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Detection of Spine Curvature using Wireless Sensors  
 

Abstract: Ankylosing spondylitis (AS) is a progressive disease of the spine where the spine slowly stiffens and can 

eventually become completely inflexible. It can be difficult to diagnose in primary care, and thus there is often a 10-year 

delay in diagnosis. Within this study an intelligent wearable system is designed and developed to detect the displacement 

of the spine and provide the subject with a continuous posture monitoring and feedback signals when an incorrect posture 

is detected using accelerometer and gyroscope sensors. This wearable system can be used both to diagnose AS in early 

stages and to prevent subjects from lower back and neck pain caused by incorrect posture. We outline here the system 
which detects the curvature of the spine by using Shimmer sensors placed on the back and provides relevant exercises 

based on the user’s pain records.  

Keywords—�Ankylosing spondylitis (AS); Shimmer sensors; Accelerometer; Gyroscope; Wearable devices 

1. Introduction 

Per the Office for National Statistics (ONS), the number of people with Lower Back Pain (LBP) and neck pain is 
increasing. There was almost 31 million days of work lost in 2013/2014 due to back and neck pains [3]. A common 
health problem amongst society is Lower back pain (LBP) which is a leading cause of activity limitation and work. This 
can be an economic burden on individuals, families, governments, industry and society at large. At least 50% of the 
European population will experience back and neck pain at some time in their lives [10].  Back pain can be caused by 
many different factors such as diseases, sprains, strains, injuries, or a pinched or irritated nerve which is caused by [24] 
bending uneasily or for long period of time, slouching in chairs, lifting, carrying, pushing or pulling heavy items, twisting 
uncomfortably, overstretching, driving or sitting in a hunched back position or for long times without taking a break or 
overusing the muscles during activities such as sport. Many people believe back pain is an ordinary symptom, but in 
some cases, back pain can be due to more than a strained muscle or other injuries. It can be caused by a chronic condition 
called Ankylosing Spondylitis (AS). 

Ankylosing spondylitis (AS) is a progressive disease of the spine where the spine slowly stiffens and can eventually 
become completely inflexible. It is arthritis that strikes the spine, but it can move to other joints. [23]. In AS, the stiffness 
and chronic pain is caused by inflammation, and the degree of pain can vary from one person to another. AS is incurable, 
but the living condition can be made easier using medications and practicing healthy lifestyle tactics. It can be difficult to 
diagnose AS in primary care, and thus there is often a 10-year delay in diagnosis. It is not uncommon to see young 
people between the ages of 17 and 45 presenting to a rheumatologist for the first time having already developed severe 
and permanent stiffening of the spine due to AS [16].  Back pain is extremely common whereas AS is quite uncommon 
and many GPs have not been trained in detecting it. There are no symptoms that reliably point to the diagnosis although a 
questionnaire can help to diagnose it. This questionnaire consists of 6 questions related to 5 major symptoms: fatigue, 
spinal pain, joint pain/swelling, areas of localized tenderness, morning stiffness. X-rays and MRI scans can fail to detect 
the condition for several years after it has started. One of the most important clinical tests for early AS is a simple tape 
measure test: Schober's test1 [9] [13]. This test essentially detects a loss of displacement or elongation in the lumbar spine 
when someone bends forward. Unfortunately, this test is usually not performed in primary care and the diagnosis is 
missed.  Spinal movements in other directions can also be affected in AS: reduced rotation and lateral flexion of the 
spine, reduced chest expansion. The neck can be affected as well as the lower part of the spine. However, it is uncommon 
to develop problems in those areas without some reduction in Schober's test. Stiffness in AS is worse in the morning – if 
patients attend clinic in the afternoon the test may be normal. An ambulatory test may be more sensitive in detecting 
those with stiffness in the morning [4].  Previous approaches to measure spinal deformities (increased bend in the 
thoracic spine, straightening of the lumbar spine) are limited [11]. To date, work has not been carried out on measuring 
dynamic movement in the spine in AS.  Ulster University has developed a system coupled with wearable gloves to 
measurement Rheumatoid Arthritis (RA) in finger joints [2,3,11,12].  The need to be able to measure stiffness objectively 
applies to AS even more than in RA, where other outcome measures exist to measure disease activity. Whilst there has 
been some work with wearable gloves, spinal movement research has not yet been applied to the study of AS.  The ISRC 
team has therefore been developing expertise with conductive wearable fabrics merged with intelligent systems for 
stiffness measurements [11,12]. 

