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A spatially continuous force-based model for simulating pedestrian dynamics is introduced which includes
an elliptical volume exclusion of pedestrians. We discuss the phenomena of oscillations and overlapping which
occur for certain choices of the forces. The main intention of this work is the quantitative description of
pedestrian movement in several geometries. Measurements of the fundamental diagram in narrow and wide
corridors are performed. The results of the proposed model show good agreement with empirical data obtained
in controlled experiments.
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I. INTRODUCTION

For a beneficial application of pedestrians dynamics, ro-
bust and quantitatively verified models are required. A wide
spectrum of models has been designed to simulate pedestrian
dynamics. Generally these models can be classified into mac-
roscopic and microscopic models. In macroscopic models
the system is described by mean values of characteristics of
pedestrian streams, e.g., density and velocity, whereas micro-
scopic models consider the movement of individual persons
separately. Microscopic models can be subdivided into sev-
eral classes e.g., rule-based and force-based models. For a
detailed discussion, we refer to �1,2�. In this work we focus
on spatially continuous force-based models.

Force-based models take Newton’s second law of dynam-
ics as a guiding principle. Given a pedestrian i with coordi-
nates Ri

� we define the set of all pedestrians that influence
pedestrian i at a certain moment as

Ni ª �j:�Rj
� − Ri

� � � rc ∧ i “ feels ” j� , �1�

where rc is a cutoff radius. We say pedestrian i “feels” pe-
destrian j if the line joining their centers of mass does not
intersect any obstacle. In a similar way we define the set of
walls or borders that act on pedestrian i as

Wi ª �w:�Rwi
� − Ri

� � � rc� �2�

where wi�w is the nearest point on the wall w to the pedes-
trian i.

Thus, the movement of each pedestrian is defined by the
equation of motion

miRi
�̈ = Fi

� = Fi
drv� + �

j�Ni

Fij
rep� + �

w�Wi

Fiw
rep� , �3�

where Fij
rep� denotes the repulsive force from pedestrian j act-

ing on pedestrian i, Fiw
rep� is the repulsive force emerging from

the obstacle w and Fi
drv� is a driving force. mi is the mass of

pedestrian i.
The repulsive forces model the collision-avoidance per-

formed by pedestrians and should guarantee a certain volume
exclusion for each pedestrian. The driving force, on the other
hand, models the intention of a pedestrian to move to some
destination and walk with a certain desired speed. The set of
Eqs. �3� for all pedestrians results in a high-dimensional sys-
tem of second order ordinary differential equations. The time
evolution of the positions and velocities of all pedestrians is
obtained by numerical integration.

Most force-based models describe the movement of pe-
destrians qualitatively well. Collective phenomena like lane
formation �3–5�, oscillations at bottlenecks �3,4�, the “faster-
is-slower” effect �6,7�, clogging at exit doors �4,5� are repro-
duced. These achievements indicate that these models are
promising candidates for realistic simulations. However, a
qualitative description is not sufficient if reliable statements
about critical processes, e.g., emergency egress, are required.
Moreover, implementations of models often require addi-
tional elements to guarantee realistic behavior, especially in
high density situations. Here strong overlapping of pedestri-
ans �5,6� or negative and high velocities �3,8� occur which
then has to be rectified by replacing the equation of motion
�3� by other procedures.

Force-based models contain free parameters that can be
adequately calibrated to achieve a good quantitative descrip-
tion �9–13�. However, depending on the simulated geometry
the set of parameters often changes. In most works quantita-
tive investigations of pedestrian dynamics were restricted to
a specific scenario or geometry, like one-dimensional motion
�14�, behavior at bottlenecks �11,19,20�, two-dimensional
motion �12� or outflow from a room �15–18�.

In this work, we restrict ourselves to corridors and address
the possibility of describing the movement of pedestrians in
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wide and narrow corridors reasonably and in a quantitative
manner with a unique set of parameters. At the same time,
the modeling approach should be as simple as possible.

In the next section, we propose such a model which is
solely based on the equation of motion �3�. Furthermore the
model incorporates free parameters which allow calibration
to fit quantitative data.

