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Abstract – In order to exploit the advantages 
of receptor-based virtual screening, namely 
time/cost saving and specificity, it is important 
to rely on algorithms that predict a high 
number of active ligands at the top ranks of a 
small molecule database. Towards that goal 
consensus methods combining the results of 
several docking algorithms were developed 
and compared against the individual 
algorithms. Furthermore, a recently proposed 
rescoring method based on drug efficiency 
indices was evaluated. Among AutoDock Vina 
1.0, AutoDock 4.2 and GemDock, AutoDock 
Vina was the best performing single method in 
predicting high affinity ligands from a 
database of known ligands and decoys. The 
rescoring of predicted binding energies with 
the water/butanol partition coeffcient did not 
lead to an improvement averaged over all 
receptor targets. Various consensus 
algorithms were investigated and a simple 
combination of AutoDock and AutoDock Vina 
results gave the most consistent performance 
that showed early enrichment of known 
ligands for all receptor targets investigated. In 
case a number ligands is known for a specific 
target, every method proposed in this study 
should be evaluated.  

Keywords: molecular docking, in silico 
screening, consensus ranking, benchmark, 
comparison 

1. Introduction 

Receptor-based virtual screening docks each 
molecule of a library into a receptor binding 
site of known or predicted 3D structure. It has 
been successfully used to predict high affinity 
protein ligands (Lee et al, 2010; Park et al, 
2009).  The molecules of the library are ranked 
according to their predicted binding affinity 

for the receptor. Apart from saving time and 
costs in the discovery of ligands for a protein 
target, an additional benefit is the increased 
specificity of the predicted ligands, because 
receptor-based virtual screening is directed 
against a known binding site or even against a 
particular receptor conformation (Bruning et 
al, 2010). This enables the targeting of specific 
binding sites that are evolutionary conserved 
in pathogens such as the influenza virus 
(Darapaneni et al, 2009) or conversely, for 
endogenous diseases targeting of binding sites 
that are not conserved among homologous 
proteins in order to avoid side effects. Critical 
for the success of a virtual screening 
experiment is the prediction of binding 
affinities for the ligand to the receptor. 
Previous studies have attempted to increase 
the correlation between predicted and 
experimental binding affinities. With the 
consensus docking method VoteDock that 
combines seven docking algorithms a Pearson 
correlation coefficient of 0.5 to 0.6 was 
observed (Plewczynski et al, 2011). Another 
approach directed at the re-scoring of 
predicted binding energies with various 
ligand-derived chemical parameters, such as 
the water/butanol partition coeffcient 
achieved correlation coeffcients of better than 
0.9 for individual docking methods (Garcia-
Sosa et al, 2010). However, these studies did 
not consider decoy ligands, but only the 
ligands included in the receptor-ligand 
complex contained in the PDBbind database 
(Wang et al, 2005). High correlation 
coefficients between predicted and 
experimental binding affinities can be 
meaningless, if they do not lead to a 
separation between ligand and decoy 
molecules as shown in this study. 

The present study reveals the first evaluation 
of the virtual screening performance of the 
new software AutoDock Vina (Trott & Olson, 
2010), the new version of AutoDock 4.2 (Huey 
et al, 2007) and Gemdock (Yang & Chen, 2004) 
against  a selection of targets from the 
Database of Useful Decoys (Huang et al, 2006) 
(DUD). In addition, various strategies of 
combining the results of two or more docking 
algorithms were developed and and the utility 
of recently published ligand efficiency indices 
(Garcia-Sosa et al, 2010) was evaluated. DUD 
contains protein targets with known ligands 
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and decoys that have similar physico-chemical 
properties to known ligands; thus it provides a 
challenging test case for virtual screening 
methods. The performance of virtual 
screening methods depends on the protein 
target, therefore, for this work ten targets 
were selected based on previously reported 
enrichment factors (Huang et al, 2006) 
providing a combination of challenging and 
easy targets. 

 

2. Results and Discussion 

The virtual screening performance was 
analysed with Receiver Operator 
Characteristic (ROC) curves, where the 
prediction rate of true ligands (true positives) 
was plotted against the rate of false positives. 
Examples of ROC curves for various methods 
are shown in figure 1 for the target RXRa.  

Important for the realisation of the cost- and 
time-saving features of virtual screening 
experiments is the prediction of active ligands 
at the highest ranks of database. In order to 

capture this ‘early’ performance the ROC 
Enrichment (ROCE) factors at 2% of the 
ligand/decoy database were calculated for all 
methods and targets. It was obtained as the 
prediction rate of true ligands (true positives) 

Table 1: Receiver Operator Curve enrichment (ROCE) at 2% of ligands for various targets and methods. 

