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Enhanced performance of gene 
expression predictive models 
with protein‑mediated spatial 
chromatin interactions
Mateusz Chiliński 1,2,6, Jakub Lipiński 3,6, Abhishek Agarwal 2, Yijun Ruan 4,5 & 
Dariusz Plewczynski 1,2*

There have been multiple attempts to predict the expression of the genes based on the sequence, 
epigenetics, and various other factors. To improve those predictions, we have decided to investigate 
adding protein‑specific 3D interactions that play a significant role in the condensation of the 
chromatin structure in the cell nucleus. To achieve this, we have used the architecture of one of the 
state‑of‑the‑art algorithms, ExPecto, and investigated the changes in the model metrics upon adding 
the spatially relevant data. We have used ChIA‑PET interactions that are mediated by cohesin (24 cell 
lines), CTCF (4 cell lines), and RNAPOL2 (4 cell lines). As the output of the study, we have developed 
the Spatial Gene Expression (SpEx) algorithm that shows statistically significant improvements in 
most cell lines. We have compared ourselves to the baseline ExPecto model, which obtained a 0.82 
Spearman’s rank correlation coefficient (SCC) score, and 0.85, which is reported by newer Enformer 
were able to obtain the average correlation score of 0.83. However, in some cases (e.g. RNAPOL2 on 
GM12878), our improvement reached 0.04, and in some cases (e.g. RNAPOL2 on H1), we reached an 
SCC of 0.86.

The advances in the field of Machine Learning have revolutionised other fields as well. With the increasing 
computational power and decreasing costs, the predictive power of modern-day deep learning networks allows 
scientists to apply those methods to various tasks that would be impossible to solve otherwise. Those advances 
did not omit the genomics field as  well1,2. The first attempts to predict the expression solely on the DNA sequence 
started just after The Human Genome  Project3—however, they had a vast number of  limitations4,5 and have 
mainly concentrated on the classical modelling approaches. However, those limitations started to disappear 
with the expansion of deep learning models. One of the first major studies on the usage of  CNNs6 and  XGBoost7 
started a new era in predicting the expression with the introduction of  ExPecto1. Then it continued with the use 
of CNNs through multiple models, including  Basenji28, and finally with the use of transformer-based models 
like  Enformer2. However, in our study, we have decided to take a standard approach available with the help of 
CNNs and expand it further with the input change to include spatial genomic information. The ExPecto model 
we decided to advance takes 20kbp surrounding the TSS of a given gene and uses expression from that to train 
a deep neural network to predict the epigenetic factors. Using those factors the tissue-specific gene expression 
profile is calculated with a high Spearman correlation score. In our study, we have investigated if the epigenetics 
marks alone are sufficient for the complex task of prediction of the expression—and have given a hypothesis that 
while they are incredibly informative, there is still a place for improvement. We decided that we would like to 
investigate the effects of the spatial chromatin architecture inside cell nuclei on the expression by exploring the 
models created with 3D information available and without it. To do that, we have modified the ExPecto algorithm 
accordingly, so it uses not only the 20kbp region around the TSS but also regions that are linearly distal—but are, 
in fact, spatially close, thanks to the spatial interactions that are mediated by specific proteins of interest. The 
overview of the algorithm proposed by us, SpEx (Spatial Gene Expression), is shown in Fig. 1.
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Figure 1.  The architecture of SpEx. The spatial heatmaps are used for obtaining the regions close to the TSS 
(excluding +—20 kbp from TSS), and sequence from those regions is taken, and put into classic deep learning 
ExPecto model—which generates epigenetic signal over those regions. The classical features from ExPecto are 
merged with those obtained from spatially close regions, and the decision trees predict the expression levels. See 
“Methods” for more information about the algorithm.
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To prove the model’s validity, we decided to create an empirical study on how specific protein-mediated inter-
actions are helping in the prediction of gene expression. To do that, we have selected the three most important 
proteins for loop creation—cohesin, CTCF, and RNAPOL2. The effects of those proteins being unable to bind 
or be created properly were shown in multiple studies and were the inspiration for asking whether the machine 
learning models, provided we add 3D information (from interactions mediated by those proteins), will improve.