II. CENTRIFUGAL FORCE MODEL

The centrifugal force model �CFM� �5� takes into account
the distance between pedestrians as well as their relative ve-
locities. Pedestrians are modeled as circular disks with con-
stant radius. Their movement is a direct result of superposi-
tion of repulsive and driving forces acting on the center of
each pedestrian. Repulsive forces acting on pedestrian i from
other pedestrians in their neighborhood and eventually from,
e.g., walls and stairs to prevent collisions and overlapping.
The driving force, however, adds a positive term to the re-
sulting force, to enable movement of pedestrian i in a certain
direction with a given desired speed vi

0. The mathematical
expression for the driving force is given by

Fi
drv� = mi

vi
0� − vi�

�
, �4�

with a time constant �.
Given the direction connecting the positions of pedestri-

ans i and j,

Rij
� = Rj

� − Ri
� , eij� =

Rij
�

Rij
. �5�

The repulsive force then reads �see Fig. 1�

Fij
rep� = − mikij

vij
2

Rij
eij� . �6�

This definition of the repulsive force in the CFM reflects
several aspects. First, the force between two pedestrians de-
creases with increasing distance. In the CFM it is inversely
proportional to their distance Rij. Furthermore, the repulsive
force takes into account the relative velocity vij between pe-
destrian i and pedestrian j. The following special definition
provides that slower pedestrians are not affected by the pres-
ence of faster pedestrians in front of them,

vij =
1

2
��vi� − v j� � · eij� + 	�vi� − v j� � · eij� 	�

= 
�vi� − v j� � · eij� if �vi� − v j� � · eij� � 0

0 otherwise.
� �7�

As in general pedestrians react only to obstacles and pedes-
trians that are within their perception, the reaction field of the
repulsive force is reduced to the angle of vision �180°� of
each pedestrian, by introducing the coefficient

kij =
1

2

vi� · eij� + 	vi� · eij� 	
vi

= 
�vi� · eij� �/vi if vi� · eij� � 0 & vi � 0

0 otherwise.
� �8�

The coefficient kij is maximal when pedestrian j is in the
direction of movement of pedestrian i and minimal when the
angle between j and i is bigger than 90°. Thus the strength of
the repulsive force depends on the angle.

As mentioned earlier the CFM is complemented with a
“collision detection technique” �CDT� to manage conflicts
and mitigate overlappings between pedestrians. Figure 2 de-
picts schematically the definition of the CDT.

.

.

−→vj

−→vi
−→
Rij

−−→

F rep

ij

FIG. 1. �Color online� Direction of the repulsive force.

FIG. 2. Schematic representation of the collision detection tech-
nique �CDT�, which is an important component in the CFM �5�, to
manage collisions and mitigate overlapping among pedestrians. In
our model we do not need the CDT, which is a considerable sim-
plification in comparison to the CFM �5�.
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Although CDT is relatively simple, it adds an amount of
complexity to the initial model defined with Eq. �3� and
masks the main idea behind the repulsive forces. In the fol-
lowing we systematically modify the expression of the repul-
sive force to enable a better quantitative description of pe-
destrian dynamics.

III. OVERLAPPING VS OSCILLATION

In this work, we consider a velocity-dependent volume
exclusion of pedestrians. Overlapping between two pedestri-
ans occurs when their geometrical form �circle, ellipse,…�
overlaps. Modeling a pedestrian as a circle or ellipse is just
an approximation of the human body. Therefore, a certain
amount of overlapping could be acceptable and might be
interpreted as “elastic deformation.” However, for the de-
formed body the center of mass no longer coincides with the
center of the circle or ellipse. For this reason overlapping is
a serious problem that should be dealt with.

In �21�, it was shown that the introduction of a CDT is
necessary to mitigate overlapping among pedestrians. The
CDT keeps pedestrians away from each other with a distance
of at least r, where r represents the radius of the circle mod-
eling the volume exclusion of pedestrians.

Our goal is to simplify the model by dispensing with the
CDT and improve the repulsive force to compensate for the
effects of the missing CDT on the dynamics. To introduce
the shape of the modeled pedestrians in Eq. �6� we transform
the singularity of the repulsive force from 0 to 2r,

Fij
rep� = − mikij

vij
2

Rij − 2r
eij� . �9�

Due to the quotient in Eq. �9� when the distance is small, low
relative velocities lead to an unacceptably small force. Con-
sequently, partial or total overlapping is not prevented. Intro-
ducing the intended speed in the numerator of the repulsive
force eliminates this side-effect. This dependence on the de-
sired speed is motivated by the observation that for faster
pedestrians stronger repulsive forces are required to avoid
collisions with other pedestrians and obstacles. Thus, the re-
pulsive force is changed to

Fij
rep� = − mikij

��vi
0 + vij�2

Rij − 2r
eij� , �10�

with a free parameter � to adjust the strength of the force.
Those two changes in the repulsive force cause the emer-

gence of two phenomena: Overlapping and oscillations. In
the following we will define quantities to study those phe-
nomena.

