
Optim Lett (2014) 8:1783–1794
DOI 10.1007/s11590-013-0697-3

SHORT COMMUNICATION

3D-Hit: fast structural comparison of proteins
on multicore architectures

Ł. Bieniasz-Krzywiec · M. Cytowski ·
L. Rychlewski · D. Plewczynski

Received: 30 August 2012 / Accepted: 3 October 2013 / Published online: 27 October 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract 3D-Hit is a well established method for rapid detection of structural simi-
larities between proteins, which is widely used in various bioinformatics web servers
(MetaServer, GRDB, 3D-Fun, Rosetta, etc.). The algorithm decomposes proteins into
set of overlaping segments of 9–13 residues, then tries to match them using root mean
square distance metric. The best aligned pairs of segments are selected as seeds for
futher analysis. Those initial hits are expanded by iterative process in order to con-
struct the global structural alignment by concatenating pairs of matching segments.
The method has the same accuracy as the other state-of-the-art structural comparison
algorithms (LGscore2, DALI), yet it provides much faster processing times, and can be
used in a high-throughput setup as the structural module of bioinformatics pipelines.
The method is optimized in terms of speed and accuracy to work on novel computer
architectures, such as PowerXCell8i and Sun Constellation System. Here, we provide
the source code of the 3D-Hit program, describe selected architectures on which the
software was ported, present programing models, point out significant porting steps
and sumarize performance comparisons.

Keywords Proteins · IBM cell · Structure comparison · Bioinformatics ·
Optimization

Ł. Bieniasz-Krzywiec · M. Cytowski · D. Plewczynski (B)
Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw (ICM), Pawińskiego 5a, 02-106 Warsaw, Poland
e-mail: darman@icm.edu.pl

L. Rychlewski
BioInfoBank Institute, Limanowskiego 24A16, 60-744 Poznan, Poland

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191357726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1784 Ł. Bieniasz-Krzywiec et al.

1 Introduction

The PowerXCell8i is a pioneering microprocessor architecture supposed to bridge
the gap between conventional desktop computers and specialized high-performance
machines. It has been designed to support very wide range of applications. The
Cell processor consists of nine processor elements operating on a shared and coher-
ent memory. Functions of those processors are specialized into two types, i.e.,
a PowerPC Processing Element (PPE), which usually acts as a controller and is
designed to run operating system and eight Synergistic Processing Elements (SPEs),
which handle computational workload and are optimized for SIMD code execu-
tion. PowerXCell8i processors are usually available as a dual processor nodes
within the IBM QS22 blades. This gives a shared memory programming environ-
ment with 16 computational cores. Moreover due to its specific architecture, Cell
processor achieves very good performance results with relatively low power con-
sumption (in terms of performance per Watt). As a result, Nautilus [1]—cluster
of IBM QS22 blades based on Cell processors installed at Interdisciplinary Cen-
tre for Mathematical and Computational Modelling (ICM) has been ranked as No.
1 in two editions of The Green500 List [2] of the world most energy-efficient
supercomputers.

The Sun Constellation System, another high-performance computer available at
ICM, is a cluster based on a x86 architecture. This powerful machine consists of
blades packed into special-purpose racks, which are tied together with highly-efficient
InfiniBand connections. Each blade is equipped with four AMD Quad-Core Opteron
835X processors (which gives 16 computational cores per blade) and up to 32 Gb of
memory.

In this paper we describe two fast implementations of an efficient scanning method
for detecting structural similarities between proteins. The first of them is an application
designed for the PowerXCell8i processors. The second takes advantage of OpenMP
and therefore can be executed on virtually all architectures providing shared mem-
ory access, including the Sun Constellation System. Thus, we compared two shared
memory systems with different architectures but the same number of computational
cores. The algorithm used in our programs was originally created by Plewczyński et al.
[3,4,11,12]

The original code, destined to execute on x86 architecture, was ported using two
different frameworks: Cell SDK with its SPE library (for PowerXCell8i architecture)
and OpenMP (for parallel computers with shared memory). The Cell-accelerated
application achieved an overall speedup of 12 over single threaded version exe-
cuting on 1 SPE core. This level of performance was obtained with the use
of all 16 SPU cores available within IBM QS22 blade. However, the program
parallelized with OpenMP library performed even better in terms of the final
walltime achieved during benchmarking tests. In the course of our work we encoun-
tered very interesting aspects of parallel programming and learned how to iden-
tify parts of code whose performance could benefit from novel high-performance
architectures.

