
A Search-Based Technique for Automatic Test Generation from an Extended Finite

State Machine

Abdul Salam Kalaji

Robert M. Hierons

Stephen Swift.

School of Information Systems, Computing and Mathematics

Brunel University

Uxbridge, UB83PH, UK.

Abstract

Extended finite state machines (EFSMs), and languages such as state-charts that are similar

to EFSMs, are widely used to model state-based systems. When testing from an EFSM M it is

common to aim to produce a set of test sequences (input sequences) that satisfies a test

criterion that relates to the transition paths (TPs) of M that are executed by the test

sequences. For example, we might require that the set of TPs triggered includes all of the

transitions of M. One approach to generating such a set of test sequences is to split the

problem into two stages: choosing a set of TPs that achieves the test criterion and then

producing test sequences to trigger these TPs. However, the EFSM may contain infeasible

TPs and the problem of generating a test sequence to trigger a given feasible TP (FTP) is

generally uncomputable. In this paper we present a search-based approach that uses two

techniques: (1) A TP fitness metric based on our previous work that estimates the feasibility

of a given transition path; and (2) A fitness function to guide the search for a test sequence to

trigger a given FTP. We evaluated our approach on five EFSMs: A simple in-flight safety

system; a class II transport protocol; a lift system; an ATM; and the Inres initiator. In the

experiments the proposed approach successfully tested approximately 96.75 % of the

transitions and the proposed test sequence generation technique triggered all of the

generated FTPs.

Keywords: Search-based testing, evolutionary testing, EFSM, automatic test derivation, test sequence generation.

1. Introduction

Testing is an important stage of the software development process. However, manual

testing is error-prone, expensive and time consuming and so there has been much interest

in automated test data generation (see, for example, [1-4]). In this paper we are interested

in conformance testing in which testing tries to find any differences between the behavior

of an implementation under test (IUT) and its specification. Conformance testing treats the

IUT as a black-box and so a tester has no information about the internal system structure

and only input/output behavior is available.

In black-box testing, we apply a sequence of inputs, called a test sequence, and observe

the resultant outputs. In order to automate test sequence generation we require a model of

the IUT or of the aspect of the IUT to be tested. Finite state machines (FSMs) and

extended finite state machines (EFSMs) are commonly used for the purpose of test

sequence derivation [5]. However, an FSM can only model the control part of a system; an

extension is needed in order to model a system with control and data parts, e.g.,

communication protocols. Such systems are usually represented by using an EFSM,

possibly expressed using a language such as state-charts or SDL [6]. Many approaches to

generating test sequences from an EFSM operate by first devising a set of transition paths

(TPs) through the EFSM and then generating test sequences to trigger these paths.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/336209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

However, in order for such approaches to be automated, two challenges must be overcome:

producing feasible TPs and generating test sequences to trigger the feasible TPs.

Since an EFSM‟s transitions may have guards (preconditions) and operations, a given

TP may be infeasible. For example, one transition‟s operation may assign the value 0 to a

variable x while a later transition‟s guard requires x>0 despite the value of x not having

changed between these transitions. Such a path is infeasible and so it is impossible to find

test data to trigger it. However, the problem of determining whether a given path is

feasible is undecidable and the development of good methods is an open research problem

[7, 8]. If the path is feasible, then a test sequence is required to trigger (exercise) this path.

Nevertheless, it can be difficult to find such a set since the input domain is usually quite

large but the required input values might constitute just a small subset of this domain [9].

For example, a machine variable x can be of integer data type, but the required values to

exercise a guard over x can be within a tiny range.

The approach of producing TPs and then generating test sequences to trigger these

paths can be seen as one of initially converting the EFSM to an FSM by abstracting out the

data and then using one of the many methods for testing from an FSM (see, for example,

[10-13]). However this conversion approach does not guarantee that paths taken from the

resultant FSM are feasible in the corresponding EFSM. An alternative approach to

converting an EFSM to an FSM, is to expand out the data [14] but this can easily lead to

the number of states in the resultant FSM being prohibitively large.

Although optimization algorithms have proven efficient for testing purposes [2], very

little attention has been paid towards investigating their application to EFSM testing. This

paper proposes a novel search-based approach to test from EFSMs. The proposed approach

uses two techniques: (1) A TP fitness metric, based on our previous work [15], estimates

the feasibility of a given path by analyzing the dataflow dependence among the operations

and guards in the path‟s transitions and this guides the search for TPs with the aim of

producing feasible TPs that satisfy the test criterion. (2) A fitness function guides the

search for a test sequence that can trigger a given TP. The proposed search-based approach

utilizes the first technique to generate paths that are likely to be feasible and satisfy a given

test criterion, such as transition coverage, and then the second technique is used to try to

trigger the resultant TPs. Potentially, these could be combined into an iterative algorithm

in which additional TPs, with good fitness, are generated if we failed to produce test

sequences to trigger the original TPs.