 This research presents a wearable system with piezo-resistive stretchable fabric for the detection of displacement in 
the lumbar spine [19] using Shimmer sensors. This will facilitate an ambulatory test for people with back pain to achieve 
early diagnosis of AS; allowing monitoring of stiffness, daily posture and encouraging exercise. Patients with AS are 
normally given a list of specific spinal exercises to carry out over a 30-minute period each day. This technology will also 
be used to obtain objective measures of outcome in terms of spinal flexibility.�The current clinical process relies heavily 
on questionnaires which asks the patient to rate the severity of their stiffness and pain. However, by the time the patients 
visit the clinic, they can forget their symptoms and the severity of their pains. The system therefore has a daily checkup 
section which allows the user to input their symptoms and the severity of them which is then calculated per the Bath 
Ankylosing Spondylitis Disease Activity Index (BASDAI) scoring method. Based on their BASDAI score the system 

                                                        
1 http://youtu.be/YULeqz1G1HU 



  

promotes individual detailed exercises for the patient. Another important symptom of the AS disease is the kyphosis 
which is the medical term for “hunchback” appearance. When AS has affected the upper part of the neck, it creates major 
kyphosis which causes the head to collapse forward [22]. So being able to recognize hunchback appearance at the early 
stage can help in diagnosing AS. 

2. Related Work 

This section provides an overview of existing works on methods for detecting the curvature of the spine and 

maintaining a correct posture.  In [5], an MRI scan was used to to validate a method of predicting the lumbar spine 

geometry from external (non-invasive electro goniometer) measurements.  This allowed for the correct representation of 

the vertebral position and orientation relative to the sacrum using scaled anthropometric data and individual goniometric 

measurements. The results achieved by the research had a high degree of accuracy but the main problem is the degree of 

practicality as it is not practical and easy to have radiograph images taken anywhere.  Another study [1] described the 

design and the development of a wearable smart T-shirt system which can estimate the lumbar arch length. This is 

estimated by processing the raw sensor data through a hybrid model developed to describe the peculiar characteristics of 

the e-textile sensors. This system used both e-textile and accelerometer sensors. The system has been tested in 

comparison with a stereo photogrammetric system showing a 2% error in length estimation. This study has no 

information on how the user’s postures in different positions were handled. In [15], the study presented the use of novel 

textile strain sensor to detect a bend on the subjects back. The sensors used had a linear resistance vs. strain 

characteristics and a negligible hysteresis. The resulting measurement error was ±3.5% over a strain range of up to 100%. 
A garment prototype was developed by connecting the strain sensors with a silicone film on the back area of a tight-

fitting stretchy garment. Even though this system showed a good result, they do not calculate the force of gravity against 

the subject. This can result in system failure if the subject is standing or sitting on an uneven surface. 

 

A. Intertial Sensors 

Inertial sensors are primarily accelerometers and gyroscope sensors and are based on inertia. An accelerometer 
measures specific force and acceleration, and a gyroscope measures the rate of change of angles.  An inertial 
measurement unit combines multiple accelerometer and gyros (usually three of each) to generate a 3-dimentiaonal (3-D) 
measurements of accelerations and the rate of angle change, this produces data from x, y and z axis of both accelerometer 
and gyroscope sensors. These sensors are popular amongst health monitoring systems as they are usually very small, 
have long battery life and are easily attached to human body. DorsaVi ViMove sensor are inertial sensors, popular with 
many health clinics. DorsaVi’s hardware contains two movement sensors, two EMG (muscle activity) sensors, a 
recording and feedback device, and a charging dock. The movement sensors consist of a 3-D accelerometer, a gyroscope, 
and magnetometer which collects movement data in three dimensions as well as measuring the force and the impact. The 
collected data are transferred wirelessly to the recording device. The data can be collected remotely for up to 24 hours or 
live data can be received by connecting directly to the PC [6]. 

