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Abstract

We present a microscopic model for surface-enhanced
Raman scattering (SERS) from molecules adsorbed on
small noble-metal nanoparticles. We demonstrate that,
in nanometer-sized particles, SERS is determined by a
competition between two distinct quantum-size effects:
Landau damping of surface plasmon resonance and re-
duced screening near nanoparticle surface. The first
mechanism comes from the discreteness of energy spec-
trum in a nanoparticle and leads to a general decrease in
SERS. The second mechanism originates from the differ-
ent effect of confining potential on sp-band and d-band
electron states and leads to relative increase in SERS.
We calculate numerically the spatial distribution of lo-
cal field near the surface and the enhancement factor for
different nanoparticles sizes.

1 Introduction

Surface-enhanced Raman scattering (SERS) has been
one of the highlights of optical spectroscopy in metal
nanostructures during past 25 years [1]. A renewed in-
terest in SERS stems from the discovery of extremely
strong single-molecule SERS in silver nanoparticle aggre-
gates [2,3], and from numerous nanoparticle-based appli-
cations such as, e.g., biosensors [4] that rely on sensitiv-
ity of SERS to small concentrations of target molecules.
The main mechanism of SERS has long been known as
electromagnetic (EM) enhancement [1,5–7] of dipole mo-
ment of a molecule by strong local field of surface plas-
mon (SP) resonance in a nanoparticle. EM mechanism is
especially effective when a cluster of nanoparticles is con-
centrated in a small spatial region (“hot spot”) [8–11]. A
combined effect of SP local fields from different particles
acting on a molecule trapped in a gap can result in a
giant (up to 1014) enhancement of the Raman scattering
crossection [12–15]. Other mechanisms contributing to
SERS can involve electron tunneling between a molecule
and a nanoparticle [16].

The conventional description of EM enhancement is
based on classical Mie scattering theory [6, 7]. The
dipole moment of a molecule at distance r0 form a par-
ticle center is enhanced by a factor ∼ αp(ω)/r3

0, where
αp = R3 ε−1

ε+2 is the particle polarizability, R is its ra-
dius, and ε(ω) is metal dielectric function. The far-
field of molecular dipole, radiating at Stokes-shifted fre-
quency ωs, is, in turn, comprised of direct and Mie-
scattered fields. The latter contributes another factor
∼ αp(ωs)/r3

0, so that the Raman crossection is propor-
tional to |αp|4/r12

0 . At frequencies close to the SP pole
in αp(ω), this enhancement can reach ∼ 106. Note that,
within classical description, the dependence of SERS on
nanoparticle size, coming from geometrical factor in α, is
weak if the molecule is sufficiently close to nanoparticle
surface.

The classical approach is valid for relatively large
nanoparticles, where the effect of confining potential on
electronic states is negligible. For nanoparticle sizes . 10
nm, the lifetime of SP is reduced due to discreteness of
single-electron levels [17]. Landau damping of SP by
single-particle excitations, accompanied by momentum
transfer to the surface, results in a broadening of SP res-
onance peak by the amount of level spacing at the Fermi
energy, γs ∼ vF /R (vF is the Fermi velocity), and in the
corresponding reduction of the SP field amplitude. This
effect can be treated semiclassically by incorporating the
quantum-size correction γs in the Drude dielectric func-
tion of metal, ε(ω) = 1−ω2

p/ω(ω + iγ), where ωp is bulk
plasmon frequency. For even smaller nanometer-sized
particles, the spatial distribution of local fields near the
surface becomes important and semiclassical approach
also fails. An adequate description of SERS in small
nanoparticles requires microscopic approach. Such an
approach is developed in this paper.

Our chief observation is that, in nanometer-sized
noble-metal particles, SERS is determined by the inter-
play between quantum-size and many-body effects. The
latter produces an opposite trend towards a relative in-
crease of SERS in smaller particles. The underlying
mechanism is related to a different effect of confining



potential on d-band and sp-band electron states in noble-
metals. Namely, the deviation of potential well from the
rectangular shape gives rise to a larger effective radius
for the higher-energy sp-electrons [18]. As a result, in a
surface layer of thickness ∆ ∼ 1 Å, the d-electron pop-
ulation is diminished and, hence, the interband screen-
ing is strongly reduced [19]. This underscreening was
observed, e.g., as faster, as compared to bulk metal,
electron relaxation measured using ultrafast pump-probe
spectroscopy [20]. The role of surface layer is further en-
hanced by the “spillover” effect of sp-band electron states
that effectively increases the volume fraction of under-
screened region while the localized d-electrons are mainly
confined within bulk part of a nanoparticle.