Avoiding overlapping between pedestrians and oscilla-
tions in their trajectories is difficult to accomplish in force-
based models. On one hand, increasing the strength of the
repulsive force with the aim of excluding overlapping during
simulations leads to oscillations in the trajectories of pedes-
trians. Consequently backward movements occur, which is
not realistic especially in evacuation scenarios.

On the other hand, reducing the strength of the repulsive
force �to avoid oscillations� leads inevitably to overlapping

between pedestrians or between pedestrians and obstacles.
To solve this dilemma one has to find an adequate value

of the strength of the repulsive force: it should neither be too
high so that oscillations will appear, nor too low so that
overlapping will be observed.

To understand this duality we quantify overlapping and
oscillations during simulations. First, we define an
overlapping-proportion during a simulation as

o�v� =
1

nov
�
t=0

t=tend

�
i=1

i=N

�
j�i

j=N

oij , �11�

with

oij =
Aij

min�Ai,Aj�
� 1, �12�

where N is the number of simulated pedestrians. Aij is the
overlapping area of the circles i and j with areas Ai and Aj,
respectively �see Fig. 3�. nov is the cardinality of the set

O ª �oij:oij � 0� . �13�

For nov=0, o�v� is set to zero.
For a pedestrian with velocity vi� and desired velocity vi

0�
we define the oscillation-proportion as

o�s� =
1

nos
�
t=0

t=tend

�
i=1

i=N

Si, �14�

where Si quantifies the oscillation-strength of pedestrian i
and is defined as follows:

Si =
1

2
�− si + 	si	� , �15�

with

si =
vi� · vi� 0

�vi
0�2 , �16�

and nos is the cardinality of the set

S ª �si:si � 0� . �17�

Here again o�s� is set to zero if nos=0. The proportions o�v�

and o�s� are normalized to 1 and describe the evolution of the
phenomena overlapping and oscillations during a simulation.

In order to exemplify the behavior of these two coupled
phenomena we simulate an evacuation of 35 pedestrian from
a 4�4 m2 room with an exit of 1.2 m and determine o�v�

Aij

Ai

Aj

FIG. 3. The overlapping area between pedestrians i and j varies
between 0 and 1.
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and o�s� for different values of � in Eq. �10�. Results are
shown in Fig. 4. �=0 is a special case of the model and
represents the CFM �5�. The high values of the overlapping
proportion suggest that simulations using only CFM without
the CDT lead to unreasonable results. For further details we
refer to �21�.

The introduction of the intended velocity in the repulsive
force enhances the ability of the repulsive force to guarantee
the volume exclusion of pedestrians. This is reflected by the
decreasing of the overlapping-proportion o�v� while increas-
ing � �Eq. �10��. See Fig. 4.

Meanwhile, the oscillation-proportion o�s� increases, thus
the system tends to become instable. Large values of the
oscillation-proportion o�s� imply less stability. For si=1 one
has vi� =−vi� 0, i.e., a pedestrian moves backward with desired
velocity. Even values of si higher than 1 are not excluded and
can occur during a simulation. Therefore, a careful calibra-
tion of � is required to achieve an optimal balance between
overlapping and oscillations.

Unfortunately, it is not possible to adjust the strength of
the repulsive force by means of � in order to get an
overlapping-free and meanwhile an oscillation-free simula-
tion. Nevertheless, by proper choice of � one can reduce the
amount of overlapping among pedestrians such that it be-
comes negligible and can be interpreted as a deformation.
This characteristic of the GCFM is not fulfilled by the CFM
�5�, where total overlapping �oij =1� can be observed.

Furthermore, the quantities o�s� and o�v� provide a criterion
to choose an optimal value for �, which is given by the
intersection of the curves representing o�s� and o�v�.