The main contributions of this paper are the following:

1- It describes a search-based method that directs the automatic generation of TPs

from EFSMs models with the intention that the resultant TPs are feasible and

relatively easy to trigger.

2- It proposes a search-based method for automatically generating a test sequence for

a given TP.

3- The paper is the first to propose an integrated search-based approach for testing

from an EFSM.

4- The paper empirically validates the efficiency of the proposed EFSM testing

approach by using it with five EFSM case studies.

Safe

t1, t2

Critical

Warning

t13 – t16

t22 – t26

t31

t7

t3 – t6

t17– t21

t8 – t12

t27 – t30

t0

S1

t18

t7 – t15

t19, t20

t0
S2

S3

S5

S6

S4
t4

t1

t3

t6

t5

t2 t16

t17

Floor-0

t1, t2

Floor-2

Floor-1

t9, t12

t13, t14

t15, t18

t4, t6

t3, t5

t10, t11

t7, t8

t16, t17

t0

Stop t21

t22

t23
t24

t20

t19

S0

PIN(p), p != pin,

attempts ==3,

Disp(”Wrong PIN”);

Select(id), id ==2

Disp(Fre. Menu);

S2 S1 S3

Card(pin, sb,

cb),

attempts:=0;

Disp(”Enter

PIN”);

PIN(p), p != pin, attempts

<3, Disp(”Wrong PIN,

Re-enter”); attempts:=

attempts+1;

attempts:=0;!”Enter PIN”)

PIN(p), p == pin,

attempts <3,

Disp(”Select

Lang.”);

S4

Select(id), id ==1

Disp(Eng. Menu);

attempts:=0;!”Ente

r PIN”)

S8

S6

Current

Done

Saving

Transfer

Done

Done

S5

S9

S7

Trans(id1,id2,amnt), id1 ==1,

id2 ==2, amnt>0, amnt<cb, cb=

cb – amnt; sb = sb + amnt;

Trans(id1,id2,amnt), id1 ==2,

id2 ==1, amnt>0, amnt<sb, sb=

sb – amnt; cb = cb + amnt;

Print(id), id ==1, receipt(Eng);

Withdrawal (w), w>0, w<=200,

w<sb, sb= sb–w;

Balance(id), id==1, Disp(Eng, sb);
Deposit(d), d>0, sb= sb+d;

Balance(id), id==2, Disp(Fre, sb);
Print(id), id ==1, receipt(Eng);

 Print(id), id ==2, receipt(Fre);

Print(id), id ==2, receipt(Fre);

 Print(id), id ==1, receipt(Eng);

Withdrawal (w), w>0, w<=200, w<cb,

cb= cb–w;

Deposit(d), d>0, cb= cb+d;

Balance(id), id==1, Disp(Eng, cb);

Balance(id), id==2, Disp(Fre, cb);

Select(id), id ==0

Disp(“Canceling)”;

Eject card;

t7

t9

t4 t1

t3 t6

t5 t2

t8

t15

t14

t11

t10

t13
t12

t16

t23

t25

t20
t19

t22
t21

t24

t27
t26

t28

t17
t18

Print(id), id ==2, receipt(Fre);

t29

t30

wait

(sw)

sending

(ss)

connect

(sc)

disconnect

(sd)

t2

t14

t5

t8

t10

t11

t15

t9

t3

t12 t0

 (s0, , , p:=5, sd)

(sd, (ICONreq,,),

counter:=0;!CR;T:=p, sw)

(sS, (AK,{num},

num<>number),

counter<4, undef T;

counter:=counter+1;

DT(number,olddata);

T:=p, sS)

(sS, (T_expired, ,),

counter < 4,

undef T;

counter:=counter+1;

DT(number,olddata);

T:=p, sS)

(sS, (T_expired, ,),

counter > 4, undef T;

!IDISind, sd)

(sS, (AK,{num},

num=number),

number=1, undef T;

number:=0

T:=p, sc)

(sS, (AK,{num},

num=number),

number=0,

undef T;

number:=1, sc)

(sS, (IDATreq,{data},), ,

counter=0, olddata:= data;

DT(number, data); T:=p, sS)

(sw, (DR,,), , undef T;

!IDISind, sd)

(sw, (T_expired,,),

counter < 4 , undef T;

!CR; counter:= counter+1;

T:= p, sw)

(sw, (T_expired,,),

counter > 4 , undef T;

!IDISind, sd)

(sd, (DR,,), , !IDISind, sd)

(sw, (CC,,), ,undef T;

numberi:=1;!CONconf, sC)