To describe the spatial distribution of local fields near
nanoparticle surface, we use the time-dependent local
density approximation (TDLDA) [21] adopted for Ag
nanoparticles in a dielectric medium. We find that the
reduced screening in the surface layer leads to a sub-
stantial, relative to semiclassical result, increase of SERS
from a molecule close to the surface. Remarkably, this
many-body effect becomes more pronounced for smaller
nanoparticle sizes.

2 Theory

Within microscopic approach, SERS should be formu-
lated in terms of quantum transitions. In the ab-
sence of direct electron tunneling [16], the interactions
within excited molecule-nanoparticle system are caused
by nonradiative transitions with energy transfer between
a molecule and a nanoparticle, similar to Forster transfer
in two-molecule systems [22]. An electron-hole pair can
nonradiatively recombine by transferring its energy to
SP (and vice versa) via dynamically-screened Coulomb
interaction [23]. Feynman diagrams of processes con-
tributing to polarizability of molecule-nanoparticle sys-
tem, α̃, are shown in Fig. 1. These include: (a) incident
photon with energy ω is absorbed and reemitted with
energy ωs by the molecule; (b) excited molecule nonra-
diatively recombines with energy transfer to SP in the
nanoparticle, which emits a photon; (c) SP, excited by
incident light, transfers its energy to the molecule, which
emits a photon; and (d) after energy transfer from SP
to molecule, the latter transfers the energy back to SP,
which emits a photon. The system polarizability is (in
operator form)

α̃ = α + αUΠ + ΠUα + ΠUαUΠ (1)

where α is the molecular polarizability, Π is density-
density response function of a nanoparticle in medium,
and U is the Coulomb potential. The Raman polariz-
ability is obtained by calculating the matrix element of
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Figure 1: Nonradiative processes contributing to Raman
scattering from a molecule-nanoparticle system.

α̃ between incoming and outgoing photon states with en-
ergies ω and ωs, respectively. The interaction of molecule
with nanoparticle involves matrix elements 〈e|φ(r)|g〉,
where |g〉 and |e〉 stand for the molecule ground and
excited electronic bands, respectively, and φ(ω, r) =∫

dr1dr2U(r − r1)Π(ω, r1, r2)φ0(r2) is the nanoparticle
response to external photon potential, φ0(r). Since the
length scale of φ(r) is much larger than the molecule size,
we have 〈e|φ(r)|g〉 ≈ µ∇φ(r0), where µ is the dipole ma-
trix element of corresponding molecular transition [24].
The averaging over random orientations of µ can be ac-
counted by assuming isotropic Raman polarizability ten-
sor α. The nanoparticle contribution then factors out,
α̃ = αM , with

M = 1 +
1

E2
0

[
E0 · ∇φ(ω, r0) + E0 · ∇φ(ωs, r0)

+∇φ(ω, r0) · ∇φ(ωs, r0)
]
, (2)

where E0 is the electric field in the absence of nanopar-
ticle. For incident field, Ei, polarized along the z-axis,
φ0 = −eEir cos θ, we have E0 = Ei/εm, where εm is the
dielectric constant of medium. Note that for nanometer-
sized particles, retardation effects can be ignored [17].

To evaluate the local potential φ(ω, r) within TDLDA
approach, we present it in the form

φ(ω, r) = e2

∫
d3r′

δn(ω, r′)
|r− r′| , (3)

where the induced density δn(r) =
∫

dr′Π(r, r′)φ0(r′) =
δns(r)+δnd(r)+δnm(r) contains contributions from sp-
electrons, d-electrons, and surrounding medium, respec-
tively (hereafter we suppress frequency dependence).

We adopt the two-region model that combines a
quantum-mechanical description for sp-band electrons
and phenomenological treatment d-electrons with bulk-
like ground-state density nd in the region confined by
Rd < R [19]. This model has been used for calculations
of polarizabilities of small Ag nanoparticles and clus-
ters [25, 26], but it remains reliable for relatively large



electron numbers, N > 1000. The induced density of
sp-band electrons is determined from