IV. HARD CIRCLES VS DYNAMICAL CIRCLES:
THE FUNDAMENTAL DIAGRAM FOR SINGLE

FILE MOVEMENT

It is suggested that the effective space requirement of a
moving pedestrian varies with velocity. Usually, the projec-

tion of the pedestrian’s shape to the two-dimensional plane is
modeled as a circle with a radius r �3,7,10�. Thompson sug-
gested a three-circle representation for main body and shoul-
ders �22�. According to �23�, however, the radius of the circle
varies such that the space requirement of pedestrians in-
creases significantly as speed increases. In �14� a linear ve-
locity dependence

ri = rmin + �rvi �18�

of the radius with parameters rmin and �r was suggested.
“Space requirement” encompasses the physical area taken by
the torso together with the motion of the legs, lateral sway-
ing, and a safety margin.

The repulsive force reads

Fij
rep� = − mikij

��vi
0 + vij�2

dij
eij� , �19�

with

dij = Rij − ri�vi� − rj�v j� �20�

the effective distance between pedestrian i and j and ri the
radius of pedestrian i as defined in Eq. �18�.

V. ELLIPTICAL VOLUME EXCLUSION OF PEDESTRIANS

One drawback of circles that impact negatively the dy-
namics is their rotational symmetry with respect to their cen-
ters. Therefore, they occupy the same amount of space in all
directions. In single file movement this is irrelevant since the
circles are projected to lines and only the required space in
movement direction matters. However, in two-dimensional
movement the aforementioned symmetry lasts by occupying
unnecessary lateral space.

In �24�, Fruin introduced the “body ellipse” to describe
the plane view of the average adult male human body. Pauls
�23� presented ideas about an extension of Fruin’s ellipse
model to better understand and model pedestrian movement
as density increases. Templer �25� noticed that the so called
“sensory zone,” which is a bubble of space between pedes-
trians and other objects in the environment to avoid physical
conflicts and for psychocultural reasons, varies in size and
takes the shape of an ellipse. In fact, ellipses are closer to the
projection of required space of the human body on the plane,
including the extent of the legs during motion and the lateral
swaying of the body.

Having the ambition to describe with the same set of pa-
rameters the dynamics in one- and two-dimensional space
we extend our model by introducing an elliptical volume
exclusion of pedestrians. Given a pedestrian i we define an
ellipse with center �xi ,yi�, major semiaxis a and minor semi-
axis b. a models the space requirement in the direction of
movement. In analogy to Eq. �18� we set

a = amin + �avi �21�

with two parameters amin and �a.
Fruin �24� observed body swaying during both human lo-

comotion and while standing. Pauls �26� remarks that sway-
ing laterally should be considered while determining the re-

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6
η

0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

0 . 1 2

0 . 1 4

0 . 1 6

o
(s
)
;
o
(v
)

o s c i l l a t i o n s

o v e r l a p s

FIG. 4. �Color online� Oscillation-proportion o�s� and
overlapping-proportion o�v� as function of the interaction strength �
obtained from 200 simulations with different initial conditions. Os-
cillations increase with increasing strength of the repulsive force,
while overlaps become negligible for larger �. The case �=0 is the
CFM. In each run the simulations for different � are started with the
same initial values.

CHRAIBI, SEYFRIED, AND SCHADSCHNEIDER PHYSICAL REVIEW E 82, 046111 �2010�

046111-4



quired width of exit stairways. In �20� characteristics of
lateral swaying are determined experimentally. Observations
of experimental trajectories in �20� indicate that the ampli-
tude of lateral swaying varies from a maximum bmax for slow
movement and gradually decreases to a minimum bmin for
free movement when pedestrians move with their free veloc-
ity �Fig. 5�. Thus we describe with b the lateral swaying of
pedestrians and set

b = bmax − �bmax − bmin�
vi

vi
0 . �22�

Since a and b are velocity dependent, the inequality

b � a �23�

does not always hold for the ellipse i. In the rest of this work
we denote the semi-axis in the movement direction by a and
its orthogonal semi-axis by b.

VI. ELLIPTICAL VOLUME EXCLUSION AND FORCE
IMPLEMENTATION

In this section we give some mathematical insights con-
cerning the implementation of the repulsive forces.

A. Repulsive forces between pedestrians

In order to calculate the repulsive force emerging from
pedestrian j acting on pedestrian i according to Eq. �19� we
require the distance between the borders of the ellipses,

along a line connecting the two pedestrians dij. See Appendix
A for more details on dij.