123

3D-Hit: fast structural comparison of proteins on multicore architectures 1785

2 Structural alignment

It has been discovered that the three dimensional structure of a protein is more con-
served during the process of evolution than its primary sequence [5]. Therefore, the
comparison of 3D structures of two proteins makes it possible to establish distant
evolutionary relationships, even between very diverged proteins. As a result, the 3D
structural alignment of proteins increases our understanding of more distant evolu-
tionary relationships [6,7]. The correspondence between structural and functional
classification enables scientists to determine functions of various newly discovered
folds and whole protein families. Structural similarity can suggest evolutionary links
between protein families, which can result in more detailed functional annotation of
a given protein at molecular level. Moreover, the structural comparison can guide the
experimental structure determination process, by tracing shifts in low resolution mod-
els. The aforementioned reasons make the structural alignment the very important part
of bioinformatics every-day work.

On the other hand, the size of Protein Data Bank [8] is growing rapidly doubling
every 18 months. This huge amount of structural data needs very fast and accurate com-
puter programs to deal with the extraction of structural information and comparison of
the new proteins with the previously annotated ones. Those programs should enable
not only structure-to-structure search, but also alignment over all proteins from the
whole database on a real time basis. So far, such computations has been performed by
several state-of-the-art methods, including 3DHit code. Because of the overwhelming
and constantly growing amount of processing to be performed, scientists requested
the support of the Joint Cell Competence Centre [10]. Due to an ongoing collab-
oration between ICM and IBM, it was decided to port the 3DHit code, inter alia,
to the PowerXCell8i architecture and use Cell based machines as a computational
facility.

The purpose of this article is to present how the 3DHit program has been ported and
tuned on novel architectures and how processing performance of accelerated versions
compares to the x86 implementation.

3 Overview of the algorithm

3DHit program provides the structural alignment of two proteins. It uses in-house
customised version of the Smith-Waterman dynamic programming algorithm com-
bined with intensive three-dimensional rotation and translation routines that align two
geometrical objects in order to minimize the root mean square distance computed for
all heavy atoms from both proteins. The flow chart of entire sequential program is
presented in Fig. 1. The most time consuming part of the code is the preparation of
structural alignment matrix which is carried out by the main loop of the program and
is computed by examining local similarities between protein sequences. Alignment
matrix is used at the end of the program, it serves as input data for the Smith-Waterman
algorithm to compute the final global alignment of the whole proteins. To identify sim-
ilarity substructures of two proteins, the program compares parts of their chains with a
fixed length of 256 amino acids that we called segments. The 3DHit program analyses

123

1786 Ł. Bieniasz-Krzywiec et al.

Fig. 1 The flow chart of the
scalar (starting) version of the
3D-Hit program

Read proteins
Divide proteins
into segments

Loop over pairs
of segments

Find alignment
of whole proteins

Output results

Compute alignment
of segments

structural similarities between each pair of segments through two successive steps (see
pseudo-code of Algorithm 1).