Proteins of interest. Cohesin is a protein complex discovered in  19979,10 by two separate groups of scien-
tists. The complex is made out of SMC1, SMC3, RAD21, and SCC3. However, in human cell lines, SCC3 (present 
in yeast) is replaced by its paralogues—SA111,  SA212, and  SA313. However, SA3 appears only in cohesin during 
 mitosis14, and we will concentrate on SA1 and SA2 since they are forming cohesin in somatic cells. The complex 
is essential in the proper functioning of the cell nucleus—as is fundamental for the loop  extrusion15, it stabilises 
the topologically associating domains (cohesin-SA1)16, allows interactions between enhancers and promoters 
(cohesin-SA2)16. The depletion of cohesin in a nucleus removes all the  domains17, and completely destroys the 
spatial organisation of the chromatin. Mutations of cohesin negatively affect the expression of the genes—e.g. 
in Cornelia de Lange  syndrome18,19 and  cancer20, where the altered complex is incapable of sustaining its proper 
function, leading to diseases.

CTCF (CCCTC-binding factor) is an 11-zinc finger protein. Its primary function is the organisation of the 
3D landscape of the  genome21. This regulation includes: creating topologically associated domains (TADs)22–24, 
loop  extrusion25, and alternative  splicing26. The protein very often works with the previously mentioned cohesin 
complex, allowing loop formation. CTCF, as a regulator of the genome, binds to specific binding motifs and 
regulates around that loci. That is why, in case of mutations in the motifs, it might bind improperly, thus allow-
ing disease development. However, not only mutations in the binding sites are disease prone. Mutations in the 
CTCF protein itself have proven to significantly influence the development of multiple conditions. Some of the 
examples of diseases induced by a mutation in the CTCF proteins include MSI-positive endometrial  cancers27, 
breast  cancers28,29, and head or neck  cancer30.

Therere are three common RNA Polymerase complex proteins in eukaryotic organisms—I, II, and  III31. 
In this study, we will focus mainly on RNAPOL2, as that is responsible for the transcription of the DNA into 
messenger  RNA32,33, thus having the most significant impact on the expression of the genes. The mechanisms 
responsible for creating the RNAPOL2 loops are complex and require not only RNAPOL2 protein but also sev-
eral other transcription  factors34,35. The mutations in those transcription factors have been shown to be linked 
to various  diseases36, including acute myeloid  leukaemia37–39, Von Hippel–Lindau  disease40,41, sporadic cer-
ebellar  hemangioblastomas42, benign mesenchymal  tumours43, xeroderma pigmentosum, Cockayne syndrome, 
 trichothiodystrophy44, and Rubenstein-Taybi  syndrome45.

Protein‑mediated interactions. Multiple studies have shown the spatial landscape created by cohesin-
mediated chromatin loops. The first major cohesin ChIA-PET study from  201446 showed the internal organisa-
tion of chromatin in the chromosomes. For example, the study provided a list of enhancer-promoter interac-
tions, which can be a starting point for gene expression study.

The next study from  202047 extended the 2014 study and showed that among 24 human cell types, 72% of 
those loops are the same; however, the remaining 28% are correlated to the gene expression in different cell lines. 
Those loops mostly connect enhancers to the promoters, thus regulating the gene expression. Another interest-
ing insight from this study is that those different profiles of interactions are effective in clustering the cell types 
depending on the tissue they were taken from.

CTCF, as mentioned above, is responsible for loop extrusion. That is why it is very popular to investigate 
CTCF-mediated interactions. Once again, like with the cohesin complexes, ChIA-PET is used for obtaining the 
interactions mediated by CTCF. One of the major studies from  201548 shows the genomic landscape among 4 
cell lines. They discovered that SNPs occurring in the motif of the CTCF-binding site can alter the existence of 
the loop—and by that, contribute towards the disease development. They assessed the SNPs residing in the core 
CTCF motifs and found 70 of those SNPs. Of those, 32 were available from the previously done GWAS studies, 
and 8 were strongly associated (via linkage disequilibrium) with disease development.

Another study from  201949 analysed mutations using 1962 WGS data with 21 different cancer types. Such an 
analysis, enhanced with the usage of CTCF ChIA-PET data, showed that disruptions of the insulators (that are 
creating the domains) by motif mutations and improper binding of CTCF (and, by that, diminish of the loop) lead 
to cancer development. Using a computational approach, they have found 21 potentially cancerous insulators.