(sc, (DR,,), ,

!IDISind, sd)

(sS, (DR,,), ,

!IDISind, sd)

(sS, (AK,{num},

num<>number),

counter>4, undef T;

!IDISind, sd)

t1

t13 t4

t7

t6

Figure 1. EFSM case studies

-1-

-2- -3-

-4-

-5-

1- Simple in-flight safety system EFSM

2- Class II transport protocol EFSM

3- Lift system EFSM

4- ATM EFSM

5- Inres initiator EFSM

The rest of the paper is organized as follows: Section 2 provides background

information, including a description of evolutionary algorithm (EA) and evolutionary

testing (ET). In Section 3, the proposed approach is described. Experimental results are

provided in Section 4 and related work is described in Section 5. Concluding remarks and

future work are in Section 6.

2. Preliminaries

2.1. The model

A finite state machine (FSM) is a Mealy machine (or transducer), which has a finite set of

states, inputs, and outputs. An output is produced upon state transition and this occurs

when applying an input to the machine. An FSM model can successfully represent the

control part of a system, such as a telephone device. However, an extension is needed in

order to model a system, such as a communications protocol, that has control and data

parts. When extending a Mealy machine with internal variables, predicates, and operations

we get an extended finite state machine (EFSM). An EFSM is a 6-tuple [16] (S, s0, V, I, O,

t) where: S is the finite set of logical states, s0 is the initial state, V is the finite set of

internal variables, I is the finite set of input declarations, O is the finite set of output

declarations and t is the finite set of transitions.

The transition t T is represented by the 5-tuple (ss, i, g, op, se) in which: ss is the start

state of t, i is the input where i I and i may have associated input parameters, g is a

logical expression called the guard, op is the sequential operation which consists of simple

statements such as output statements and assignment statements and se is the end state of t.

In an EFSM model, there is a set of variables. One variable in particular is used to

represent the machine state
1
 and is called state or major state in order to differentiate it

from the other variables called context variables. The state variable is used to represent the

logical state, such as idle, wait for connection and so on, whereas other machine data such

as port number and sequencing numbers are stored in context variables. A state transition

occurs when one of the machine‟s transitions is taken. If the state is ss then transition t =

(ss, i, g, op, se) can be taken if input i is received and the guard g is satisfied. If this

happens then the operations in op are executed and the logical state becomes se. Both g and

op can refer to input parameters and context variables. An EFSM is deterministic if for any

group of transitions with the same input that leave a state, it is not possible to satisfy the

guards of more than one transition in this group at the same time [17]. In this paper, we

only consider deterministic EFSMs.

2.2. Examples

In this paper we use the following five EFSMs, shown in Fig. 1, in the experiments:

1- Simple in-flight safety system: A synthesized simple system that functions as a

monitor of the craft‟s cabin in terms of four factors: vibration, pressure,

temperature and smoke. There are three states: (1) Safe when the values of these

four factors are within a set of pre-defined ranges. (2) Warning when the value of

one or more factors is within another set of pre-defined ranges. Here the pilot

should take one or more actions according to a pre-defined list and the system can

1 The state variable may be a tuple of values.

respond with some necessary actions i.e. when the air pressure is low, oxygen

masks are released automatically. (3) Critical when the value of one or more factors

is in a critical range and the pilot has to directly intervene. For example, if the

pressure cannot be brought back to normal, an emergency landing might be taken.

The EFSM has five context variables V= {VarsRead, Vb, Pr, Sm, Tm} and 31

transitions. Fig. 1-1 shows the EFSM and Table 1 lists the transitions

specifications.

2- Class II transport protocol: This EFSM is a major model based on the AP-module

of the simplified version of a class 2 transport protocol. The EFSM model

represents the core protocol transitions as described in [16] and [18]. This EFSM

has two interaction points U and N for connecting to transport service access point

and a mapping module respectively. The EFSM is involved in connection

establishment, data transfer, end-to-end flow control and segmentation. This EFSM

has seven states S = {s0, s1, s2, s3, s4, s5, s6}, five context variables V = {opt, R-

credit, S-credit, TRsq , TSsq} and 21 transitions. The model is shown in Fig. 1-2

and the transitions are described in Table 2.

3- Lift system: A synthesized lift system for a building with three floors. In order to

open or close the lift cabin‟s door, the lift should be situated in the specified place

within a margin that does not exceed 15%. The lift provides three operations:

Request a lift from a specified floor, Service from a floor to another floor and Stop

when there is a request. When a door is closed, the cabin load‟s weight is read and

stored. In order for the cabin to move, the temperature and smoke level inside the

cabin should be within pre-defined ranges. The lift does not provide a service if the

cabin load is less than or equal to 15 KG so that a small child cannot operate the lift

alone. The lift EFSM has four states S= {Floor0, Floor1, Floor2, Stop}, three context

variables V= {Drst, w, Floor} and 24 transitions. The EFSM is shown in Fig. 1-3

and the transitions are described in Table 3.