Another important quantity is the distance of closest ap-

proach or contact distance of two ellipses l̃ which is the
minimum of dij while i and j are not overlapping. Unlike for

circles, l̃ can be nonzero for ellipses and depends on their
orientations. In �28� an analytical expression for the distance
of the closest approach of two ellipses with arbitrary orien-

tation is derived. Figure 7 shows how dij and l̃ goes in the
repulsive force.

B. Repulsive forces between pedestrians and walls

The repulsive force between a pedestrian i and a wall is
zero if i performs a parallel motion to the wall. While this
behavior of the force is correct, it leads to very small repul-
sive forces when the pedestrians’ motion is almost parallel to
the wall. For this reason we characterize in this model walls
by three point masses acting on pedestrians within a certain
interaction range �Fig. 6�. The middle point is the point with
the shortest distance from the center of the pedestrian to the
line segment of the wall. All three points have to be com-
puted at each step as the pedestrian moves. The distance
between the three wall points is set to the minor semi-axis of
an ellipse. If one lateral point �wi+1 or wi+1� does not lie on
the line segment of the wall, then it will not be considered in
the computation of the repulsive force.

The number of point masses has been chosen by a process
of trial and error. Simulations have shown that three point
masses are sufficient to keep pedestrians away from walls.
Meanwhile they are computationally cost-effective.

As walls are static objects, the repulsive force emerging
from a wall w and acting on pedestrian i simplifies to

Fiw
rep� = �

j=i−1

i+1

Fiwj

rep� , �24�

with

Fiwj

rep� = − mikiwi

��vi
0 + vi

n�2

diwj

eiwj
� , j � �i − 1,i,i + 1� .

�25�

vi
n is the component of the velocity normal to the wall, kiwi

and eiwj
� as defined, respectively, in Eqs. �8� and �5� in Sec. II.

The distance between a line w and the ellipse i is

FIG. 5. �Color online� Off-line trajectory detection with PeTrack
�27�. Top: the trajectory of the detected pedestrian shows strong
swaying. Bottom: the faster pedestrians move, the smoother and
weaker is the swaying of their trajectories.

.

. .. wi wi+1wi−1

−−→

Frep
iwi

−−−→

Frep
iwi+1

−−−→

Frep
iwi−1

oi

FIG. 6. Each wall is modeled as three static point masses acting
on pedestrians.
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diw = ki − ri, �26�

with ri the polar radius determined in Eq. �A3� and ki the
distance of point oi to the line w. Further details can be found

in Appendix B. According to the distance l̃ defined for the
repulsive forces between pedestrian in Sec. VI A, we intro-
duce the distance of the closest approach between an ellipse

and a line k̃, see Appendix B and Fig. 7 for details.
Note that in Eq. �25�, kiwi

in the force is independent of
the chosen lateral wall point wj. That means, if a pedestrian
is moving parallel to the wall, kiwi

=0 and thus the points
j−1 and j+1 have no effects.

C. Numerical stabilization of the repulsive force

In this section, we describe a numerical treatment of the
repulsive force. For the sake of simplicity, we focus on the
case of pedestrian-pedestrian interactions. The pedestrian-
wall case is treated similarly.

The strength of the repulsive force decreases with increas-
ing distance between two pedestrians. Nevertheless the range
of the repulsive force is infinite. This is unrealistic for inter-
actions between pedestrians. Therefore, we introduce a cutoff
radius rc=2 m for the force limiting the interactions to ad-
jacent pedestrians solely. To guarantee robust numerical in-
tegration a two-sided Hermite-interpolation of the repulsive
force is implemented. The interpolation guarantees that the
norm of the repulsive force decreases smoothly to zero for

dij→rc
−. For dij→ l̃+ the interpolation avoids an increase of

the force to infinity but to fm=3Fij
rep�reps� at s0=reps and

reps=0.1 m, where it remains constant. dij and l̃ are illus-
trated in Sec. VI A. Figure 7 shows the dependence of the
repulsive force on the distance for constant relative velocity.

The right interpolation function Pr and the left one Pl
�dashed parts of the function in Fig. 7� are defined using

Pr�r̃c� = Fij
rep�r̃c�, Pr�rc� = 0,

�Pr���r̃c� = �Fij
rep���r̃c�,�Pr���rc� = 0, �27�

with r̃c=rc−reps and

Pl�s0� = fm, Pl�reps� = Fij
rep�reps� ,

�Pl���s0
+� = 1, �Pl���reps� = �Fij

rep���reps� . �28�

where the prime indicates the derivative. s0 is the minimum
allowed magnitude of the effective distance of two ellipses.
Due to the superposition of the forces the inequality,

dij � s0. �29�

for pedestrians i and j is not guaranteed.

