strain effect is considered

and the global enforced strain has no effect on the calibra-

tion. This simple uniaxial tension test is generally used to

identify the apparent Young’s modulus and Poisson’s ratio

of the whole sample. To do so, mean elongation and radius

evolutions are post-processed at the end of each simulations.

The sample used for the first step of this numerical work

is made of a network of 33103 beams. This number comes

from an approximate number of discrete elements (mean-

ing undeformable spheres) of 10,000 which was defined as a

converged density mesh [4].

Figure 2 shows the displacement magnitude on each beam

of the network on the sample. A typical emerging displace-

ment field is observed for a homogeneous cylindrical sample

loaded in uniaxial tension.

3 Proper generalized decomposition for a
parametric Bernoulli beam

3.1 Parametric proper generalized decomposition
approximation

We are looking for the solution of Eq. (4) for values of E

on the interval [Emin, Emax], for values of ν on the interval

[νmin, νmax] and for values of D in the interval [Dmin, Dmax].

E , ν and D are assumed to be constant along the beam.

To get the solution of the parametric problem, several

strategies can be carried out. As mentioned in the introduc-

tion, we choose to use the parametric PGD defined in [18].

The idea is to take the parameters as additional coordinates.

We are then looking for an approximation of the global solu-

tion using this simple separated expression :

u(x, E, ν, D) ≈

n
∑

i=0

Fi (x) × Gi (E) × Hi (ν) × Ki (D),

(5)

where Gi , Hi and Ki are scalar functions and Fi are vector

functions for all integer i ∈ [0, n]. Fi is defined by:

Fi =

⎛
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Fig. 2 Magnitude displacement

field of a 3D cylindrical 33,103

beams network under a global

tensile loading

where each component of Fi is a scalar function defined on

x .

3.2 Weak form of the global problem

We want to find the solution for every values of parameters

in only one simulation. Since the parameters are treated as

additional coordinates, the problem is formulated in 6 dimen-

sions: 3 dimensions for space (x , y and z) and 3 dimensions

for parameters (E , ν and D). A beam in itself is modeled by

a 1D domain, but the DEM mesh is represented by a dense

3D lattice structure.

The weak formulation (4) is then modified to account for

the new parametric coordinates:

∫ Emax

Emin

∫ νmax

νmin

∫ Dmax

Dmin

∫ L

0

→

(

E
π D2

4

du∗

dx

du

dx
+ µ

π D4

64

dθ∗
x

dx

dθx

dx

+E
π D4

32

dθ∗
y

dx

dθy

dx
+ E

π D4

32

dθ∗
z

dx

dθz

dx

)

→ dxdDdνdE = Wext(u
∗). (7)

The well-known curse of dimensionality makes the solv-

ing of the 6-dimensional problem very costly because of the

explosion of the number of degrees of freedom (1012 nodes

if we use 100 nodes per dimension). The use of the PGD

approximation gives a solution to this very high number of

degrees of freedom. As the displacement is assumed on a sep-

arated form, a kinematically admissible virtual displacement

will also be approximated using a separated form:

u
∗(x, E, ν, D) = F

∗(x) × G∗(E) × H∗(ν) × K ∗(D). (8)

Introducing equations (5) and (8) in the weak form equa-

tion (7) and using the definition of µ in (3) gives:

n
∑

i=0

Ψ (F
∗, G∗, H∗, K ∗, Fi , Gi , Hi , Ki ) = Wext(u

∗), (9)

with the function Ψ defined by:

Ψ (F
∗, G∗, H∗, K ∗, Fi , Gi , Hi , Ki )

=

(∫ L

0

dFu∗

dx

dFu
i

dx
dx

)

(∫ Emax

Emin

EG∗Gi dE

) (∫ νmax

νmin

H∗Hi dν

)

(∫ Emax

Emin

π D2

4
K ∗Ki dD

)

+

(

∫ L

0

dFθx
∗

dx

dF
θx

i

dx
dx

)

(∫ Emax

Emin

EG∗Gi dE

) (∫ νmax

νmin

1

2(1 + ν)
H∗Hi dν

)