First, it decides whether central parts of segments, which we call seeds, are similar
enough to proceed with further computations. Seeds are very short subsequences
with 13 amino acids. The 3DHit algorithm makes rotations and translations of alpha
carbon atoms of both seeds in order to minimize the root mean square deviation
(RMSD) between them. Second, if the structural similarity of the two seeds is high
enough, the algorithm starts to analyze two longer continuous parts of the main chains
centered on seeds. It uses a rotation matrix and a translation vector for a Cartesian-
space superimposition of the two seeds to rotate and translate these large segments.
Next, it defines the similarity matrix for the dynamic programming in the following
way. If two alpha carbon atoms taken from the superimposed large segments are close
enough in space (below 3A), it assigns 1 to their similarity score or 0, otherwise. Then
alignment score based on such similarity score matrix is computed. If the alignment
score is large enough, algorithm passes this pair of segments on to the next filter.
The whole procedure is repeated for subsequences of 100, 200 and 256 amino acids
centered on seeds.

123

3D-Hit: fast structural comparison of proteins on multicore architectures 1787

For each pair of segments, the resulting score—number of superimposed alpha car-
bon atoms in the aligned segments—is recorded in an additional final alignment matrix.
At the end, this final matrix is used to find the best alignment of whole proteins. If no
pair of segments did pass the filter sequence just described, the overall score is set to 0.

Algorithm 1 ComputeAlignmentOfSegments(segment1, segment2)
Input: Two segments of potein sequences.
Output: The number of superimposed Calpha atoms in the aligned segments.

1. Extract the seed of each segment (seed is the central part of segment consisting of 13 amino acids).
Find the rotation matrix and the translation vector minimizing the RMSD between the two seeds. If
the optimal RMSD is too low, exit and return 0.

2. For len in {100, 200, 256}:
(a) Define the subsequences to consider:

subsequence1 = the subsequence of length len surrounding the seed of segment1.
subsequence2 = the subsequence of length len surrounding the seed of segment2.

(b) Align the two subsequences using the rotation matrix and the translation vector computed in the
previous step.

(c) // Define the alignment matrix for the two subsequences:
For each atom1 in subsequence1 and atom2 in subsequence2:
 alignmentMatrix[atom1, atom2] =
 distance(atom1, atom2) < 3A ? 1 : 0

(d) Find the alignment of subsequences by running Smith-Waterman algorithm on them with the
alignmentMatrix as an input.

(e) If computed alignment is better than the one found previously, continue the loop. Otherwise, return
the best alignment found previously.

4 Porting process

After profiling the original version of the 3DHit program we found out that the most
time consuming part of the code was a function implementing algorithm, which com-
pares two given segments. Intrinsically, the algorithm was executed in sequence with
each pair of segments as a parameter. As a result, program spent more than 90% of its
time in that function. We decided to accelerate that program section by a paralleliza-
tion process based on the libspe2 library model for Cell and the OpenMP model for
x86 architectures (see Fig.2).

4.1 Parallel scheme

Computations for each pair of segments can be performed independently with no
communication occurring between working threads. Nevertheless, at the end the main
thread must collect all partial results for each pair of segments and compute the final
result based on them. We wondered whether those extra computation steps performed
on partial results would cause a new bottleneck. In the case of the Cell implementation,
the final result computing is handled by the PPE. In the case of OpenMP version, the
final result is processed by the master thread. Fortunately, it turned out that accelerated
versions of 3DHit program spends only a fraction of percent of their execution times
computing final result.

123

1788 Ł. Bieniasz-Krzywiec et al.

4.2 PowerXCell8i implementation

We used the Cell SDK and its SPE library to implement this simple parallel scheme.
The PPE processor executes the main application thread. Its role is to read and pre-
process the two protein sequence descriptions, create SPE contexts, run appropriate
working threads, collect partial results and finally compute and return the final score
and alignment. Each SPE processor gets its set of segment pairs. Then, it consecu-
tively loads the descriptions of two segments into local memory space (Local Store)
for each pair of segments from the set, executes function comparisons and stores the
result back into main memory.

4.2.1 Memory issue

Porting most of the scientific applications to SPE processor is a rather challeng-
ing task because of the size limitation of Local Store, which is only 256 KB. This
small space must be wisely administrated, because it has to accommodate both pro-
gram instructions and operating data. Moreover, the only way to load and store
data to and from Local Store is a Direct Memory Access (DMA) mechanism. It
gives programmer a great deal of control, but on the other hand it is not simple to
use.