VII. SIMULATION RESULTS

The initial value problem in Eq. �3� was solved using an
Euler scheme with fixed-step size 	t=0.01 s. First the state
variables of all pedestrians are determined. Then the update
to the next step is performed. Thus, the update in each step is
parallel.

The desired speeds of pedestrians are Gaussian distributed
with mean 
=1.34 m /s and standard deviation
�=0.26 m /s. The time constant � in the driving force
Eq. �4� is set to 0.5 s, i.e., ��	t. For simplicity, the mass mi
is set to unity. In all simulations we set � �Eqs. �19� and �25��
to 0.2.

In order to verify the model and evaluate the difference of
the elliptical shape of the volume exclusion versus the circu-
lar one we measure the fundamental diagram in two-
dimensional space with the same set of parameter as for the
one-dimensional fundamental diagram. In the one-
dimensional case only the space requirement of pedestrians
in movement direction, expressed in terms of the semiaxis a,
influences the dynamics of the system. We set amin
=0.18 m and �a=0.53 s �see Eq. �21��.

To illustrate the impact of the velocity dependence of the
radius on the dynamics of pedestrians we measure the one-
dimensional fundamental diagram in a corridor of 26 m with
periodic boundary conditions. The measurement segment is 2
m long and situated in the middle of the corridor. Details
about the measurement method are given in Appendix C.

The results for the one-dimensional fundamental diagram
are shown in Fig. 8 and compare well with experimental
data. Ellipses with velocity-dependent semiaxes emulate the
space requirement of the projected shape of pedestrians bet-
ter. Even the shape of the fundamental diagram is reproduced
after inclusion of this velocity dependence.

We extend the simulation to two-dimensional space and
simulate a 25�1 m2 corridor with periodic boundary con-
ditions. A measurement segment of 2�1 m2 was set in the
middle of the corridor. We use the same measurement
method as for the single-file case �see Appendix C�. Calibra-
tion of the parameters of the lateral semi-axis b �bmin and
bmax in Eq. �22�� leads to the values bmin=0.2 m and
bmax=0.25 m. The simulation result is shown in Fig. 9.

fm

reps

F
rep

ij

l̃

d ij

rcr̃cs0

FIG. 7. �Color online� The interpolation of the repulsive force
between pedestrians i and j Eq. �19� depending on dij and the dis-

tance of closest approach l̃, see Sec. VI A. As the repulsive force
also depends on the relative velocity vij, this figure depicts the
curve of the force for vij =const. The left and right dashed curves
are defined in Eqs. �28� and �27� respectively. The wall-pedestrian

interaction has an analogous form with dij and l̃ replaced by dwi and

k̃, respectively.
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With the chosen dimensions of the semiaxes a and b the
model yields the right relation between velocity and density
both in single-file movement and wide corridors, although
only a corridor width of 1 m was investigated. One remarks
that the fundamental diagram for elliptical shaped particles is
an upper bound for that of circular ones, especially at low
and medium densities. At high densities there is no notice-
able difference between both shapes.

VIII. CONCLUSIONS

We have proposed modifications of a spatially continuous
force-based model �5� to describe quantitatively the move-
ment of pedestrians in one- and two-dimensional space. Be-
sides being a remedy for numerical instabilities in CFM the
modifications simplify the approach of Yu et al. �5� since we
can dispense with their extra “collision detection technique”

without deteriorating performance. The implementation of
the model is straightforward �32,33� and does not use any
restrictions on the velocity. Furthermore, we introduced an
elliptical volume exclusion of pedestrians and studied its in-
fluence compared to the standard circular one. Simulation
results show good agreement with experimental data. Never-
theless, the model contains free parameters that have to be
tuned adequately to adapt the model to a given scenario.
Further improvement of the model could be made by includ-
ing, for example, a density-dependent repulsive force.

Although the model describes quantitatively well the op-
erative level of human behavior, it does not consider aspects
of the tactical and strategic levels �31�. Phenomena such as
cooperation, changing lanes, and overtaking are not repro-
duced, especially in bidirectional flow.
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APPENDIX A: DISTANCE BETWEEN TWO ELLIPSES

In this appendix we give details about the calculation of
the distance dij between two ellipses which is defined as the
distance between the borders of the ellipses, along a line
connecting their centers �Fig. 10�.