Method 
Target 

AchE CDK2 COMT FGFr1 HIVRT InhA PPARg PR RXRa VEGFr2 Mean StdErrd 

AD4 1.5 17.1 0.0 2.2 2.6 16.0 0.6 13.1 31.2 7.2 9.2 2.1 

Vina 1.5 13.3 10.4 0.0 8.8 16.0 35.8 2.0 31.2 6.2 12.5 3.7 

GemD 1.5 7.1 17.9 4.0 7.4 2.5 9.3 6.9 31.2 7.2 9.5 2.7 

AD4-Pa 1.5 5.6 0.0 8.0 3.9 2.5 8.5 0.0 31.2 4.5 6.6 2.7 

Vina-P 1.5 5.6 0.0 1.3 5.6 2.5 5.9 0.0 31.2 4.5 5.8 2.8 

GemD-P 2.5 5.6 0.0 2.7 3.9 2.5 8.5 2.0 31.2 4.5 6.3 2.7 

CT-AVb 2.5 13.3 0.0 0.9 2.6 20.9 2.6 2.0 54.9 5.4 10.5 5.1 

CT-AGb 0.0 10.0 0.0 3.1 5.6 20.9 2.6 4.3 31.8 4.5 8.3 3.1 

CT-VGb 0.5 11.3 17.9 1.3 5.6 19.9 15.9 2.0 24.2 6.2 10.5 2.6 

CT-AVGb 0.0 8.2 0.0 1.8 2.6 19.9 3.4 0.0 31.8 6.2 7.4 3.1 

J-AVc 1.5 14.7 10.4 1.7 7.4 19.9 17.1 6.9 146.3 7.2 23.3 13.1 

J-AG 2.5 10.0 4.4 4.7 7.4 21.7 8.3 9.8 18.2 7.2 9.4 1.8 

J-VG 2.0 11.3 10.4 2.7 10.9 16.8 24.7 4.3 24.2 7.2 11.5 2.5 

J-AVG 2.5 8.2 10.4 4.0 8.8 19.9 15.9 6.9 31.8 9.2 11.8 2.6 
a Binding energy scores of the ranked list were recalculated with the computed water/octanol partition coefficient, as 
new_score = log10 (-score/P). 
b The ligands, which were common to AutoDock and AutoDock Vina in the top n positions were chosen (with n = 1, 2, 3, …), 
AG: AutoDock/GemDock, VG: Vina/GemDock, AVG: AutoDock/Vina/GemDock 
c Joined rank lists 
d The standard error was calculated as the sample standard deviation divided by the square root of the number of targets, i.e. 
ten. 

Figure 1: Receiver Operator Characteristics (ROC) curves 
for virtual screening against the target RXRa. A) ROC 
curves obtained with standard methods AutoDock, 
AutoDock Vina and GemDock, B) ROC curves obtained 
after recalculating the binding affinities with the XlogP3 
calculated butanol/water partition, C) ROC curves 
obtained from a combination of standard methods using 
the CommonTop algorithm, D) ROC curves obtained from 
a combination of standard methods with the joining 
algorithm 
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divided by the rate of false positives, where an 
ROCE factor of one denotes no improvement 
above random picking of molecules, while an 
ROCE factor above one denotes better than 
random performance.  

The resulting ROCE factors shown in table 1 
are highly variable between methods and 
targets ranging from ROCE2% = 0 to 146. There 
is substantial target variation from easy 
targets that achieve reasonable performance 
with any method to difficult targets that 
achieve a low performance with every 
method. Among the individual docking 
methods, AutoDock Vina shows the best 
performance with an average ROCE2% = 
12.5±3.7, which is also the second best overall 
performance, while the best consensus 
approach is the simple joining method of 
AutoDock and AutoDock Vina rank lists with 
an average ROCE2% = 23±13.  

It should be noted the standard error reported 
represent between-target variation, while a 
repeat docking with the same target yielded 
almost identical results. The rescoring of the 
binding energies ΔG with the water/butanol 
partition coefficient P according to log(-ΔG/P) 
as suggested by Garcia-Sosa et al. (2010), did 
not lead to a significant improvement. The 
authors of this study reported an 
improvement of correlation coefficient 
between calculated and experimental binding 
energies from 0.347 for the AutoDock 
calculated binding energies to 0.996 after 
rescoring. A reason for the lack of 
improvement in the current study may be the 
challenging DUD decoy set, which was chosen 
according to physico-chemical similarity with 
the known ligands (Huang et al, 2006). 