δns(r) =
∫

d3r′Ps(r, r′)
[
Φ(r′) + V ′

x[n(r′)]δns(r′)
]
, (4)

where Φ = φ0 + φ is the full potential, Ps(r, r′) is
the polarization operator for noninteracting sp-electrons,
V ′

x[n(r′)] is the (functional) derivative of the exchange-
correlation potential and n(r) is the ground-state elec-
tron density. The latter is obtained in a standard way
by solving Kohn-Sham equations. To close the system,
we need to express the full potential Φ(r) via δns(r).
This is accomplished be relating δnd(r) and δnm(r) back
to Φ(r) as e2δnd(r) = ∇[

χd(r)∇Φ(r)
]

and e2δnm(r) =
∇[

χm(r)∇Φ(r)
]
, where χd(r) = εd−1

4π θ(Rd − r) is
the interband susceptibility with the step function en-
forcing the boundary conditions and, correspondingly,
χm(r) = εm−1

4π θ(r−R) is the succeptibility of surround-
ing medium. The explicit relation can then be obtained
by expanding Φ and δn in spherical harmonics and keep-
ing only the dipole term. Leaving the details for a future
publication [27], we can present Φ as

Φ = ϕ0 + δϕ0 + δϕs, (5)

where ϕ0 = φ0/ε(r) = −eEir/ε(r),

δϕ0(r) =
1

ε(r)

[
−β(r/Rd)φ0(Rd) λd(1− 2λm)/η

+β(r/R)φ0(R)λm(1− a3λd)/η
]
, (6)

and

δϕs(r) =
∫

dr′r′2K(r, r′)δns(r′). (7)

Here ε(r) = (εd, 1, εm) for r in the intervals [(0, R),
(Rd, R), (R,∞)], respectively, and

λd =
εd − 1
εd + 2

, λm =
εm − 1
2εm + 1

, η = 1− 2a3λdλm, (8)

with a = Rd/R. The kernel K(r, r′), relating the induced
potential and density of sp-electrons, is given by

K(r, r′) =
e2

ε(r)

[
u(r, r′)− β(r/Rd)

[
u(Rd, r

′)

−2aλmu(R, r′)
]
λd/η

+β(r/R)
[
u(R, r′)− a2λdu(Rd, r

′)
]
λm/η

]
, (9)

where u(r, r′) = 4πr<

3r2
>

is the dipole term of Coulomb

potential expansion and β(x) = x−2θ(x−1)−2xθ(1−x).

The TDLDA equation (4) now takes the form

δns(r) =
∫

dr′r′2Ps(r, r′)
[
ϕ0(r′) + δϕ0(r′)

]

+
∫

dr′r′2Ps(r, r′)
[∫

dr′′r′′2K(r′, r′′)δns(r′′)

+V ′
x(r′)δns(r′)

]
. (10)

Note that δϕs(r) as well as the total potential Φ(r) are
continuous at r = Rd, R.

Equations (5-10) determine self-consistently the spa-
tial distribution of local potential near small noble-metal
nanoparticles. Here δϕ0(r) is the induced potential due
to d-electrons and surrounding medium. Their effect on
the sp-electron potential, δϕs(r), is encoded in the kernel
K(r, r′). For εd = εm = 1, we have K(r, r′) = u(r, r′)
and δϕ0(r) = 0, recovering the case of simple metal
particles in vacuum. If the molecule is not too close
to the surface (d & 1Å), i.e., there is no significant
overlap between molecular orbitals and electronic states,
then Eqs. (3) and (5-10) yield φ(r0) = eEi

εmr2
0

αp, where

αp = 4π
3eEi

∫
drr3δn(r) is the nanoparticle polarizability.

In this case, Eq. (2) simplifies to

M = 1+(1+ν2)[g(ω)+g(ωs)]+(1+3ν2)g(ω)g(ωs), (11)

with g = αp/r3
0 and ν = cos θ0. In this case, enhance-

ment retains the same functional dependence on particle
polarizability as in classical theory [6, 7]; however, αp is
now determined microscopically.

3 Numerical results

In Figs. 2 and 3, we present our results for SERS en-
hancement factor for Ag nanoparticles in a medium with
εm = 1.5. Calculation were carried for number of elec-
trons ranging from N = 92 to N = 3028, correspond-
ing to particle diameters in the range D ≈ 1.4 − 4.5
nm (to ensure spherical symmetry, only closed-shells
“magic numbers” were used [28]). For such sizes, the Ag
band-structure remains intact. The ground state energy
spectrum and wave-functions were obtained by solving
the Kohn-Sham equations for jellium model [21] with
the Gunnarsson-Lundqvist exchange-correlation poten-
tial [29]; the interaction strength was appropriately mod-
ified to account for static d-band screening. These results
were used as input in the numerical solution of TDLDA
system (5-10). A more detailed description of numerical
procedure will be reported elsewhere [27]. The ground
state density n(r) exhibited characteristic Friedel oscil-
lations, while the spatial extent of spillover was ' 3 a.u.
This value is somewhat smaller than for nanoparticles