4- ATM: This represents an extension of the machine described in [19]. The machine

offers the option of English or French menu and provides three services: Deposit,

Withdrawal and Transfer between two accounts (Current and Saving). In order for

a transaction to occur, a user must provide a valid PIN within three tries otherwise

the machine will cancel the operation. The ATM EFSM has ten states S= {s0, s1, s2,

s3, s4, s5, s6, s7, s8, s9}, four context variables V= {PIN, cb, sb, attempts} and 30

transitions. Fig. 1-4 shows the ATM EFSM and its transitions specifications.

5- Inres initiator: The Inres [20] protocol is connection-oriented and comprises the

initiator, which establishes a connection and sends data, and the responder which

receives data and terminates connections. The Inres protocol was designed to be

similar to real protocols and yet small enough to allow experiments to be conducted

for research purposes. The Inres initiator has five states S = {s0, disconnect, wait,

connect, sending}, four context variables V = {counter, number, T, p} and 15

transitions. Fig. 1-5 shows the Inres initiator EFSM together with the transitions

specifications.

In these five EFSMs, all the input parameters are of integer data type. When used, the

symbol „?‟ indicates a request for an input whereas the symbol „!‟ indicates an output.

2.3. Program data flow dependence

Given a program and a variable x within this program, a statement at which x appears can

be an assignment to x or a use of x (or both). An assignment statement defines or updates

the value of x and so x is said to be defined at such a statement. A use of x occurs when x is

referenced in a predicate (a predicate use/p-use) or x is referenced in a computation that

either updates the value of a variable or is produced as output (a computation use/c-use).

Give a program path between two statements n1 and n2, if x is not defined after n1 and

before n2 then the path from n1 to n2 is a definition clear path for x [21]. If, in addition, n1

is a definition of x and n2 is a use of x, then statements n1 and n2 form a definition-use (du)

pair for x and there is dataflow dependence between n1 and n2 [22]. In this paper we utilize

dataflow information in EFSMs to define the proposed TP fitness metric.

Table 1. The transitions specifications of the in-flight safety system EFSM
t ssse Input declarations Guards Transition atomic operations

t0 s0S1 reset - VarsRead= False;

SetWarningLights(all, off);

Sounds are switched off;

t1 s1s1

t8 s2s2

t22 s3s3

?Read(Pvb,

Ppr, Psm, Ptm)

VarsRead == False Vb = Pvb; Pr = Ppr; Sm= Psm;

Tm = Ptm;

VarsRead = True;

t2 s1s1

t7 s2s1

t31 s3s1

MainCheck1 () VarsRead == True & Vb ≥ 0 & Vb ≤10

Pr ≥ 86 & Pr ≤ 100 & Sm ≥0 & Sm ≤ 10

Tm ≥ 11 & Tm ≤ 35

VarsRead= False;

SetWarningLights(all, off);

Sounds are switched off;

t3 s1s2

t9 s2s2

CheckVb1() VarsRead == True & Vb ≥ 11 & Vb ≤25

VarsRead= False;

SetLight(Seatbelt, on);

t4 s1s2

t10 s2s2

CheckPr1() VarsRead == True & Pr ≥ 50 & Pr ≤ 85

VarsRead= False; Release(masks);

SetLight(Seatbelt, on);

t5 s1s2

t11 s2s2

CheckSm1() VarsRead == True & Sm ≥ 11 & Sm ≤ 25

VarsRead= False;

SetSound(Sm, off);

t6 s1s2

t12 s2s2

CheckTm1() VarsRead== True & (Tm ≥ 36 & Tm ≤ 46) V (Tm ≥ 3 &

Tm ≤ 10)

VarsRead= False;

SetLight(Tm, on);

t13 s2s3

t23 s3s3

t27 s1s3

CheckVb2() VarsRead == True & Vb >25

VarsRead= False;

SetLight(Seatbelt, on);

t14 s2s3

t24 s3s3

t28 s1s3

CheckPr2() VarsRead == True & Pr ≥ 0 & Pr ≤ 49

VarsRead= False;

Release(masks); SetLight(Seatbelt,

on); SetSound(Pr, off);

t15 s2s3

t25 s3s3

t29 s1s3

CheckSm2() VarsRead == True & Sm > 25

VarsRead= False

SetSound(Sm, off);

t16 s2s3

t26 s3s3

t30 s1s3

CheckTm2() VarsRead= True & (Tm >46) V (Tm ≤2) VarsRead= False

SetLight(Tm, on);