B. E-Textile Sensors 

E-textiles are fabrics that can be stretched and allow electronics and interconnections to be embedded into them, 
offering physical flexibility that cannot be accomplished as easily with other electronic manufacturing techniques. There 
are two different categories of smart textiles: one is aesthetic and second is performance enhancing. Aesthetic instances 
are fabrics that can change their color. Many of these smart textile fabrics receive energy from the environment by 
harnessing harnessing vibrations, sound or heat, reacting to this input. There are also performance enhancing textiles 
sensors, which are very useful within the sport and military industries. These smart textiles assist in controlling and 
adjusting the body temperature, its can control the vibration within muscles, and reduce the resistance of the wind. These 
can all have a huge impact on an athletic performance. There are other smart textile fabrics that can protect the wearer 
from dangerous environmental threats such as space travel effects and radiation. Bend can also be sensed by textile 
sensors by detecting the fabric being shortened or stretched which is calculated by evaluating the percentage of change in 
electrical resistance. Many studies have used textile sensors to detect the curvature of the back [14,15,18,21].  

C. X-ray Sensors 

Another approach to detect the curvature of the spine and recognize incorrect posture in the human body is via 
radiograph imaging which includes techniques such as computer tomography (CT) and magnetic resonance imaging 
(MRI). These techniques are widely used as they can create a detailed image of the human spine. However, these systems 
cannot monitor spine during daily activity and thus cannot provide the awareness that comes with monitoring and user 
feedback. This technique is more suitable for clinics and hospitals but is not suitable for personal and field use [8].   

D. Fiber-Optic Bend Sensors 

When detecting the curvature of spine and incorrect posture, fiber-optic sensors are a popular approach. Fiber-optic 

bend sensors (or optical goniometers) include a light source, a plastic optical fiber (POF) with an abraded section in 

between and a photosensitive detector. Light is released into the POF at one end and next it is detected at the other end. 



  

When the optical-fiber is bent, the light (intensity) is lowered. When a section of POF has been cut, polished or raised, 

the loss of light is often increased. Due to the sensing principle, single fiber-optical bend sensors are unipolar devices [7]. 

 

3. Methodology  

Our system collects posture data using 3 sensors placed on a subject's back. The collected data is classified as one of 
the incorrect sitting posture, so when a user changed their correct posture to an incorrect posture the system can 
recognize it and notify the user. If the subject is sitting in an incorrect posture, the system should notify the user on the 
specific incorrectness of the posture. The system will be able to save the users daily posture record which can help the 
doctors to diagnose specific diseases such as AS. The system saves each test record for patients. The user is asked to fill 
in a daily questionnaire to assess their level of AS. The system will calculate a grade based on user answers. Then, 
depending on their score, it will provide the user with specific exercises and instructions on how they should be done. 
The grade is calculated using the Gold standard for measuring and evaluating disease activity in Ankylosing Spondylitis, 
which is called BASDAI (Bath Ankylosing Spondylitis Disease Activity Index).  

A. System Design 

The system was developed using 3 wearable wireless sensors created by Shimmer to collect accelerometer and 
gyroscope data. The dimension of these sensors are 51mm*34mm*14mm and they include highly accurate and 
scientifically reliable raw, calibrated or un-calibrated data to allow complete control over capture and interpretation of 
sensed data in real-time. The Shimmer sensors were placed on the participant’s back using piezo-resistive stretchable 
fabric. Sensor 1 was placed on Cervical spine, second sensor was placed in between all Thoracic spine and sensor 3 was 
placed on lower Lumbar spine. Figure 1 shows the positions that the sensors were placed on the body. MATLAB 
software is used to connect to the sensors and record the receiving data to .dat files. The system includes a graphical user 
interface to create a user friendly application. 

 

 
 

Figure 1 - Sensor Location Figure 2 - Sensors Setting Validation 

.  

B. Data Collection 

 The data was collected from 3 sensors placed on 5 subjects backs. Each subject was asked to perform two incorrect 
posture associated with AS (Hunchback and slouching back). They were recorded 4 times, which in total gave us 120 
data files. 60 for hunched back posture and 60 for slouching back posture. This gave us 20 test runs for each sensor. The 
recorded data library is then used to train and test the system. Before the data collection process began, the shimmer 
sensors had to be tested that are working and are set correctly. This process was done by testing each shimmer sensor’s 
accelerometer and gyroscope with a 60 second running time. For the first 10 seconds, the X axis was moved, then in the 
next 10 seconds there was no action performed so that we could distinguish between the two actions. The same process 
was repeated on the other two axes (Y and Z) with 20 seconds spent on each. Figure 2 presents the plotted accelerometer 
data to validate the shimmer sensors setting. Each test data was labeled uniquely to represent the body posture type the 
subject was performing during the recording process, which sensor (s1, s2, s3) and the test number. For example, 
HBs1t1.dat represents the recorded data from subject in a hunched back position with sensor number 1 placed on cervical 
spine and assigned test number 1.   