The transcription chromatin interactions, such as the ones mediated by RNAPOL2, are of great interest as 
well—they control the transcription directly, after all. The study from  201250 showed the RNAPOL2-mediated 
ChIA-PET interactions on 5 different cell lines to show the transcriptional genomic landscape. Another study 
from  202051 performed the same experiments on RWPE-1, LNCaP, VCaP, and DU145 cancer cell lines. Similar 
to the 2012 study, they have shown the spatial interactions based on RNAPOL2, but this time in cancer cell lines. 
Furthermore, they showed that cohesin and CTCF interactions provide a stable structural framework for the 
RNAPOL2 interactions to regulate the expression, thus making all of the proteins that we describe in this section 
crucial for the proper expression of the genes.

Those findings were the main motivation for our analysis—as based on the evidence, the cohesin, CTCF, and 
RNAPOL2 interactions should give us more information on the genetic expression, thus improving the metrics 
for the machine learning models. In this work, we present an extension of the  ExPecto1 deep learning model that 
is enriched with spatial information, thus, as expected, improving the statistical metrics.
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ExPecto architecture. ExPecto1 is a model introduced in 2018 for predicting gene expression from the 
sequence. It uses a deep neural network (namely, Convolutional Neural Network—CNN). It is composed of, most 
importantly, 6 convolutional layers, 2 MaxPoolings (the activation function for all the layers is ReLU). For the 
exact architecture, see the original paper. As mentioned, the input to the network is the DNA sequence, and the 
output is in the form of the 2002 epigenetic factors—collected from ENCODE and Roadmap Epigenomics. The 
network takes 2000 bp as the window and predicts the epigenomic of its 200 bp middle, using the remaining base 
pairs as the context. The model is then applied to 20,000 bp region surrounding TSS, and the step size is deter-
mined by the aforementioned 200 bp, yielding 2002 features multiplied by 200 bins (100 left and 100 right), so the 
total number of features describing the gene is 400,400. Then, those features are transformed using exponential 
functions (10 upstream and 10 downstream TSS), so the final number of the features is 40,040. Then, xgboost 
(namely, gradient boosting of linear regression models) is used for the prediction of the expression of gene expres-
sion. They obtained a Spearman correlation score of 0.819, and the testing was done on chromosome 8.

Results
To study those changes, we have gathered 24 cell lines for the cohesin ChIA-PET and 4 cell lines for CTCF and 
RNAPOL2 binding  factors52,53. They were all mapped to the closest tissue with available gene expression profile 
from the connected  GTEx54,  ENCODE55, and Roadmap  epigenomics56 database released by ExPecto authors. The 
model’s training was performed 1000 times to ensure the statistical significance of the findings. To compare the 
best with other models (ExPecto, Enformer), we have focused on Spearman’s rank correlation coefficient (SCC). 
However, the analysis was repeated for the Pearson correlation coefficient and root-mean-square error (RMSE). 
The results of that analysis were similar to the ones performed using SCC, and details about it can be found in 
Supplementary Figs. 3–6. The results for each experiment in the case of SCC can be seen in Supplementary Fig. 1. 
The greatest improvements in the Spearman correlation score can be seen in the models that use heatmaps from 
RNAPOL2 ChIA-PETs. In that case, the metric’s improvement was up to even 0.042 (in RNAPOL2 ChIA-PET 
GM12878), and the average improvement was 0.016. In the case of CTCF, the greatest improvement was also in 
GM12878, with an improvement of 0.025, with the average improvement over the CTCF study of 0.009. In the 
case of the cohesin ChIA-PETs, the highest improvement was seen in the K562 cell line, as it totalled 0.020, with 
an average increase of the correlation score of 0.004. Furthermore, all of the tests were found to be statistically 
significant, with all the p-values < 10e−11, with the exception of two tests: cohesin ChIA-PET KU19, which 
obtained a p-value of 0.000103, and cohesin ChIA-PET H1, which obtained p-value of 0.01014. The average 
improvement over the whole dataset was established at 0.0058 (0.007 for Pearson correlation coefficient, and 
around 2% improvement over RMSE), and all the grouped sets (cohesin, CTCF, RNAPOL2) were statistically 
significant at p-value < 10e−31. The cumulative results can be seen in Fig. 2.