Most notably, the simple method of joining of 
AutoDock and AutoDock Vina rank lists 
illustrated in figure 2 achieved above random 
performance for all targets. This is important 
in situations, where no existing ligand for a 
target is known. In the situation, when a 
number of ligands is known for a protein 
target all methods should be tested as table 1 
shows that even methods with a low average 
performance can perform well on a particular 
target, e.g. for the target FGFr1 the rescoring 
with the water/octanol partition coefficient 
yielded the best performance of ROCE2% = 8.0. 

 
Figure 2: Flowchart of the consensus method based on a 
simple joining of rank lists from individual methods. 

 

It is interesting, to note the relationship 
between the ranking of ligands from various 
docking methods as shown in figure 3 for the 
example of the target RXRa. If two docking 
methods were perfect predictors of binding 
affinity, all rankings between the two methods 
should fall on a straight line in figure 3. In 
reality there is almost no correlation between 
the ranks obtained by two different docking 
algorithms, even if they were developed in the 
same research group such as AutoDock and 
AutoDock Vina (figure 3a). There is a weak 
correlation for the highest ranked predictions 
up to rank 120 as highlighted in figure 3. While 
this lack of correlation shows that docking 
methods are far from perfect, it also provides 
the opportunity to combine predictions from 
different methods as it was exploited in the 
current study. 
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Figure 3: Correlation between the ranking of molecules 
in the DUD dataset for the target RXRa. The rank 
obtained with one docking algorithm was plotted agains 
the rank obtained with another algorithm. The area 
surrounded by a dashed line highlights some correlation 
observed at the highest ranking ligands. A) AutoDock 
Vina ranks plotted against AutoDock ranks, B) GemDock 
ranks plotted against AutoDock ranks and C) GemDock 
ranks plotted against AutoDock Vina ranks. 

For the two most difficult targets, AchE and 
FGFr1, further approaches were investigated 
such as increasing the calculation time of 
individual methods by a factor of three or 
combining two or more rank lists by 
calculating a consensus rank (method 4). The 
results in table 2 showed that the increase of 
docking calculation time by a factor of three 
lead to a minimal or no improvement apart 
from GemDock. However, the GemDock 
performance did not improve to any level 
higher than shown in table 1. The consensus 
scoring methods did not show any 
improvements compared to the methods 
discussed previously. 
The following recommendations can be 
derived from the results reported in this work. 
If active ligands for a target are known, the 
performance of predicting new ligands can be 
improved by choosing between different 
docking methods or a combination thereof. 

 
Table 2: Receiver Operator Curve enrichment (ROCE) at 
2% for the two most difficult targets employing 
additional methods. 

Method Target 

AchE FGFr1 

AD4 1.5 2.2 

Vina 1.5 0.0 

GemD 1.5 4.0 

AD4 x3a 1.5 2.7 

Vina x3b 0.95 0.4 

GemD x3a 2.0 6.5 

Cons-AVc 2.5 1.0 

Cons-AG 1.0 2.5 

Cons-VG 0.5 0 

Cons-AVG 0.0 1.0 
a The number of calculations was increased by a factor 
of 3. 
b  In AutoDock Vina the exhaustiveness parameter was 
increased from 8 to 24.  
c Consensus method that calculates an average rank 
from two or more ranked lists and applies a weighting 
factor from 1.0 to 0.0 based on the position of a 
molecule in the individual ranked list, i.e. molecules at 
the top are contributing more to the average rank. 
 

If no active ligands are known, the 
performance of ligand prediction can be 
improved through a consensus method based 
on a simple combination of AutoDock and 
AutoDock Vina rank lists. The software for 
employing the consensus methods is available 
from the author upon request. 

 

3. Conclusion 

In summary, this communication reports 
about the development of new consensus 
methods for virtual screening, which are 
evaluated against three individual molecular 
docking algorithms. Among the individual 
docking algorithms AutoDock Vina achieved 
the best performance in the early enrichment 
of known ligands followed by GemDock and 
AutoDock 4.2. A simple joining of AutoDock 
4.2 and AutoDock Vina rankings gave the best 
early enrichment performance that lead to 
enrichment above random in every case, while 
individual methods failed for some targets 
investigated. These results are important for 
the early stages of drug discovery as well as 
academic research, where costly and time-
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consuming laboratory experiments can be 
replaced with in silico methods. 

