1,900 research outputs found

    Evolutionary Kuramoto Dynamics

    Get PDF
    Biological systems have a variety of time-keeping mechanisms ranging from molecular clocks within cells to a complex interconnected unit across an entire organism. The suprachiasmatic nucleus, comprising interconnected oscillatory neurons, serves as a master-clock in mammals. The ubiquity of such systems indicates an evolutionary benefit that outweighs the cost of establishing and maintaining them, but little is known about the process of evolutionary development. To begin to address this shortfall, we introduce and analyse a new evolutionary game theoretic framework modelling the behaviour and evolution of systems of coupled oscillators. Each oscillator is characterized by a pair of dynamic behavioural dimensions, a phase and a communication strategy, along which evolution occurs. We measure success of mutations by comparing the benefit of synchronization balanced against the cost of connections between the oscillators. Despite the simple set-up, this model exhibits non-trivial behaviours mimicking several different classical games‚ÄĒthe Prisoner‚Äôs Dilemma, snowdrift games, coordination games‚ÄĒas the landscape of the oscillators changes over time. Across many situations, we find a surprisingly simple characterization of synchronization through connectivity and communication: if the benefit of synchronization is greater than twice the cost, the system will evolve towards complete communication and phase synchronization

    ISO observations of the Galactic center Interstellar Medium: neutral gas and dust

    Full text link
    The 500 central pc of the Galaxy (hereafter GC) exhibit a widespread gas component with a kinetic temperature of 100-200 K. The bulk of this gas is not associated to the well-known thermal radio continuum or far infrared sources like Sgr A or Sgr B. How this gas is heated has been a longstanding problem. With the aim of studying the thermal balance of the neutral gas and dust in the GC, we have observed 18 molecular clouds located at projected distances far from thermal continuum sources with the Infrared Space Observatory (ISO). In this paper we present observations of several fine structure lines and the full continuum spectra of the dust between 40 and 190 microns. A warm dust component with a temperature between 27 and 42 K is needed to fit the spectra. We have compared the gas and the dust emission with the predictions from J-type and C-type shocks and photodissociation region (PDRs) models. We conclude that the dust and the fine structure lines observations are best explained by a PDR with a density of 103^3 cm^-3 and an incident far-ultraviolet field 103^3 times higher than the local interstellar radiation field. PDRs can naturally explain the discrepancy between the gas and the dust temperatures. However, these PDRs can only account for 10-30% of the total H2 column density with a temperature of ~ 150 K. We discuss other possible heating mechanisms (short version).Comment: Accepted for publication by A&

    Probabilistic tractography in the ventrolateral thalamic nucleus: cerebellar and pallidal connections

    Get PDF
    The ventrolateral thalamic nucleus (VL), as part of the ‚Äėmotor thalamus‚Äô, is main relay station of cerebellar and pallidal projections. It comprises anterior (VLa) and posterior (VLpd and VLpv) subnuclei. Though the fibre architecture of cerebellar and pallidal projections to of the VL nucleus has already been focus in a numerous amount of in vitro studies mainly in animals, probabilistic tractography now offers the possibility of an in vivo comparison in healthy humans. In this study we performed a (a) qualitative and (b) quantitative examination of VL-cerebellar and VL-pallidal pathways and compared the probability distributions between both projection fields in the VL after an (I) atlas-based and (II) manual-based segmentation procedure. Both procedures led to high congruent results of cerebellar and pallidal connectivity distributions: the maximum of pallidal projections was located in anterior and medial parts of the VL nucleus, whereas cerebellar connectivity was more located in lateral and posterior parts. The median connectivity for cerebellar connections in both approaches (manual and atlas-based segmentation) was VLa‚ÄČ>‚ÄČVLpv‚ÄČ>‚ÄČVLpd, whereas the pallidal median connectivity was VLa‚ÄČ~‚ÄČVLpv‚ÄČ>‚ÄČVLpd in the atlas-based approach and VLpv‚ÄČ>‚ÄČVLa‚ÄČ>‚ÄČVLpd in the manual approach.Peer reviewe

    Orbital evolution of P\v{r}\'{i}bram and Neuschwanstein

    Full text link
    The orbital evolution of the two meteorites P\v{r}\'{i}bram and Neuschwanstein on almost identical orbits and also several thousand clones were studied in the framework of the N-body problem for 5000 years into the past. The meteorites moved on very similar orbits during the whole investigated interval. We have also searched for photographic meteors and asteroids moving on similar orbits. There were 5 meteors found in the IAU MDC database and 6 NEAs with currently similar orbits to P\v{r}\'{i}bram and Neuschwanstein. However, only one meteor 161E1 and one asteroid 2002 QG46 had a similar orbital evolution over the last 2000 years.Comment: 7 pages, 2 figures, 3 table

    Robust Self-Tuning Data Association for Geo-Referencing Using Lane Markings

    Get PDF
    Localization in aerial imagery-based maps offers many advantages, such as global consistency, geo-referenced maps, and the availability of publicly accessible data. However, the landmarks that can be observed from both aerial imagery and on-board sensors is limited. This leads to ambiguities or aliasing during the data association. Building upon a highly informative representation (that allows efficient data association), this paper presents a complete pipeline for resolving these ambiguities. Its core is a robust self-tuning data association that adapts the search area depending on a pseudo-entropy of the measurements. Additionally, to smooth the final result, we adjust the information matrix for the associated data as a function of the relative transform produced by the data association process. We evaluate our method on real data from urban and rural scenarios around the city of Karlsruhe in Germany. We compare state-of-the-art outlier mitigation methods with our self-tuning approach, demonstrating a considerable improvement, especially for outer-urban scenarios.This work was supported by the Regional Valencian Community Government and the European Regional Development Fund (ERDF) through the Project PROMETEO/2021/075, and under Grants ACIF/2019/088 and BEFPI/2021/069
    • ‚Ķ
    corecore