Further, to investigate the model in more detail, we compared the residuals of the baseline model with the 
ones obtained from SpEx for all the proteins. The value of residuals is defined as the difference between observed 
and predicted data values, therefore, addressing the quality of the model. We calculated the residuals in the test-
ing set of 990 genes from chr8 for all the models. For the practical analysis, we plotted the density of genes with 
their associated residual value, which follows Gaussian distribution, satisfying the assumption of the normality 
of the residuals (Fig. 3). The data is also cross-checked using statistical tests (such as the IFCC-recommended 
Anderson–Darling test) to ensure it fits a Gaussian distribution. The residual distribution shows the greatest 
improvement in the RNAPOL II compared to the CTCF and Cohesin (Fig. 3i).

The architectural proteins—CTCF, Cohesin and RNAPOL II, play a diverse role in contributing to gene 
expression either alone or working together to instruct gene accessibility and  expression57,58. Therefore, consid-
ering that fact, we focused on the residual value of a gene closest to zero by comparing all three proteins named 
“SpEx-Best”. There is a high density of points close to the origin and a low density of points away from the origin 
for SpEx-Best compared with the baseline model, which signifies that the gene expression is majorly controlled 
by the three-dimensional genome structures (Fig. 3i).

To investigate the impact of 3D information on gene expression, we conducted a statistical analysis to deter-
mine the mean and standard deviation (SD) of the SpEx-Best residual values which follows the bimodel dis-
tribution. We then used this analysis to identify genes that showed the most significant improvement in their 
expression levels due to incorporating 3D information. Specifically, we considered genes within 0.5 SD of the 
SpEx-Best distribution, corresponding to a cutoff range of − 1.397 to + 2.106 (Supplementary Fig. 2). We utilised 
this cutoff to evaluate the efficacy of our model and found that out of 990 genes, 538 were within this range. 
Among these genes, 363 were found in both models, 168 were specific to SpEx, and only 7 were specific to the 
baseline model (Fig. 3ii). Our results emphasise the regulatory role of 3D information in gene expression, which 
is not captured in the baseline model.

Moreover, we assessed the individual impact of each protein on gene expression and observed that their 
contributions varied. In particular, RNA POL II showed the highest number of improved genes and thus sig-
nificantly impacted model performance (Fig. 3ii). To further demonstrate the differences, we plotted the value 
of residuals for each gene for all protein factors and SpEx-Best, highlighting only those genes that fall within the 
cutoff. We also mapped these highlighted genes (i.e., those within the cutoff of protein factor and SpEx-Best) to 
the residual of the baseline model (Fig. 3iii). As expected, many genes in the baseline are far from the cutoff and 
have very high residual values. Therefore we conclude that the proposed model has better efficiency in prediction 
expression over the baseline model.

To investigate the improvement of the model, we decided to take a significant example loop in all three 
datasets—CTCF, Cohesin, and RNA POL II ChIA-PET. The loop was also required to target a gene with an 
improved prediction score in SpEx over the baseline. The example shows that the gene is spatially close to an 
enhancer, which plays a crucial role in altering gene expression. For instance, the enhanced prediction score of 
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the expression of the TTI2 gene in all three protein factors is due to the fact that the TTI2 gene interacts with 
subsequent enhancers that are 20 kb apart from the transcription start site but are close enough with the gene 
in 3D orientation to change the gene expression (Fig. 4).

Discussion
In this study, we have shown that chromatin’s spatial structure significantly influences gene expression. To dem-
onstrate that, we have created an algorithm based on the previous work (ExPecto), and added the processing of 
the spatial heatmaps created by the ChIA-PET experiments. The experiments were performed using 3 different 
mediating proteins, thus giving us the maps of the interactions involving those proteins. In all 3 cases, the algo-
rithm improved the baseline model, providing us with up to a 0.042 increase in the Spearman correlation score 
(such an increase in the case of GM12878 RNAPOL2 ChIA-PET experiment explained an additional 18% of 
the unexplained part from the baseline model). We have conducted our study on 32 experiments, out of which 
in 27 we could see improvements. Those findings contribute to the rapid-changing field of three-dimensional 
genomics, showing that the interactions are indeed required for the proper prediction of the expression—lin-
early available data, even if we take as many epigenetics factors as in the base ExPecto model (2002), can be still 