SelLight(AC, on);

t17 s3s2 MainCheck2() VarsRead == True & Vb ≥ 11 & Vb ≤25 &

Pr ≥ 50 & Pr ≤ 85 & Sm ≥ 11 & Sm ≤ 25 & (Tm ≥ 36 &

Tm ≤ 46) V (Tm ≥ 3 & Tm ≤ 10)

VarsRead= False

SetWarningLights(all, on);

SetWarningSounds (all, off);

Release(masks);

t18 s3s2 MainCheck2() VarsRead == True & Vb ≥ 11 & Vb ≤25 & Pr ≥ 86 & Pr

≤ 100 & Sm ≥0 & Sm ≤ 10 & Tm ≥ 11 &Tm ≤ 35

VarsRead= False;

SetLight(Seatbelt, on);

t19 s3s2 MainCheck2() VarsRead == True & Vb ≥ 0 & Vb ≤10 & Pr ≥ 50 & Pr ≤

85 & Sm ≥0 & Sm ≤ 10 & Tm ≥ 11 &Tm ≤ 35

VarsRead= False;

Release(masks); SetLight(Seatbelt,

on); SetSound(Pr, off);

t20 s3s2 MainCheck2() VarsRead == True & Vb ≥ 0 & Vb ≤10 &

Pr ≥ 86 & Pr ≤ 100 & Sm ≥ 11 & Sm ≤ 25 & Tm ≥ 11

&Tm ≤ 35

VarsRead= False;

SetSound(Sm, off);

t21 s3s2 MainCheck2() VarsRead == True & Vb ≥ 0 & Vb ≤10 &

Pr ≥ 86 & Pr ≤ 100 & Sm ≥0 & Sm ≤ 10 & (Tm ≥ 36 &

Tm ≤ 46) V (Tm ≥ 3 & Tm ≤ 10)

VarsRead= False

SetLight(Tm, on);

SelLight(AC, on);

2.4. Evolutionary algorithms (EAs)

Evolutionary algorithms are optimization techniques that adapt the evolution notion as a

search mechanism. Genetic Algorithms (GAs) are a class of EA inspired by natural

selection and have been found to be powerful, simple, and sturdy. In order to apply a GA

to an optimization problem, a solution representation (encoding) is required. When

solutions are encoded, each is called a chromosome and consists of components that are

called genes [23]. For example, let the initial set of solutions be integer values such as {7,

6, 8}. If binary encoding is performed, then {0111, 0110, 1000} represents the

chromosomes. Any bit of a chromosome represents a gene with a value of either 0 or 1.

The GA cycle starts by evaluating the fitness of each individual which is a positive

value that measures how „fit‟ this individual is and influences its chance of being selected

as a parent. Then selection based on fitness is made to perform „breeding‟. There are many

selection methods, such as roulette wheel and ranking, that can be used [24]. Through

breeding new individuals are introduced. This is accomplished by applying a crossover

operator that acts on two individuals to produce two new individuals. There are several

Table 2. The core transitions in the class II transport protocol EFSM

t ssse Input declarations Guards Transition atomic operations

t0 s1s2 U?TCONreq(dst_add,

prop_opt)

- opt = prop_opt;

R_credit =0; N!TrCR

t1 s1s3 N?TrCR(peer_add, opt_ind, cr) - opt= opt_ind;

S_credit=cr;

R_credit=0; U!TCONind

t2 s2s4 N?TrCC(opt_ind, cr) opt_ind < opt TRsq=0;

TSsq=0;

opt=opt_ind;

S_credit=cr; U!TCONconf

t3 s2s5 N?TrCC(opt_ind, cr) opt_ind > opt U!TDISind; N!TrDR

t4 s2s1 N?TrDR(disc_reason, switch) - U!TDISind; N!terminated

t5 s3s4 U?TCONresp(accpt_opt) accpt_opt < opt opt= accpt_opt;

TRsq=0;

TSsq=0; N!TrCC

t6 s3s6 U?TDISreq() - N!TrDR

t7 s4s4 U?TDATAreq(Udata, E0SDU) S_credit > 0 S_credit= S_credit -1;

TSsq = (TSsq +1)mod128; N!TrDT

t8 s4s4 N?TrDT(Send_sq, Ndata,

E0TSDU)

R_credit != 0 & Send_sq== TRsq TRsq=(TRsq+1)mod128;

R_credit=R_credit -1;

U!DATAind; N!TrAK

t9 s4s4 N?TrDT(Send_sq, Ndata,

E0TSDU)

