We have performed angle-resolved measurements of spontaneous-emission spectra
from laser dyes and quantum dots in opal and inverse opal photonic crystals.
Pronounced directional dependencies of the emission spectra are observed:
angular ranges of strongly reduced emission adjoin with angular ranges of
enhanced emission. It appears that emission from embedded light sources is
affected both by the periodicity and by the structural imperfections of the
crystals: the photons are Bragg diffracted by lattice planes and scattered by
unavoidable structural disorder. Using a model comprising diffuse light
transport and photonic band structure, we quantitatively explain the
directional emission spectra. This provides detailed understanding of the
transport of spontaneously emitted light in real photonic crystals, which is
essential in the interpretation of quantum-optics in photonic band-gap crystals
and for applications wherein directional emission and total emission power are
controlled.Comment: 10 pages, 10 figures, corrected pdf, inserted new referenc