Figure 2: Enhancement factor for different nanoparticle
sizes is shown with ∆ = 0 (a) and ∆ = 1.0 a.u. (b).

in vacuum due to the additional screening of Coulomb
interactions by surrounding medium. The molecule was
located along z-axis (θ0 = 0) at a distance d = 5 a.u.
from effective boundary with radius R = rsN

1/3, where
rs = (4πn/3)−1/3 (rs = 3.0 a.u. for Ag), ensuring no
direct overlap with the nanoparticle. In calculation of
optical response, the experimental data for εd(ω) in Ag
was used [30], while surface layer thickness, ∆ = R−Rd,
was varied, ∆ = 0 and 1.0 a.u., We also assumed that the
Stokes shift is much smaller than γs ∼ vF /R (γs ' 0.5
eV for D = 3.0 nm) and ignored the difference between
ω and ωs.

In Fig. 2, we plot the enhancement factor |M |2 as a
function of incident light energy for different nanopar-
ticle sizes. To highlight the role of surface layer, the
results for both ∆ = 0 and ∆ = 1.0 a.u. are shown
in Fig. 2(a) and (b), respectively. Note that interband
screening is reduced even for ∆ = 0 due to spillover of
sp-band states into the potential barrier. The enhance-
ment peak at SP resonance position, ωsp ' 3.0 eV, is
well separated from the interband transitions onset for
Ag at ≈ 4.0 eV. The general tendency is a decrease of
SERS for smaller nanoparticles. This is mainly related
to the Landau damping of SP which leads to a quite
weak, M2 ∼ 100, enhancement for the smallest D ≈ 1.4
nm nanoparticle. For larger particles, the damping de-
creases as ∼ vF /R, so the enhancement is stronger.

The effect of the surface layer on SERS is two-fold.
The large contrast ratio of εd in the bulk and surface
regions [εd(ωsp) ≈ 5] results in a lower average interband
dielectric function, εd, which leads to a slight blueshift
of peak position for ∆ = 1.0 a.u. (δωsp ∼ 0.05 eV). At
the same time, the magnitude of enhancement increases

Figure 3: SERS at resonance frequency vs. nanoparticle
size. Inset: Local field E vs. distance to surface.

significantly (in comparison to blueshift), although the
resonance width stays unchanged. This is caused by the
underscreening of SP field in the surface layer. The cal-
culated local field, E, at resonance frequency is plotted
in Fig. 3(inset) versus molecule-nanoparticle distance,
d = r0 − R. The gradual rise of field magnitude on the
length scale of electron spillover replaces the discontinu-
ity (for εd, εm 6= 1) of classical field at a sharp boundary.
It can be seen that underscreening effect on SERS is
strongest if a molecule is located at a close (several Å)
distance from the nanoparticle. Note that even though
the field enhancement itself is not big, its effect on Ra-
man signal enhancement, |M2| ∝ |E|4, is substantial.

The interplay between quantum-size (SP damping)
and many-body (underscreening) contributions is most
visible in the dependence of SERS on nanoparticle size,
plotted in Fig. 3 at resonance frequency. While SERS
amplitude drops by order of magnitude between D ≈ 4.5
and 1.4 nm, this decrease is slower when surface layer ef-
fect is included. Indeed, the relative increase in SERS for
∆ = 1.0 a.u. is 25% for N = 3028, but 35% for N = 92.
This is because the volume fraction of underscreened re-
gion is larger in smaller particles. Note, finally, that by
keeping ∆ constant for different nanoparticle sizes, we
somewhat underestimated the many-body contribution
to SERS. Indeed, for smaller nanoparticles, surface layer
is thicker due to stronger deviations of the confining po-
tential from rectangular shape.

As a concluding remark, we considered here a non-
resonant Raman scattering, i.e., molecule energy in the
intermediate state is much larger than ωsp. In this case,



the biggest contribution to enhancement comes from the
back and forth Coulomb energy transfer process between
SP and molecule [see Fig. 1(d)]. For resonant coupling,
the optical response of molecule-nanoparticle system is
dominated by multiple transfer processes. This will be
addressed in a future publication.
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