172 research outputs found

    Next generation of Exascale-class systems: ExaNeSt project and the status of its interconnect and storage development

    Get PDF
    The ExaNeSt project started on December 2015 and is funded by EU H2020 research framework (call H2020-FETHPC-2014, n. 671553) to study the adoption of low-cost, Linux-based power-efficient 64-bit ARM processors clusters for Exascale-class systems. The ExaNeSt consortium pools partners with industrial and academic research expertise in storage, interconnects and applications that share a vision of an European Exascale-class supercomputer. The common goal is designing and implementing a physical rack prototype together with its cooling system, the non-volatile memory (NVM) architecture and a unified low-latency interconnect able to test different options for network and storage. Furthermore, the consortium goal is to provide real HPC applications to validate the system. In this paper we describe the unified data and storage network architecture, reporting on the status of development of different testbeds and highlighting preliminary benchmark results obtained through the execution of scientific, engineering and data analytics scalable application kernels

    Direct NN-body code on low-power embedded ARM GPUs

    Full text link
    This work arises on the environment of the ExaNeSt project aiming at design and development of an exascale ready supercomputer with low energy consumption profile but able to support the most demanding scientific and technical applications. The ExaNeSt compute unit consists of densely-packed low-power 64-bit ARM processors, embedded within Xilinx FPGA SoCs. SoC boards are heterogeneous architecture where computing power is supplied both by CPUs and GPUs, and are emerging as a possible low-power and low-cost alternative to clusters based on traditional CPUs. A state-of-the-art direct NN-body code suitable for astrophysical simulations has been re-engineered in order to exploit SoC heterogeneous platforms based on ARM CPUs and embedded GPUs. Performance tests show that embedded GPUs can be effectively used to accelerate real-life scientific calculations, and that are promising also because of their energy efficiency, which is a crucial design in future exascale platforms.Comment: 16 pages, 7 figures, 1 table, accepted for publication in the Computing Conference 2019 proceeding

    Extending promela and spin for real time

    Full text link

    Shall Numerical Astrophysics Step Into the Era of Exascale Computing?

    Get PDF
    High performance computing numerical simulations are today one of the more effective instruments to implement and study new theoretical models, and they are mandatory during the preparatory phase and operational phase of any scientific experiment. New challenges in Cosmology and Astrophysics will require a large number of new extremely computationally intensive simulations to investigate physical processes at different scales. Moreover, the size and complexity of the new generation of observational facilities also implies a new generation of high performance data reduction and analysis tools pushing toward the use of Exascale computing capabilities. Exascale supercomputers cannot be produced today. We discuss the major technological challenges in the design, development and use of such computing capabilities and we will report on the progresses that has been made in the last years in Europe, in particular in the framework of the ExaNeSt European funded project. We also discuss the impact of these new computing resources on the numerical codes in Astronomy and Astrophysics

    Scaling of a large-scale simulation of synchronous slow-wave and asynchronous awake-like activity of a cortical model with long-range interconnections

    Full text link
    Cortical synapse organization supports a range of dynamic states on multiple spatial and temporal scales, from synchronous slow wave activity (SWA), characteristic of deep sleep or anesthesia, to fluctuating, asynchronous activity during wakefulness (AW). Such dynamic diversity poses a challenge for producing efficient large-scale simulations that embody realistic metaphors of short- and long-range synaptic connectivity. In fact, during SWA and AW different spatial extents of the cortical tissue are active in a given timespan and at different firing rates, which implies a wide variety of loads of local computation and communication. A balanced evaluation of simulation performance and robustness should therefore include tests of a variety of cortical dynamic states. Here, we demonstrate performance scaling of our proprietary Distributed and Plastic Spiking Neural Networks (DPSNN) simulation engine in both SWA and AW for bidimensional grids of neural populations, which reflects the modular organization of the cortex. We explored networks up to 192x192 modules, each composed of 1250 integrate-and-fire neurons with spike-frequency adaptation, and exponentially decaying inter-modular synaptic connectivity with varying spatial decay constant. For the largest networks the total number of synapses was over 70 billion. The execution platform included up to 64 dual-socket nodes, each socket mounting 8 Intel Xeon Haswell processor cores @ 2.40GHz clock rates. Network initialization time, memory usage, and execution time showed good scaling performances from 1 to 1024 processes, implemented using the standard Message Passing Interface (MPI) protocol. We achieved simulation speeds of between 2.3x10^9 and 4.1x10^9 synaptic events per second for both cortical states in the explored range of inter-modular interconnections.Comment: 22 pages, 9 figures, 4 table

    The RISC Movement in Processor Architecture

    No full text
    • …
    corecore