By proper choice of the coordinate system the ellipse i
may be written as quadratic form,

x2

ai
2 +

y2

bi
2 = 1. �A1�

In polar coordinates, with the origin at the center of the el-
lipse and with the angular coordinate i measured from the
major axis, one gets
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FIG. 8. �Color online� Top: Velocity-density relation for one-
dimensional movement compared to experimental data �29�. For the
simulations, �a is set to 0.53 s. Bottom: changing �a in Eq. �21�
influences the slope of the diagram. amin has been kept equal to 0.18
m. �a=0 represents pedestrians with constant space requirement.
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FIG. 9. �Color online� Density-velocity relation in a corridor of
dimensions 25�1 m2 in comparison with experimental data ob-
tained in the HERMES-project �30�. For the simulation with circles,
b is set to be equal to a.
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x = ri cos�i�, y = ri sin�i� . �A2�

By replacing the expressions of x and y in Eq. �A1� and
rearranging we obtain the expression

qri
2 − 1 = 0, �A3�

for the polar radius ri with

q =
cos2 i

ai
2 +

sin2 i

bi
2 . �A4�

In the same manner, we determine the polar radius rj.
Finally, the distance dij between the centers of the ellipses

i and j is determined as follows �Fig. 10�,

dij = �oioj
� � − ri − rj . �A5�

Note that the distance between two ellipses can be nonzero
even when the ellipses touch or overlap.

APPENDIX B: DISTANCE OF CLOSEST APPROACH

Distance of closest approach of two ellipses is the small-
est distance between their borders, along a line connecting
their centers while they are not overlapping. See Fig. 11, top.
To mitigate overlapping the repulsive forces are high for dis-
tances in a certain neighborhood of the distance of closest

approach, see l̃ in Fig. 7. An analytical solution of this dis-

tance for two arbitrary ellipses is presented in �28�.
In this appendix we describe an algorithm to calculate the

distance of closest approach of an ellipse and a line �	�,
which is the distance between the border of the ellipse, along
a line connecting its center o and the closest point on the line
to o. For this purpose consider without loss of generality an
ellipse i in canonical position and let �	�� be the line tangen-
tial to the ellipse i and parallel to �	� �Fig. 11, bottom�,

�	�:y = cx + d, �	��:y = cx + d�. �B1�

with known coefficients c and d.
To determine d� we solve the intersection equations of an

ellipse and a line, which yields the quadratic equation

q�x2 + p�x + s� = 0, �B2�

with

q� =
1

a2 +
c2

b2 , p� =
2cd�

b2 and s� =
d�2

b2 − 1. �B3�

As �	�� is tangential to the ellipse we have

D = 0 �B4�

with D the discriminant of Eq. �B2�. Solving Eq. �B4� gives

d� = � �b2 + a2c2. �B5�

Finally the distance of closest approach of the ellipse i and
line �	� is

k̃ = ki� − ri, �B6�

with ki� the distance of ci to �	�� and ri the polar radius as
determined in Eq. �A3�.

APPENDIX C: MEASUREMENT METHOD

The mean velocity of pedestrian i that enters the measure-
ment are at �xi

in ,yi
in� and leaves it at �xi

out ,yi
out� is determined

as

vi =
��xi

out − xi
in�2 + �yi

out − yi
in�2

ti
out − ti

in , �C1�

where ti
in is the entrance time and ti

out exit time of i. For the
one-dimensional case yi

in=yi
out=0.

The density is defined as follows:

�i =
1

ti
out − ti

in
tin

tout

��t�dt �C2�

��t� =
Nin�t�

lm
. �C3�

with lm=2m the length of the measurement area in the move-
ment direction and Nin�t� is the number of pedestrians within
the area at time t. In one-dimensional space the measurement
area is reduced to a measurement segment of length lm.

−→vj

−→vi

oj

oi

d ij
αj

ri

rj

αi

FIG. 10. �Color online� dij is the distance between the borders of
the ellipses i and j along a line connecting their centers.
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′
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k̃

k ′
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a o

p

b

FIG. 11. �Color online� Top: distance of closest approach of two
ellipses. Bottom: distance of closest approach between an ellipse
and a line.
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