C. Data Pre-processing 

In order to remove the noise from the data, a mean signal filter was applied to all the row accelerometer and 
gyroscope data imported by the meanSignalGenerator Function file. The mean signal filter (Function meansignal (signal, 
windowlength, overlap, zeropad)) calculates windowed (over- and non-overlapping) mean of a signal using the specified 



  

window length. signal is a 1-D vector, windowlength is an integer length of the mean signal window in samples, overlap 
is the number of samples to overlap adjacent windows, zeropad is a flag for zero padding the end of the data. The 
window size and the overlap size given to the mean signal filter were 10 and 9 respectively.  Decreasing the window size 
allowing faster activity detection, as well as reduced resources and energy needs. Large data windows are normally 
considered for the recognition of more complex activities. 

D. Feature Extraction 

Next, after all the row accelerometer and gyroscope data was cleaned of noise and pre-processed, the signals were 
uploaded to create a template for each sensors accelerometer and gyroscope x, y and z axis within the two different 
incorrect seated posture categories related to AS. This process was done by developing function files, 
templatesfrom1data, templatesfrom5data and templatesfrom20data functions.  

  

Figure 3 - Hunchback Posture Template Figure 4 - Slouch back Posture Template 

 

The templatesfrom1data function assigned the cleaned data from tests 1 in all the postures to templates. This was 
done for testing purposes in order to have a larger test data set. This was repeated for templatesfrom5data and 
templatesfrom20data. All these function files, call the signalCleaning function. The signalCleaning function imports the 
recorded data for each posture, where then the mean value for the signals is calculated using the meanSignal function 
described earlier in the data pre-processing section. These template functions then receive the pre-processed data and use 
the generatesignalTemplate function file to create templates. The generatesignalTemplate function file was developed to 
find the average of given inputs/signals using signalAverage =(data+data+…)/dataLenght; method. Next within the 
templates function, 6 new variables are created for each sensor in each posture category (Hunch Back/ slouch back sensor 
1/2/3 (accelerometer x, y, z and gyroscope x, y, z)) using the generateSignalTemplate function file, which calculates the 
average of the given signals. After the templates were created, they were plotted to show a visual understanding of each 
templates unique shape. Figure 3 and 4 are the plotted version of the 36 calculated variables of the accelerometer and 
gyroscope x, y and z axis (18 hunch back variables and 18 slouch back variables). Once the reflective samples are 
created, we can use them in the correlation process.  

E. Classification  

We used the SAX (Symbolic Aggregate approXimation) method for posture classification (see Figure 5). This 
method allows for dimensionality reduction and indexing with a lower-bounding distance measure [20]. This method 
decreases the dimensionality of a numerical series, which involves converting a time series into a short chain of 
characters. SAX involves a two-step process: (1) Piecewise Aggregate Approximation (PAA) and (2) conversion of a 
PAA sequence into a series of letters. PAA divides the data set of length n into w equally spaced segments or bins, and 
computes the average of each segment [17].  



   
 

Figure 5 - Symbolic Aggregate approXimation Figure 6 - Hunched Back posture test data 

 

There are two main functions within the SAX source, firstly the timeseries2symbol function which takes in a time series 
and converts it to a string. This function receives 4 inputs, the raw time series (data), the length of the sliding window or 
the length of the raw data (N), the number of symbols in the low dimensional approximation of the sub sequence (n) and 
the number of discrete symbols (alphabet_size). This function returns two outputs, a matrix of symbolic data 
(symbolic_data) and the location of the first occurrences of the strings (pointers) [20]. The timeseries2symbol function is 
used to convert all of the templates to a symbolic string. This function then is called when the new data is collected to be 
tested. So the new test raw time series is converted to a symbolic string and is compared against the all of the posture 
template symbols. The second main function in the SAX method is the min_dist, which processes the minimum (lower-
bounding) distance between the two strings. Here the test data string is compared to each of the template strings. The 
smallest number means the least distance which means that the test data is very close to a specific posture template, 
hence the system can notify the user of the incorrect posture they are adopting. 