R_credit == 0 V Send_sq != TRsq U!error; N!error

t10 s4s4 U?U READY(cr) - R_credit= R_credit + cr; N!TrAK

t11 s4s4 N?TrAK(XpSsq, cr) TSsq > XpSsq & cr + XpSsq – TSsq ≥ 0 &

cr +XpSsq – TSsq ≤ 15

S_credit = cr + XpSsq – TSsq

t12 s4s4 N?TrAK(XpSsq, cr) TSsq ≥ XpSsq & (cr + XpSsq – TSsq < 0 V

cr +XpSsq – TSsq >0)

U!error; N!error

t13 s4s4 N?TrAK(XpSsq, cr) TSsq < XpSsq & cr + XpSsq – TSsq – 128 ≥

0 & cr + XpSsq – TSsq – 128 ≤ 15

S_credit= cr+ XpSsq –TSsq – 128

t14 s4s4 N?TrAK(XpSsq, cr) TSsq < XpSsq & (cr + XpSsq – TSsq – 128

< 0 V cr + XpSsq – TSsq – 128 > 15)

U!error; N!error

t15 s4s4 N?Ready() S_creidit > 0 U!Ready

t16 s4s5 U?TDISreq() - N!TrDR

t17 s4s6 N?TrDR(disc_reason, switch) - U!TDISind; N!TrDC

t18 s6s1 N?terminated() - U!TDISconf

t19 s5s1 N?TrDC() - N!terminated; U!TDISconf

t20 s5s1 N?TrDR(disc_reason, switch) - N!terminated

approaches to crossover including one-point crossover, which operates by choosing a

random position on the chromosome‟s bit string, and then the substrings before that

position are kept while the tails are swapped [25]. For example, if the two parents‟

chromosomes are P1 and P2 with crossover point at position 4, then C1 and C2 are the

offspring chromosomes.

P1 {011|00} C1 {011|11}

P2 {101|11} C2 {101|00}

In order to maintain population diversity, new characteristics are infrequently injected

by applying mutation. Mutation acts on one chromosome at a time, where it randomly

changes the values of some of the chromosome‟s genes [25]. For example, the

chromosomes C1 above might become C1
′ after mutating the bits on positions 1 and 5.

Table 3. The transitions specifications of the Lift system EFSM

t ssse Input declarations Guards Transition atomic operations

t0 s0 reset Floor = 0; DrSt = 0;

w = 0;

t1 s0s0 ?DrOp(Pos) DrSt == 0 & Pos ≥ 0 & Pos ≤15 DrSt = 1;

t2 s0s0 ?DrCl(Pos, Pw) DrSt == 1 & Pos ≥ 0 & Pos ≤15 DrSt = 0;

w = Pw

t3 s0s1 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 1 & w ≥15 & w ≤ 250 & Ph ≥

10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 1;

!Display(Floor);

t4 s1s0 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 0 & w ≥15 & w ≤ 250 & Ph ≥

10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 0;

!Display(Floor);

t5 s0s1 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf == 1 & w =0 & Ph ≥ 10 & Ph ≤ 35

& Ps ≥ 0 & Ps ≤25

Floor = 1;

!Display(Floor);

t6 s1s0 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf == 0 & w =0 & Ph ≥ 10 & Ph ≤ 35

& Ps ≥ 0 & Ps ≤25

Floor = 0;

!Display(Floor);

t7 s1s1 ?DrOp(Pos) DrSt == 0 & Pos ≥ 0 & Pos ≤15 DrSt = 1;

t8 s1s1 ?DrCl(Pos, Pw) DrSt == 1 & Pos ≥ 0 & Pos ≤15 DrSt = 0;

w = Pw

t9 s1s2 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 2 & w ≥15 & w ≤ 250 & Ph ≥

10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 2;

!Display(Floor);

t10 s2s1 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 1 & w ≥15 & w ≤ 250 & Ph ≥

10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 1;

!Display(Floor);

t11 s2s1 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf ==1 & w =0 & Ph ≥ 10 & Ph ≤ 35

& Ps ≥ 0 & Ps ≤25

Floor = 1;

!Display(Floor);

t12 s1s2 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf == 2 & w =0 & Ph ≥ 10 & Ph ≤ 35

& Ps ≥ 0 & Ps ≤25

Floor = 2;

!Display(Floor);

t13 s2s2 ?DrOp(Pos) DrSt == 0 & Pos ≥ 0 & Pos ≤15 DrSt = 1;

t14 s2s2 ?DrCl(Pos, Pw) DrSt == 1 & Pos ≥ 0 & Pos ≤15 DrSt = 0;

w = Pw

t15 s2s0 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 0 & w ≥15 & w ≤ 250 & Ph ≥

10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 0;

!Display(Floor);

t16 s0s2 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 2 & w ≥15 & w ≤ 250 & Ph ≥

10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 2;

!Display(Floor);

t17 s0s2 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf ==2 & w =0 & Ph ≥ 10 & Ph ≤ 35

& Ps ≥ 0 & Ps ≤25

Floor = 2;