The 3DHit code is unfortunately memory consuming. In the original version each
execution of comparing algorithm requires memory for at least 2562 floating point
numbers and 2562 short integer values. It is of course too much for the Local Store.
That is why we had to perform some memory optimizations including compression
and introduction of bit operations. The resulting code was slightly slower and less
accurate than the original one, however thanks to those sacrifices, we were able to fit
our program to Local Store.

4.2.2 SIMD optimizations

In its original version, 3DHit program spends nearly 30% of its execution time cal-
culating rotation matrices and translation vectors for Cartesian-space superimposition
of pairs of segments. The part of code responsible for that task turned out to be a
good candidate for a vectorization process due to the quantity of simple algebraic
operations.

First of all, we decided to take advantage of the auto SIMDizing abilities of GCC
compiler by switching on option -ftree-vectorize. At first, it did not help
much since the code was too complex to allow the automatic analysis by the compiler.
Therefore, we followed the guidelines proposed in [9] to simplify the code.

Even after using specific compiler directives, the compiler was still unable to auto-
mate loop vectorization. We decided to tune the remaining parts of code manually
by instruction substitution. The main vector operations used in the SPE computa-
tional kernel were spu_add, spu_mul, spu_madd and spu_splats. All of
these instructions were operating on float 4 entry vectors, so we could speed up the
vectorized loops of the appropriate steps of the algorithm by a factor of about 4. The
result of this effort is presented in Table 1.

123

3D-Hit: fast structural comparison of proteins on multicore architectures 1789

Table 1 Performance results of SIMD and noSIMD versions

Version Compiler Average time Speedup

PowerXCell8i, noSIMD, 1 SPE GCC (-O3) 1.546 1.0

PowerXCell8i, noSIMD, 16 SPEs GCC (-O3) 0.181 s 8.541

PowerXCell8i, SIMD, 16 SPEs GCC (-O3 -ftree-vectorize) 0.164 s 9.427

Table 2 Performance results of various versions of work load management for the SPE threads

Version Compiler Average time

Randomization on PPE, 16 SPEs GCC (-O3 -ftree-vectorize) 0.247 s

Dynamic distribution, 16 SPEs GCC (-O3 -ftree-vectorize) 0.370 s

Static permutation, 16 SPEs GCC (-O3 -ftree-vectorize) 0.164 s

4.2.3 Efficient implementation of the parallel scheme

In our first approach to implement chosen parallel scheme, we met very interesting
problem. At the beginning we were assigning jobs for the computational kernels arbi-
trarily. Each SPE program was given a consecutive sequence of pairs of segments to
operate on. Nevertheless, it was a wrong decision because of the inefficient load bal-
ancing. As described before, the algorithm for comparing segments does not always
behave in the same manner. For example, the algorithm may finish very quickly if
seeds have poor similarity rate. Moreover, cutoffs may occur also during the analysis
of longer subsequences surrounding the seeds, as noted in the step 2 of the Algorithm
1. That is why it is important to assign each SPE with more or less the same amount
of real work, which may not necessarily mean the same amount of pairs of segments.

We tried many different ways to fulfil this requirement. First of all, we decided to
divide the whole set of tasks into 16 random subsets on the PPE side of application.
Each SPE program operated on one of those randomly chosen work packages. This
solution allowed the achievement of a very good load balancing, but on the other
hand, to a drastic slowing down in the rate of PPE thread processing resulting in an
unsustainable increase of time execution of about 15%.

By contrast, the use of PPE thread as a management resource allows the workload
to be distributed coherently according to computations needs. In this approach each
idle SPE asks PPE for a new package for processing. We implemented and tested a
few versions of such processing model by taking advantage of SPE mailboxes as well
as advanced DMA transfers with double buffering. Unfortunately non of them met
our expectations, because of the slowdown caused by the increase in communication
load.