4. Results 

A. Testing and Results 

This system was developed based on data received from 3 Shimmer sensors. 3 was the minimum number of sensors 

that could be used in order to lead to accurate classification. A larger number of sensors can be used but it will not have 

any more significant impact in the classification results would be more expensive for such a commercial system. When 

designing the system, two approaches were taken. One was to use the pre-recorded data, which allows a user to choose a 

test, import the file and compare it with the templates symbols. We could then evaluate the correlation between the 

signals. This was developed mainly for development and testing purposes. The second approach of data classification is 

continuous throughout the recording of new accelerometer and gyroscope data.  

 

 

    
Figure 7 (a)  Home Page                  (b) Posture Check                   (c) Posture Record                   (b) Daily Checkups 



  

This process was completed by comparing the performance of the posture recognition approaches on the 10 second 

long testing scenarios. The test was recorded using a limited number of 5 healthy subjects (2 male and 3 female aged 

between 25 and 60).  The user can check their posture by recording new data files at anytime through visual assistance in 

the GUI. When recording a new posture data point, the system provides a selection of responses to the user, such as a text 

box to inform the user of their posture and 3 visual graphs. These graphs are  the plotted graph of the users recorded 

posture data and the posture templates. Figure 6 represents the plotted graph of a user testing the system while in a 
hunched back posture. It can be seen that the new data and the template are almost identical. The systems graphical user 

interface was developed in Matlab. Figure 7a represents the first screen the users will interact with.Figure 7b is the 

posture check view where the user can input their name and check their posture. The system receives the name and using 

the computers date, it creates new files to record the subject’s posture data. Then the system cleans, filters and classifies 

the data against the training dataset and informs the user about their posture details. The user or their GP can access the 

users posture record by simply looking up the posture record view (Figure 7c) named with the user’s name and the date 

the recording was done. The user will have to do a daily check up (Figure 7d) in order to access their daily exercises. The 

daily check up calculates the score and when the user is going to the exercises section, depending on the calculated score 

the appropriate exercise is displayed for the user (figure 8). 

 

 

 
 

 
 

Figure 8 - Daily Exercises 

 

A series of tests were carried out to produce results from each posture. These results can be seen in tables 1, 2 and 3. 

The testing was done in 3 different ways. The first stage of the process involved using the templatesfrom1data function 

file. The posture templates for the postures were created using one datasets (test1) for each category. This gave us a 

larger data set for testing (test2 to test20). Table 1 represent the classification result with 85% accuracy. Within tables 1, 

2 and 3, ‘1’ represents correct classification and the value next to 1 is the value of the minimum distance between the test 

data and the template. ‘0’ represents incorrect classification. The results from the templatesfrom5data function are in 

table 2. The system classified the data with 95% accuracy. 
 

 
 Hunched 

Back (HB) 

Slouched 

Back (SB) 

Test 1 1 | 4.3466 1 | 6.1788 

Test 2 1 | 1.003 1 | 4.8118 

Test 3 1 | 5.377 0 

Test 4 1 | 2.4034 1 | 2.3899 

Test 5 1 | 2.0336 1 | 2.8663 

Test 6 1 | 6.8973 1 | 6.0978 

Test 7 0 1 | 6.1202 

Test 8 1 | 5.2967 0  

Test 9 1 | 3.5106 1 | 1.91 

Test 10 1 | 3.5818 1 | 4.7469 

Total 9/10 90% 8/10 80% 

Total % 85% 
 

 Hunched 

Back (HB) 

Slouched 

Back (SB) 

Test 1 1 | 6.444 1 | 1.0465 

Test 2 1 | 5.2296 1 | 3.5186 

Test 3 1 | 5.1433 0 

Test 4 1 | 1.4649 1 | 2.3899 

Test 5 1 | 2.5007 1 | 2.8663 

Test 6 1 | 4.7836 1 | 5.0978 

Test 7 1 | 2.7452 1 | 4.1202 

Test 8 1 | 3.5306 1 | 1.0978 

Test 9 1 | 6.5106 1 | 2.4001 

Test 10 1 | 4.0681 1 | 4.1 

Total 10/10 100% 9/10 90% 

Total % 95% 
 

Table 1 - Classification Result (1 Training Data) Table 2 - Classification Result (5 Training Data) 

 



  

The last stage of testing involved using the templatesfrom20data function file. The posture templates for the postures 

were created using 20 datasets. Table 3 represents the classification results with 100% accuracy for all tests. This shows 

that the larger the training dataset is, the more accurately the system can distinguish between the postures.  