!Display(Floor);

t18 s2s0 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf == 0 & w =0 & Ph ≥ 10 & Ph ≤ 35

& Ps ≥ 0 & Ps ≤25

Floor = 0;

!Display(Floor);

t19 s0ss ?Stp (Pf, Ph, Ps) DrSt == 0 & Pf == 100 & w ≥15 & w ≤ 250 & Ph ≥

10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 100;

!Display(Floor);

t20 sss0 ?Srv(Pf) DrSt == 0 & Pf == 0 Floor = 0;

!Display(Floor);

t21 sss1 ?Srv(Pf) DrSt == 0 & Pf == 1 Floor = 1;

!Display(Floor);

t22 s1ss ?Stp (Pf, Ph, Ps) DrSt == 0 & Pf == 100 & w ≥15 & w ≤ 250 & Ph ≥

10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 100;

!Display(Floor);

t23 s2ss ?Stp (Pf, Ph, Ps) DrSt == 0 & Pf == 100 & w ≥15 & w ≤ 250 & Ph ≥

10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 100;

!Display(Floor);

t24 sss2 ?Srv(Pf) DrSt == 0 & Pf == 2 Floor = 2;

!Display(Floor);

C1 {01111} C1
′ {11110}

These operators yield new individuals and selection is used to obtain a new generation

(population) from the previous population and the new individuals. The population

undergoes a number of updates until satisfying one of the stopping criteria such as finding

the best solution or reaching a maximum number of generations [26].

2.5. Evolutionary Testing (ET)

Evolutionary testing (ET) is a technique that employs EA to automatically generate test

data. Test data generation is represented as a minimization problem where the lower the

fitness of a solution the better it is and the optimal solution(s) will have a fitness equal to

zero. When applying ET to generate test data we need the fitness function to correspond to

the test adequacy criterion (a property that a test must satisfy in order to be considered

sufficient). Many test adequacy criteria require that a set of structures in the code or model

are covered in testing [4]. For example, we might require that all of the statements in the

code are exercised (covered) in testing (statement coverage). If we consider the branch

coverage criterion, then all the branches in the subject program need to be taken (covered).

Test generation can involve a sequence of phases where in each phase we consider a single

branch. In this case, an objective (fitness) function that depends on branch distance can be

used in order to evaluate an input value. Branch distance measures how close a particular

input was to executing the target branch that is missed. For example, |x-y| is the branch

distance for the predicate (x < y): the lower |x-y| is the closer x is to y and the closer the test

is to taking the branch. A full list of different types of conditions and their branch distance

computations is provided by Tracey et al. [27].

Often, programs have nested predicates, for example an IF statement could be

contained in a loop. In this case, an objective function which only employs branch distance

is not sufficient and we require extra information to guide the search. This is given in

terms of approach level [28] which measures how close an input was to executing the

structure under test. A central notion to approach level calculation is a critical node which

is a branching node at which the control flow may divert. Approach level is calculated by

subtracting 1 from the number of critical nodes away from the target node at which the

computation diverges (Equation 2). Since it is necessary that the branch distance of the

upper IF statement is always greater than the ones in a lower level, the branch distance of

each IF statement is normalized, using the norm function, to a value in the range of [0..1]

(Equation 1). The normalized branch distance is then added to the approach level of that

branch to form the fitness value of the test case (Equation 3). As a result, a test input that

achieves more conditions (longer path) will have a better (lower) fitness than a test input

that achieves fewer conditions.

norm (branch_distance) = 1 – 1.05
-

branch_distance

 (1)

approach level= numOfCriticalNodesAwayFromTarget – 1 (2)

fitness = approach level + norm (branch_distance) (3)

A recent survey [2] has focused on evolutionary test data generation. The EFSM path

test data generation technique presented in this paper adapts the notion of branch distance

and approach level in order to construct a new fitness function as described in Section 3.

3. The Proposed Approach

In this section, we describe the two techniques that we use in our approach: feasible

transition path generation and test sequence generation.

3.1. Feasible transition path (FTP) generation

In this subsection we describe the FTP generation approach which is based on our previous

work [15]. First, we introduce some definitions.

Definition 1: A transition path (TP) of length n is a sequence of n consecutive transitions

t1, t2, .., tn.

Definition 2: A TP is an FTP if it is possible to trigger each transition ti, 1 < i < n, and in

the sequential order that it appears in this TP.

Any path from the initial state of an EFSM defines a TP but only some of these paths

may be FTPs. For example, in the Inres initiator (Fig. 1-5), the path t1t3t3 is an FTP but t1t4

is not since t1 sets the value of counter to 0 and then t4 requires that counter is at least 4.