Figure 2.  Statistical analysis of the Spearman correlation score between the baselines and the experiments 
grouped by the factor of interest (cohesin, CTCF, RNAPOL2). See Supplementary Table 1 for details on which 
experiments are included in the specific factor group.
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Figure 3.  (i) Distribution of residuals for all the protein factors and SpEx-Best, along with the comparison of 
residual of baseline. (ii) Scatter plot of all genes (n = 990) with respect to their residual value; highlighted genes 
are within cutoff (− 1.397/+ 2.106 of SpEx), same genes mapped on the baseline. (iii) Venn Diagram of the genes 
within cutoff (n = 538) that are improved by SpEx best in comparision of the baseline. (iv) Venn diagram of 
genes within cutoff (n = 538) that are improved by SpEX for each protein factor in comparision with the baseline.
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improved with the usage of the spatial data. We have also conducted a case study with TTI2 gene—an example 
showed that the model detected spatial proximity of the enhancer, resulting in an increased prediction score. 
While using multiple factors in the baseline model predicts the expression in a satisfactory way, there are exam-
ples where spatial information is significant—as the 20 kbp window might not be enough to fully model the 
expression level changes. The next step in the field of gene expression prediction is using more modern deep 
learning architectures—e.g. the ones using transformers, like Enformer—and connecting them with the spatial 
information for the improvement over the baseline models.

Conclusions
In conclusion, SpEx extends ExPecto using the spatial information from ChIA-PET experiments, and provides 
better results on the same datasets compared to the baseline model. The comparisons with the ExPecto and 
Enformer architectures show that usage of chromatin loop can indeed boost the gene expression prediction 
scores—as ExPecto obtained an SCC of 0.82, and Enformer 0.85, with the very minor changes to the architecture 
of ExPecto we were capable of boosting the SCC to 0.83. The usage of the spatial information is definitely worth 
further investigation—as the ExPecto model already incorporated 2002 epigenetic factors, we firmly believe that 
the usage of chromatin loops might improve the prediction scores. With the improvement in the machine learn-
ing field, we believe that instead of using experimental methods (that we demonstrated to work and improve the 
quality of the predictions), in-sillico algorithms will be used for the prediction of the contacts, and then those 
contacts might be used to predict the gene expression.

Methods
Obtaining gene expression levels. The gene expression levels were taken from the original ExPecto 
publication. They have collected and released a file containing expression profiles for 218 tissues (data collected 
from GTEx, Roadmap epigenomics and ENCODE). We have then manually mapped the ChIA-PET spatial 
datasets to the closest tissue for which we had an expression profile. The table with mapping can be found in 
Supplementary Table 1.

Epigenetic features. The study uses 2002 epigenetic features used in ExPecto paper. What is important, the 
epigenetic factors include CTCF, RNAPOL2, and cohesin (SMC3) as well—so the model already has informa-
tion about the epigenetics, and adding the spatial interactions does not yield additional information if the given 
protein factor is present, or not—that has already been established in the baseline model. Thus, the improvement 
of the model is not dependent on the existence of the binding factor (e.g. RNAPOL2), but rather on the loop and 
what is on its other side.

Figure 4.  Visualization of the chromosomal region (chr8: 33,320,000–33,625,000) reveals chromatin loops 
from GM12878 ChIA-PET data, mediated by CTCF (yellow), Cohesin (green), and RNA POLII (red) protein 
factors. These loops encompass the TTI2 gene locus and interact with a set of enhancers located more than 
20 kb away from the transcription start site (TSS). These enhancers, which are not considered in the baseline 
for gene expression prediction, are taken into account by SpEx, which considers all enhancers within spatial 
proximity of the transcription start site (TSS) of the gene.
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SpEx architecture. SpEx, as an extension to  ExPecto1, uses the models described by the authors to generate 
linear tensors (that are a matrix, where we have 2002 epigenetics features × 10 features showing closeness to the 
TSS). However, we have added additional spatial information. At the step of generating the final tensors for each 
gene, an additional spatial tensor is added to the linear one. To create it several steps are executed. First, all the 
contacts that fall out of the linear scope (20 000 base pairs) are considered. Then, we filter out only the contacts 
starting or ending near the TSS of the gene, between (TSS, TSS + HiC_resolution), and any other site. Then, only 
the contacts with a count of at least 2 are considered—which means that in the experiment (be it ChIA-PET or 
another experiment capable of creating contact matrices), we detected the given contact at least 2 times. Suppose 
there are no such spacially close regions. In that case, we take instead of them linearly close region again—but 
to keep the consistency with the spatial organisation, we do not use exponential transformation. After getting 
the regions to predict, that are spatially close to the TSS in an aforementioned way; the ExPecto prediction is 
run upon those regions. The predicted signal in the regions is summed to ensure that the tensors are uniform 
in size. That way, we created the tensors that include not only linear information (< 20,000 bp) but also consider 
the signal from the regions spatially close to the TSS of the gene. That way, we get a matrix with 2002 epigenetics 
features × (10 features showing closeness to the TSS + 1 feature representing the regions that are close to TSS in 
a spatial sense).