In the last approach, we have decided to choose an arbitrary random permutation and
assign it statically to each SPE kernel as a constant. It allowed us the complete eradi-
cation of communication bottlenecks between PPE and SPE and to achieve reasonable
load balancing. The performance comparison of all of these methods is presented in
Table 2.

123

1790 Ł. Bieniasz-Krzywiec et al.

4.2.4 Other optimizations

Each SPE program is executed once at the beginning and serves as a computational
facility for many tasks. Thanks to that we are able to eliminate time needed for SPE
context creation. In addition, we used the DMA double buffering mechanism. While
SPE is carrying on computations, its Memory Controller can coherently load the next
portions of data from the main memory. This simple idea allowed us to overlap main
memory load and store operations with computations.

In comparison to the single SPE, we achieved an overall speedup of 6.14 while
executing on 8 SPEs and 9.39 while executing on 16 SPEs. In addition, running two
parallel instances of the 3DHit program, each using 8 SPEs, on the QS22 server
equipped with two Cell chips allowed us to reach an average speedup of 12.

4.3 OpenMP implementation

The implementation of a programming model based on OpenMP is very simple. The
whole set of pairs of segments is dynamically (and automatically) distributed among
OpenMP threads. Each such thread executes an algorithm similar to the one described
in the PowerXCell8i’s section. It gets a pair of segments, computes an answer and
stores the result in the specified place in the main memory.

In spite of its simplicity, the OpenMP implementation of our application appeared
to be very efficient and accurate. In comparison to the single-threaded version, we
achieved an overall speedup of 4.37 while executing on 8 cores. Taking advantage
of the same schema as the one used with PowerXCell8i processors, we ran two par-
allel instances of 3DHit program, each using 8 threads, on blades equipped with 16
processor units, which gave an average speedup of 8.5 over the initial x86 version.

5 Performance results

5.1 PowerXCell8i code analysis

We have used a spu_timing facility to analyze and tune the computational kernels
of the 3DHit Cell implementation. Results presented in Tables 3 and 4 show that we
achieved very good scaling over increasing number of working SPE threads. The part
of code that can be parallelized represents about 97.994% of the execution time spent
by the single-threaded version of 3DHit. We achieve an overall speedup of almost 9
that is only a little below the theoretical maximum expected by the Amdahl’s Law, i.e.

Table 3 Profile
results—percentage of time
spent in particular sections of the
program

Part of code 1 SPE (%) 8 SPEs (%) 16 SPEs (%)

Preparing data 0.004782 0.142613 0.359532

Creating SPE threads 0.121318 7.627334 21.029137

Waiting for threads 97.844704 80.333420 62.397312

Computing global result 0.019680 0.139842 0.219315

123

3D-Hit: fast structural comparison of proteins on multicore architectures 1791

Table 4 Profile
results—absolute time spent in
particular sections of the
program

Part of code 1 SPE (s) 8 SPEs (s) 16 SPEs (s)

Preparing data 0.000051 0.000247 0.000466

Creating SPE threads 0.001170 0.012919 0.027042

Waiting for threads 1.492583 0.207126 0.114413

Computing global result 0.000527 0.000571 0.000619

Read proteins
Divide proteins
into segments

Assign segments
randomly to SPEs
(static assignment)

SPE0 Loop
over pairs

of segments

SPU accelerated code

Scatter information
initiate SPE threads

Gather information
and synchronize

Find alignment
of whole proteins

Output results

DMA transfer

Compute alignment
of segments

DMA transfer

SPE15 Loop
over pairs

of segments

DMA transfer

Compute alignment
of segments

DMA transfer

Read proteins
Divide proteins
into segments

Thread0 Loop
over pairs

of segments

OpenMP parallel region

Initiate OpenMP
parallel loop

Synchronize

Find alignment
of whole proteins

Output results

Compute alignment
of segments

Thread7 Loop
over pairs

of segments

Compute alignment
of segments

Dynamic assignment of
segment pairs to threads

Fig. 2 The flow charts of the PowerXCell8i (left) and OpenMP (right) parallel versions of the 3D-Hit
program. Important features of both implementations are indicated in the picture

1
(1−0.97994)+ 0.97994

16
≈ 12. The difference between observed and expected values is the

most probably due to the use of built-in permutation of packages instead of actually
randomly permutated set of segments. This approach increases the probability of
occurrence of inefficient load balancing.