  

4. Computational methods 

AutoDock 4.2 (Huey et al, 2007; Morris et al, 
1998) was used with the Lamarckian Genetic 
algorithm. Default parameters were used 
except that the frequency of performing a 
local search was set to 0.15. AutoDock Vina 
(Trott & Olson, 2010) version 1.02 was 
employed with default parameters and 
GemDock (Yang & Chen, 2004) parameters 
were adjusted to a population size of 300, 80 
generations and 5 solutions resulting in a 
similar docking time/CPU than AutoDock. 
Various strategies of improving the recall of 
known ligands in the top 2% of the ranked 
ligand databases were employed such as 
1) the rescoring of the ranked list with the 
computed water/octanol partition coefficient 
(Cheng et al, 2007) P according to the 
equation new_score = log10 (-score/P) as 
suggested by Garcia-Sosa et al. (Garcia-Sosa et 
al, 2010); 2) the combination of two or three 
ranked ligand lists by choosing the ligands that 

are common among the top n ligands of each 
list, whereby n is counted in steps of five to 
the maximum number of ligands 
(CommonTop); 3) a simple joining of ranked 
ligand list by choosing the top n (n = 1, 2, 3, …) 
ligand from each list , if it was not chosen 
previously; 4) a consensus scoring method, 
where for each ligand a weighted average 
rank was computed from two or more rank 
lists. The weight was decreased linearly from 
1.0 to 0.0 based on the position of the ligand 
in the rank list. The processing of rank lists 
was performed with PERL scripts developed 
in-house, that are available from the author 
on request. The virtual screening performance 
was evaluated as suggest by Nicholls (Nicholls, 
2008) with Receiver Operator Characteristics 
Enrichment (ROCE) by dividing the fraction of 
true positives by the fraction of false positives 
at 2% of the ligand/decoy molecules. An 
ROCE2% value of 1.0 is expected for random 
picking of ligands.  According to Nicholls 
(Nicholls, 2008), the ROCE provides a more 
robust measure of performance than the 
commonly reported enrichment factor. 
Enrichment factors for comparison with other 
studies are shown in table 3. 

Table 3: Enrichment factors at 1% of for various targets and methods 

Method 
Target 

AchE CDK2 COMT FGFr1 HIVRT InhA PPARg PR RXRa VEGFr2 Mean StdErr4 

AD4 1.9 16.2 0.0 3.4 4.9 22.0 1.2 11.2 20.8 6.8 8.8 2.5 

Vina 1.0 10.1 18.2 0.0 7.4 15.4 23.5 0.0 26.0 8.2 11.0 2.9 

GemD 2.9 8.1 9.1 5.1 12.3 16.6 11.1 7.5 0.0 9.6 8.2 1.4 

DOCK1 1.9 13.9 0.0 0.0 5.0 0.0 0.0 0.0 24.8 1.3 4.7 2.5 

AD4-P 1.9 10.1 0.0 10.2 4.9 1.2 7.4 0.0 20.8 6.8 6.3 1.9 

Vina-P 1.9 10.1 0.0 1.7 4.9 1.2 2.5 0.0 20.8 8.2 5.1 1.9 

GemD-P 1.0 10.1 0.0 9.3 4.9 1.2 4.9 0.0 15.6 8.2 5.5 1.6 

CT-AV 2.9 16.2 0.0 3.4 2.5 25.0 1.2 3.7 20.8 8.2 8.4 2.7 

CT-AG 0.0 12.1 0.0 3.4 7.4 22.6 0.0 7.5 10.4 6.8 7.0 2.1 

CT-VG 0.0 12.1 27.3 1.7 7.4 22.6 16.1 3.7 10.4 10.9 11.2 2.6 

CT-AVG 0.0 10.1 0.0 2.5 4.9 22.6 3.7 0.0 15.6 5.5 6.5 2.3 

J-AV3 1.0 10.1 18.2 2.5 7.4 22.6 11.1 3.7 26.0 10.9 11.4 2.6 

J-AG 2.9 12.1 9.1 5.9 9.8 24.9 11.1 11.2 15.6 9.6 11.2 1.8 

J-VG 1.9 12.1 18.2 2.5 12.3 19.0 18.5 7.5 15.6 10.9 11.9 1.9 

J-AVG 2.9 10.1 18.2 4.2 12.3 23.8 12.4 7.5 15.6 13.7 12.1 1.9 
1 Data taken from Huang et al. (2006). 
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