(∫ Emax
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π D4
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K ∗Ki dD

)

+

(

∫ L

0
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∗

dx
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θy

i

dx
dx

)

(∫ Emax
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EG∗Gi dE

) (∫ νmax
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H∗Hi dν

)

(∫ Emax

Emin

π D4

32
K ∗Ki dD

)

+

(

∫ L

0

dFθz
∗

dx

dF
θz

i

dx
dx

)

(∫ Emax

Emin

EG∗Gi dE

)

(∫ νmax

νmin

H∗Hi dν

) (∫ Emax

Emin

π D4

32
K ∗Ki dD

)

. (10)

3.3 Iterative solving algorithm

Several algorithms exist to find the PGD solution of the prob-

lem defined above. The simplest algorithm based on a greedy

approach combined with an alternate direction fixed point



method has brought very satisfactory results in terms of pre-

cision and computational cost [16].

We assume that the solution Eq. (5) is known until the

iteration n and we want to enrich the solution with a new

term n + 1. Of course, nothing is known at the first iteration,

and the solution is built iteratively.

The displacement is then:

u(x, E, ν, D)

=

n
∑

i=0

Fi (x) × Gi (E) × Hi (ν) × Ki (D)

+Fn+1(x) × Gn+1(E) × Hn+1(ν) × Kn+1(D) (11)

And the weak formulation can be rewritten as:

Ψ (F
∗, G∗, H∗, K ∗, Fn+1, Gn+1, Hn+1, Kn+1)

= Wext(u
∗) −

n
∑

i=0

Ψ (F
∗, G∗, H∗, K ∗, Fi , Gi , Hi , Ki )

(12)

We start from random values of the unknown Fn+1, Gn+1,

Hn+1 and Kn+1 that verify the boundary conditions, and we

update alternatively Fn+1, Gn+1, Hn+1 and Kn+1 knowing

the others.

When updating Fn+1, the other functions Gn+1, Hn+1

and Kn+1 are assumed known and the virtual field can be

then expressed by:

u
∗(x, E, ν, D)

= F
∗(x) × Gn+1(E) × Hn+1(ν) × Kn+1(D) (13)

The weak form becomes:

Ψ (F
∗, Gn+1, Hn+1, Kn+1, Fn+1, Gn+1, Hn+1, Kn+1)

= Wext(u
∗) −

n
∑

i=0

Ψ (F
∗, Gi , Hi , Ki , Fi , Gi , Hi , Ki )

(14)

All the integrals in Ψ [see Eq. (10)] can be computed numeri-

cally excepted the ones related to x . The problem is therefore

reduced to a simple weak problem on x . As x is a local coordi-

nate, the weak formulation for many beams implies a change

of base and a finite element assembly in global coordinates.

The system to solve is then built and solved following the

standard finite element method.

Now, we want to update, for instance, Gn+1, the other

functions Fn+1, Hn+1 and Kn+1 being known. The weak

form becomes then:

Fig. 3 PGD error during each simulations presented in this work

Ψ (Fn+1, G∗, Hn+1, Kn+1, Fn+1, Gn+1, Hn+1, Kn+1)

= Wext(u
∗) −

n
∑

i=0

Ψ (Fi , G∗, Hi , Ki , Fi , Gi , Hi , Ki )

(15)

All the integrals in Ψ [see Eq. (10)] can be computed numer-

ically except the ones related to E . It remains only a simple

1D problem on Gn+1 that is solved very efficiently since

there is no derivative depending on E.

The convergence of the PGD algorithm is reached when

the last computed term (index n) becomes negligible com-

pared to the most significant one, generally the first (index

0). The error is then computed using:

Err =
||Fn|| × ||Gn|| × ||Hn|| × ||Kn||

||F0|| × ||G0|| × ||H0|| × ||K0||
(16)

where ||.|| is a suitable norm. In practice, every field is dis-

cretized, and then, the Euclidean norm is the natural choice.