5.2 Performance Comparison

We have designed a test to examine operational performance of 3DHit code executing
on various architectures. We have chosen a set of 18 proteins from a database and
compared execution times on a Quad-Core AMD Opteron Processor 8354 based nodes
and on a QS22 server. Each pair of proteins from the test set was compared during

123

1792 Ł. Bieniasz-Krzywiec et al.

Table 5 Performance results on two systems: AMD Opteron 8354 and PowerXCell8i QS22

Architecture Compiler Time (s) Speedup

AMD, 1 OpenMP thread GCC (-O3) 116.85 1.00

AMD, 4 OpenMP threads GCC (-O3) 38.22 3.05

AMD, 8 OpenMP threads GCC (-O3) 26.72 4.37

AMD, 16 OpenMP threads GCC (-O3) 26.09 4.47

PowerXCell8i, 1 SPE GCC (-O3 -ftree-vectorize) 499.07 1.00

PowerXCell8i, 8 SPEs GCC (-O3 -ftree-vectorize) 81.20 6.14

PowerXCell8i, 16 SPEs GCC (-O3 -ftree-vectorize) 53.14 9.39

a test run, which gave us 324 single test cases. The average results are presented in
Table 5. As we can see, the Cell accelerated version of 3DHit was approximately
two times slower than the OpenMP code executed on blades equipped with AMD
processors. Those performance differences could be caused by disparities in technical
parameters of chosen machines. According to our experiments, multiplication of two
floating point scalars is almost two times slower on PowerXCell8i SPE processors than
on AMD Opterons. Unfortunately a great deal of 3DHit code could not be vectorized
and, as a result, arithmetic operations on scalars are intense in our code. Moreover,
the PowerXCell8i version is slightly more complex. For example, the necessity of
performing a memory optimisations as described above is a bottleneck on its own.
Another very important feature that reduces the performance of the implemented
SPU kernels is a big number of branching introduced by the algorithm and a lack of
branch prediction mechanism within the SPU architecture. As a result one of the most
important computational parts of the code, Smith-Waterman algorithm, is significantly
slowed down on the Cell architecture.

On the other hand, the PowerXCell8i implementation has one desired feature, which
is unfortunately not a feature of OpenMP-based program, namely—very good scal-
ability. The reason of the bad scalability of OpenMP is probably due to the limited
memory bandwidth when 16 working threads try to simultaneously read data from
the shared memory located on their blade, which results in a significant slowdown of
data transfer. It should be stated here that the comparison of two longest sequences
in the benchmark test takes approximately only 0.22 s. The memory bandwidth is not
a problem in PowerXCell8i implementation, due to the presence of highly efficient
Element Interconnect Bus (EIB), which provides each SPE and its memory controller
with private and very fast connection to the main memory.

6 Summary

The current evaluation of 3DHit performed on dataset of circa 300 query proteins
reveals the quality of the tool, as compared with other programs. When compared with
DALI server, our tool is able to generate similar number of correct models, however
the final alignment quality is better in the case of the second service. In the case of
distant structural comparisons, our method produced better ratings in all categories

123

3D-Hit: fast structural comparison of proteins on multicore architectures 1793

(such as specificity analysis) when MaxSub evaluation method is used. Concluding,
the 3DHit software is on average less sensitive than the DALI server, yet it is better
than CE or VAST tools.

