24 research outputs found

    Hybrid energy module for remote environmental observations, experiments, and communications

    Get PDF
    Increased concerns about climate change have led to a significant expansion of monitoring, observational, and experimental sites in remote areas of the world. Meanwhile, advances in technology and availability of low-power equipment have allowed increasingly sophisticated measurements with a wide variety of instruments. However, the deployment and use of these technologies in remote locations is often restricted not only by harsh environmental conditions, but also by the availability of electrical power and communication options. In some cases, research stations and military installations can provide power for scientific equipment, data acquisition, storage, and transmission. Clustering of research sites near existing infrastructure has had the unintended consequence of limiting a spatial understanding of large geographic regions. Fortunately, the modern market offers many power and communication solutions, but most of them are oriented toward large industrial applications. Use of those solutions to power a research site is limited because of their cost and need for significant modification for the specific research purposes. Each study has its own unique power requirements and needs for proper instrumentation. A power and communication solution for a vast majority of implementations with or without modification would be of considerable benefit. This article describes design of a universal, scalable hybrid energy module for the Next-Generation Ecosystem Experiments Arctic project (https://ngee-arctic.ornl.gov/). Two modules were built, and the authors describe their implementation and findings over a 2-year period at a remote field site on the Seward Peninsula in western Alaska, USA

    Overview of the MOSAiC expedition - Atmosphere

    Get PDF
    With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross-cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic

    The AmeriFlux data activity and data system: an evolving collection of data management techniques, tools, products and services

    Get PDF
    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), USA has provided scientific data management support for the US Department of Energy and international climate change science since 1982. Among the many data archived and available from CDIAC are collections from long-term measurement projects. One current example is the AmeriFlux measurement network. AmeriFlux provides continuous measurements from forests, grasslands, wetlands, and croplands in North, Central, and South America and offers important insight about carbon cycling in terrestrial ecosystems. To successfully manage AmeriFlux data and support climate change research, CDIAC has designed flexible data systems using proven technologies and standards blended with new, evolving technologies and standards. The AmeriFlux data system, comprised primarily of a relational database, a PHP-based data interface and a FTP server, offers a broad suite of AmeriFlux data. The data interface allows users to query the AmeriFlux collection in a variety of ways and then subset, visualize and download the data. From the perspective of data stewardship, on the other hand, this system is designed for CDIAC to easily control database content, automate data movement, track data provenance, manage metadata content, and handle frequent additions and corrections. CDIAC and researchers in the flux community developed data submission guidelines to enhance the AmeriFlux data collection, enable automated data processing, and promote standardization across regional networks. Both continuous flux and meteorological data and irregular biological data collected at AmeriFlux sites are carefully scrutinized by CDIAC using established quality-control algorithms before the data are ingested into the AmeriFlux data system. Other tasks at CDIAC include reformatting and standardizing the diverse and heterogeneous datasets received from individual sites into a uniform and consistent network database, generating high-level derived products to meet the current demands from a broad user group, and developing new products in anticipation of future needs. In this paper, we share our approaches to meet the challenges of standardizing, archiving and delivering quality, well-documented AmeriFlux data worldwide to benefit others with similar challenges of handling diverse climate change data, to further heighten awareness and use of an outstanding ecological data resource, and to highlight expanded software engineering applications being used for climate change measurement data

    Seabed attributes and meiofaunal abundance associated with a hydrodynamic gradient in Baynes Sound, British Columbia, Canada

    No full text
    Sutherland, T.F.; Garcia-Hoyos, L.M.; Poon, P.; Krassovski, M.V.; Foreman, M.G.G.; Martin, A.J., and Amos, C.L., 2018. Seabed attributes and meiofaunal abundance associated with a hydrodynamic gradient in Baynes Sound, British Columbia, Canada. The distribution of seabed geotechnical, biochemical, and meiofauna attributes was examined in Baynes Sound, British Columbia, between 2009 and 2014. Among attributes measured were sediment porosity, organic carbon and nitrogen, and trace element concentrations (e.g., zinc, copper), which increased with increasing sediment fines content toward the head of the Sound. A ternary plot (sand-silt-clay percentages) revealed a constant clay/silt ratio across a range of sand proportions with textures ranging from well-sorted sand at the high-energy SE entrance to silt-dominated mud in the depositional basin. These sediment textures were related to modeled maximum velocity values within 5 m of the seabed (Umax,5), with highest values (restricted entrance) and lowest values (deep basin) representing sand depositional and mud depositional facies. Sediment porewater sulfide fell into an oxic category (0-700 μM), exhibiting a lack of variation and organic enrichment within the Sound. The first principal component analysis (PCA) factor described the alignment between fine sediments, organics, Cu and Zn, and meiofauna attributes and accounted for 49% of the total variance. The second PCA factor (19% of total variance) described the relationship between Umax,5 and sediment grain size fractions &gt;0.5 mm and an indirect association with water depth and fine sand (0.105-0.250 mm). Meiofauna were associated with a medium sand fraction (0.25 mm) characterized by low-porosity and low-organic sand loam textures. Although the range in abundance was relatively greater for nematodes, harpacticoid copepods revealed a stronger response to changes in sediment geotechnical and organic attributes, suggesting these taxa may be used to describe seabed variations or potential perturbations.</p

    Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO<sub>2</sub> atmosphere

    No full text
    This paper describes the operational methods to achieve and measure both deep-soil heating (0–3 m) and whole-ecosystem warming (WEW) appropriate to the scale of tall-stature, high-carbon, boreal forest peatlands. The methods were developed to allow scientists to provide a plausible set of ecosystem-warming scenarios within which immediate and longer-term (1 decade) responses of organisms (microbes to trees) and ecosystem functions (carbon, water and nutrient cycles) could be measured. Elevated CO2 was also incorporated to test how temperature responses may be modified by atmospheric CO2 effects on carbon cycle processes. The WEW approach was successful in sustaining a wide range of aboveground and belowground temperature treatments (+0, +2.25, +4.5, +6.75 and +9 °C) in large 115 m2 open-topped enclosures with elevated CO2 treatments (+0 to +500 ppm). Air warming across the entire 10 enclosure study required  ∼  90 % of the total energy for WEW ranging from 64 283 mega Joules (MJ) d−1 during the warm season to 80 102 MJ d−1 during cold months. Soil warming across the study required only 1.3 to 1.9 % of the energy used ranging from 954 to 1782 MJ d−1 of energy in the warm and cold seasons, respectively. The residual energy was consumed by measurement and communication systems. Sustained temperature and elevated CO2 treatments were only constrained by occasional high external winds. This paper contrasts the in situ WEW method with closely related field-warming approaches using both aboveground (air or infrared heating) and belowground-warming methods. It also includes a full discussion of confounding factors that need to be considered carefully in the interpretation of experimental results. The WEW method combining aboveground and deep-soil heating approaches enables observations of future temperature conditions not available in the current observational record, and therefore provides a plausible glimpse of future environmental conditions

    References

    No full text
    corecore