More details on the PGD, and in particular, how to apply

the boundary conditions are given in [2].

4 Results

All the convergence errors for the iterative solving algorithm

in the simulations of this work are shown in Fig. 3. These

results show good convergence for an error lower than 10−5

(the convergence error threshold) reaching from 20 to 40

iterations.

For the next sections, all the result of the PGD calibration

analysis is represented on two curves. (This is the dual rep-

resentation of a calibration chart.) It was chosen to represent

the ratio of the Young’s moduli of the beams and the homo-



Fig. 4 Comparison of the

calibration curves with results

from Andre [4] for 33103 beams

Fig. 5 Influence of the

micro-Poisson’s ratio on the

calibration

Fig. 6 From a coarse to a finer mesh used for the convergence analysis

geneous material as well as the homogeneous Poisson’s ratio

as a function of the ratio (noted radius ratio r̃ ) of the mean

radius of the discrete elements in the granular arrangement

on the beam mean radius.

4.1 Validation

In Fig. 4, calibration results of four different samples obtained

by granular packings with the same input parameters (mean

number of discrete elements, final coordination numbers) are

plotted and compared to the already known calibration anal-

ysis in [4]. In this case, a special attention was given to use

similar post-processing measurement of the global elonga-

tion and radius variation after the tensile test than in this

previous work. The corresponding four calibration curves

are showing the same tendencies that actual discrete sim-

ulations show. This also validates the non-influence of the

random position of the beams regarding the emerging elastic

behavior: The four samples give the same calibration curves.

Furthermore, Fig. 5 also shows the non-influence of the

microscopic Poisson’s ratio of each beam on the calibration

chart. Here, only three values of micro-Poisson’s ratio are

plotted, but the global PGD analysis contains a space dis-

cretization of the coordinates ν of 100 points (from 0.01 to

0.9) and has again the same trends. The value 0 was not taken

into account in the study as the standard Bernoulli beam kine-

matic is an hypothesis of this work.

4.2 Mesh density influence

In this part, the density of the mesh, i.e., the number of beams

in the same volume sample, on the calibration chart is ana-

lyzed. Different meshes were used starting with a coarse

mesh of 1830 beams and finishing a fine mesh of 33,103

beams (see Fig. 6).



Fig. 7 Convergence results on

the number of beams on the

calibration curves

Fig. 8 Three different

coordination numbers of beams

for the same node positions

Fig. 9 Influence of the

coordination number C N on the

calibration

An influence of these different meshes on the two cal-

ibration parameters is observed in Fig. 7. Concerning the

ratio of the modulus, no influence is observed, whereas to

obtain the Poisson effect of the emergent structure, an impor-

tant influence is observed but tends to converge to the mesh

with 33,103 beams, which is also a well-known results as the

equivalent number of discrete elements is around 10,000.

4.3 Coordination number influence

An analysis of the influence of the coordination number (see

Fig. 8) has been performed. This parameter corresponds to

the connectivity of a bond network and can have a strong

influence on the structure behavior. Thus, Fig. 9 shows that

the calibration of a lattice structure is also influenced by the

nature of the mesh construction, and significantly, both for

the ratio of the modulus, where a vertical shift of the curves

is observed but also for the Poisson effect where even the

trends are changing for small values of radius ratio.

5 Conclusion

The use of a reduction technique applied to the discrete

medium calibration problem is relevant. The very short com-

putation times made it possible to confirm some of the results

already known in the literature, but above all to provide the

new calibrations charts for homogeneous and elastic behav-

iors taking into account the discrete nature of the domain.

The introduction of nonlinearities such as viscosity and plas-

ticity is the next step of this work, consisting on building new

weak formulations in the PGD paradigm.



As a final conclusion of this work, we can say that the

reader is highly invited to use the proposed method to per-

form his own calibration study regarding his own simulation,

meaning the use of different discrete bonds or a different

protocol to position the nodes. It must be noticed that this

computational approach could also be very helpful in lattice

architecture materials such as the ones made with 3D print-

ers. Perspectives of this work can be then numerous.
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