On the side of core optimization, we have ported the 3DHit program to the novel
high-performance architectures and achieved very good rate of speedup. Our acceler-
ated programs will be embedded into the web application, which will allow very fast
and accurate mechanism for structural alignment of proteins. By taking advantage of
PowerXCell8i and Quad-Core x86 novel architectures, we were able to significantly
reduce time of single computation and as a result provide scientists all over the world
with always up-to-date and fast tool for structural alignment experiments. The present
version of our algorithm is very fast. It takes circa 2 s for a query protein of 500 amino
acids to scan a database of 1,000 templates. The single comparison of two proteins
with circa 500 amino acids is performed within a runtime of 0.002 s for 3DHit, where
older version of the software took around 0.017 s. Other structural alignment programs
are significantly slower, CE takes 3 s to compare two typical proteins, LGScore2 is
around 6 s.

Because of its speed and portability (the source code is available from authors upon
request) we believe that 3DHit program will continue to be widely used in structural
genomics projects, improving the structural comparison of newly crystallized proteins
with large structural databases. We are planning to provide the internet web server
interface to the PDB database, in order to give user access to rapid structural alignment
of its protein of interest with three-dimensional crystals or 3D models of proteins.

Acknowledgments This work was supported by EC OxyGreen (KBBE-2007-212281) 6FP project as
well as the Polish Ministry of Education and Science (N301 159735, and others).

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Nautilus system. http://cell.icm.edu.pl/index.php/Nautilus
2. The Green500 List. http://www.green500.org/lists/2009/06/list.php
3. Plewczynski, D., Pas, J., von Grotthuss, M., Rychlewski, L.: 3D-Hit: fast structural comparison of

proteins. Appl. Bioinform. 1(4), 223–225 (2002)
4. Plewczynski, D., Pas, J., Von Grotthuss, M., Rychlewski, L.: Comparison of proteins based on segments

structural similarity. Acta Biochim Pol. 51(1), 161–72 (2004)
5. Chothia, C., Lesk, A.M.: The relation between the divergence of sequence and structure in proteins.

EMBO J. 5, 823–6 (1986)
6. Bujnicki, J.M.: Phylogeny of the restriction endonuclease-like superfamily inferred from comparison

of protein structures. J. Mol. Evol. 50, 39–44 (2000)
7. Johnson, M.S., Sutcliffe, M.J., Blundell, T.L.: Molecular anatomy: Phyletic relationships derived from

three-dimensional structures of proteins. J. Mol. Evol. 30, 43–59 (1990)
8. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne,

P.E.: The Protein Data Bank. Nucleic Acids Res. 28, 235–42 (2000)
9. Arevalo, A., Matinata, R.M., Pandian, M., Peri, E., Ruby, K., Thomas, F., Almond, C.: Programming

the PowerXCell 8i Architecture, Examples and Best Practices. RedBooks, IBM, USA (2008)
10. IBM & ICM (University of Warsaw): Joint Cell Competence Center. http://cell.icm.edu.pl

123

http://cell.icm.edu.pl/index.php/Nautilus
http://www.green500.org/lists/2009/06/list.php
http://cell.icm.edu.pl

1794 Ł. Bieniasz-Krzywiec et al.

11. Plewczynski, D., Rychlewski, L., Jaroszewski, L., Ye, Y., Godzik, A.: SEA and FRAGlib—an integrated
Web service for improving the alignment quality based on segments comparison. BMC Bioinform.
5(1), 98 (2004)

12. Holm, L., Kaariainen, S., Wilton, C., Plewczynski, D.: Using dali for structural comparison of proteins.
Protoc. Bioinform. 5, 5.5.1–5.5.24 (2006)

123

	3D-Hit: fast structural comparison of proteins on multicore architectures
	Abstract
	1 Introduction
	2 Structural alignment
	3 Overview of the algorithm
	4 Porting process
	4.1 Parallel scheme
	4.2 PowerXCell8i implementation
	4.2.1 Memory issue
	4.2.2 SIMD optimizations
	4.2.3 Efficient implementation of the parallel scheme
	4.2.4 Other optimizations

	4.3 OpenMP implementation

	5 Performance results
	5.1 PowerXCell8i code analysis
	5.2 Performance Comparison

	6 Summary
	Acknowledgments
	References