 
 Hunched Back (HB) Slouched Back (SB) 

 Hunched Back (HB) Slouched Back 
(SB) 

Test 1 1 | 1.0406 1 | 2.7483 

Test 2 1 | 1.9202 1 | 2.3581 

Test 3 1 | 0 1 | 4.1943 

Test 4 1 | 3.0092 1 | 5.9834 

Test 5 1 | 1.1543 1 | 1.1154 

Test 6 1 | 2.9854 1 | 2.9547 

Test 7 1 | 5.5284 1 | 6.8511 

Test 8 1 | 1.0944 1 | 1.2023 

Test 9 1 | 5.1633 1 | 1.9403 

Test 10 1 | 3.8564 1 | 3.5488 

Total 10/10 100% 10/10 100% 

Total % 100% 
 

Table 3 - Classification Result (20 Training Data) 

 

B. System Performance Evaluation 

The results show the validity in using off-the-shelf sensors for detecting the curvature of the spine. Larger training 

sets led to higher accuracies in the classification process. The shimmer sensor battery life is quite good allowing for days 

of running and testing without needing to be recharged. There was however times that sensor connections were lost 
leading to restarts in testing. During the testing process, it was also noticed that the Shimmer sensors needed to be placed 

in the same orientation as template data in order to result in correct posture detection. While the orientation of the sensors 

is important, the location of the sensors do not have to be on the same spot as the templates so long as they are placed 

within the area of the 3 spine locations i.e. (Sensor 1 on Cervical spine, sensor 2 on Thoracic spine and sensor 3 on lower 

Lumbar spine). They will have record accurately and can be classified correctly. Currently the system records data when 

so instructed. This was done, as a proof of concepts but ideally the system should be monitoring the subjects 

continuously to be able to have a valid posture record and diagnosing AS. For example, in AS disease the patient spine 

slowly stiffens and can eventually become completely inflexible which results in a hunched back appearance. The hunch 

back appearance can gradually get worse, but with the system continuously monitoring the users, it can detect the 

condition getting worse and adapt their exercises according to the degree of condition. 

 

C. Future Work 

This system aims to help diagnose and monitor the stages of AS. The system can be improved to not only detect and 

record seated postures, but also to detect and record incorrect standing and walking postures. This can be achieved by 

adding more data to train the system and then to transfer the actual system from the computer on to a mobile phone.   An 

automatic Schober's test could be added to the system. Schober's test is a measurement used for AS, which measures the 

Lumbar spine mobility. In this examination the patient is standing up with their feet hip width apart and with their back 

to the examiner. The examiner determines the location of the lumbosacral junction by outlining the location of the 

dimples of Venus. The intersection on the top of the dimples of Venus are marked by drawing a horizontal line. This line 

acts as the landmark. The second line is marked 10 cm above the first and the third is marked 5 cm below the first line. 

The difference between the measurements in erect and flexion positions indicates the outcome of the lumbar flexion. An 

examiner physically present can do this easily but our system can be modified to perform the test without the need for the 

presence of an examiner. In order to develop this, accelerometer and gyroscope are not sufficient as there is no way that 

the system can determine the distance between each sensor. Therefore, the best option is to design the system in such a 

way that the phone camera can be used to do the Schober's test. Here the image would be acquired using a mobile phone 

with the exact locations marked and recognised through image processing so the distance between the locations can be 

measured. The approach would be practical and allow subjects to monitor their curvature progress from home while 

minimizing the use of X-rays and MRIs. In future, a larger number of subjects would be useful in order to solidify the 

validity of the results. We would also of course need to conduct a clinical study to validate our results. Finally, the 
Shimmer sensors are portable but a superior approach would be where the accelerometer and gyroscope are embedded 

within wearable clothing. 

 



  

5. Conclusion 

This paper outlines the development of a system to detect incorrect posture  as an early symptom of Ankylosing 
spondylitis (AS) disease. The system classification performance was tested and shows that the system is reliable with a 
high accuracy. This was accomplished by collecting, processing, cleaning and filtering raw accelerometer and gyroscope 
data collected from 4 subjects. The system was trained to distinguish between two incorrect posture (Hunch Back and 
Slouch Back) related to AS using prerecorded data. The user can check their posture in real-time, the recorded posture in 
then classified and each user is notified of their postures. The subject’s posture is then saved with the date they were 
recorded allowing a physician  to monitor each patient. The user also completes a daily questionnaire in order to be 
offered recommended individual exercises.    
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