The tensors created in that way are saved, as it is computationally expensive to calculate all of them, as both 
ExPecto and SpEx are calculating them for each of the genes, totalling in 22,827 tensors for each cell line. The 
second step is an actual prediction of the expression. For that, we have used, as in the ExPecto paper,  XGBoost7 
library. However, we have used different models and parameters. In the case of ExPecto, the model used was 
GBLinear with reg: linear objective, and we decided to use GBTree with reg:squarederror objective. In the case 
of SpEx (as the model uses a tree), we have used the tree method of gpu_hist. The full list of parameters used in 
our model can be found in the code repository.

Performing the experiments. All the experiments were performed using NVIDIA DGX A100 systems. 
For each cell line, 22,827 tensors were created using one A100 GPU, 8 CPUs, and 128 GB physical memory. All 
the tensors took less than 24 h to complete with such settings. Following that, each cell line was subjected to the 
final training 1000 times to ensure statistical significance of the results, meaning that total 53,000 training were 
completed (32 cell lines + 21 baselines, without spatial information). In most cases, individual training opera-
tions took up to 5 min, and each of the training was assigned one A100 GPU unit, 8 CPUs, and 16 GB of physical 
memory.

Statistical analysis of the results. From all the experiments was gathered together, and triple statistical 
testing was performed for each cell line/factor/tissue. We have used Welch’s t-test with independent samples with 
Bonferroni correction from package  statannotations59. The results were also tested for the significance in factor-
dependent groups (cohesin, CTCF, RNAPOL2) and all together. The residual analysis used an example iteration 
described in the previous section.

CTCF and RNAPOL2 datasets. The ChIA-PET CTCF and RNAPOL2 processed data was taken from 
the 4DNucleome consortium data page (https:// data. 4dnuc leome. org/). The data was obtained there using 4 
replicates (2 biological × 2 technical). The pairs were obtained using the ChIA-PIPE60 workflow, which produced 
pairs for each of the replicates. Then, the pairs were merged and processed using a cooler and juicer to obtain the 
final .mcool files that were downloaded from the database and used in the SpEx algorithm.

Processing of Cohesin dataset. We gathered the Cohesin ChIA-PET dataset from Encode Portal 
(https:// www. encod eproj ect. org/) with accession number ENCSR129LGO submitted by Grubert et  al. The 
dataset contains 24 diverse human cell  types47. We merged the replicates and then processed them with the 
ChIA-PIPE  pipeline60 using the default parameters (Linker Sequence = GTT GGA TAAG and Peak-calling Algo-
rithm = MACS2). The pipeline generated a high-resolution 2D contact matrix (in .hic file format) along with the 
annotated chromatin loops with their binding peak overlap. These .hic files were then converted into .mcools 
files using the hic2cool tool (https:// github. com/ 4dn- dcic/ hic2c ool) developed by 4DNucleome to obtain the 
final input for the SpEx algorithm.

Division of the data into training and testing sets. All the cell lines and baseline models were pro-
cessed uniformly to create training and testing sets. Chromosomes X and Y were excluded from the study, and 
then all chromosomes except chromosome 8 were taken into the training set, and chromosome 8 was used 
exclusively for testing purposes. That way, we ensured that the testing data was not used in any way during the 
training. Chromosome 8 was taken as one of the chromosomes close to the mean size, as well as to compare our 
study to the original ExPecto paper—as they have used the same setup.

Data availability
The algorithm is available at https:// github. com/ SFGLab/ spex/. The data used for the experiments is available at 
https:// data. 4dnuc leome. org/ and https:// www. encod eproj ect. org/ and the precise accession numbers are pro-
vided in the Supplementary Files.
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