A transition‟s guard has the form of (e gop e′) where e and e′ are expressions and gop

 {<, >, , =, <, > } is the guard operator. Given an expression e, we let Ref(e) to denote

the set of variables that appear in e. According to e and e′ a transition‟s guard can be

classified into the following types:

1. g
pv

: a comparison involving a parameter and one or more context variables; Ref(e)

Ref(e′) contains a parameter and also context variables. An example is the transition

t2 in the ATM (Fig. 1-4) since it inputs a PIN p and then compares this with the

correct PIN.

2. g
vv

: a comparison among context variables‟ values; every element of Ref(e) Ref(e′)

is a context variable.

3. g
vc

: a comparison between a constant and an expression involving context variables;

all elements of Ref(e) Ref(e′) are context variables and either e or e′ is a constant.

An example is the transition t3 in the Inres initiator (Fig. 1-5) since its guard

references a context variable counter, compares it to a constant and does not

reference an input parameter.

4. g
pc

: a comparison between a constant and an expression involving a parameter; there

exists a parameter p Ref(e) Ref(e′) and either e or e′ is a constant. Transition t2

in the ATM (Fig. 1-4) would be an example of this if we considered the correct PIN

to be a constant rather than a context variable.

5. g
pp

: a comparison between expressions involving parameters; there exists a parameter

p Ref(e) Ref(e′).

An assignment that occurs in a transition t has the form of v=e, where v is a context

variable and e is an expression. An assignment to a context variable v can be classified as

one of the following types:

1. op
vp

: it assigns to v a value that depends on the parameter and so there is a parameter

p Ref(e). An example is the transition t2 in the Lift system (Fig. 1-3) since it inputs

the cabin‟s load weight pw and updates the value of the context variable w on the

basis of this.

2. op
vv

: it assigns to v a value that depends on the context variable(s) and so all the

elements of Ref(e) are context variables. An example is the transition t2 in the ATM

(Fig. 1-4) since it updates the value of the context variable attempts by using the

value of the context variable attempts.

3. op
vc

: it assigns to v a constant value and so e is a constant. An example is the

transition t1 in the Inres initiator (Fig. 1-5) since it defines the value of the context

variable counter by a constant.

Based on the classifications of guards and assignments, we can distinguish two types

of transitions: affecting and affected-by transitions.

Definition 3: In a TP t1, t2, .., tn, ti is an affecting transition if ti has an assignment op

op
vp

, op
vc

, op
vv

} to v and there exists a guarded transition tj TP, where 1 < i < j < n, tj

has a guard g g
pv

g
vv

g
vc

over v and the path from ti to tj is definition clear for v. We

also say that tj is an affected-by transition.

For example, in the Inres initiator, in Fig. 1-5, the transition t1 assigns a value to the

context variable counter and t3 guard references this variable, and there is a definition clear

path t1t3 from t1 to t3 and so t1 is an affecting transition and t3 is an affected transition.

Definition 4: For variable v, assignment op of type op
vc

 is opposed to guard g of type g
vc

when the path from op to g is definition clear for v and either the constants that appear in

op
vc

 and g
vc

 are the same and gop {<, >, } or are different and gop {=}.

If we again consider the Inres initiator, we find that the assignment to counter in transition

t1 is opposed to the guard in t4 since t1 sets counter to 0 and t4 requires counter to be at

least 4. As a result any path that contains the subsequence t1t4 must be infeasible.

Definition 5: For variable v, guards g1 and g2 of type g
vc

 are opposed when the path from

g1 to g2 is definition clear for v and either the constants that appear in g1
vc

 and g2
vc

 are the

same and (g1op { , >, <} and g2op {=} or g1op {>, ≥} and g2op {<} or

g1op {<, ≤} and g2op {>}) or the constants are different and g1op, g2op {=}.

By Definitions 3-5, we can define two cases where a TP is clearly infeasible:

Definition 6: A TP t1, t2, .., tn with length n >1 is definitely infeasible if there exists a

variable v and a pair of transitions (ti, tj) where < i < j < n, ti is an affecting transition of

type op
vc

, tj is an affected-by transition of type g
vc

 and op
vc

 opposes g
vc

. An example is the

transition sequence t1t4 in the Inres initiator (Fig. 1-5).

Definition 7: A TP t1, t2, .., tn with length n >1 is definitely infeasible if there exists a

variable v and a pair of transitions (ti, tj) where gi and gj are of type g
vc

 and gi opposes gj.

An example of this is the transition subsequence t4t5 in the Lift system (Fig. 1-3) since t4

requires the value of the context variable w to be in [15..250] while t5 requires the value of

the same context variable w to be 0 and the path t4t5 is definition clear for w. Thus any path

that contains the subsequence t4t5 must be infeasible.

3.1.1. Dependencies representation and penalties

In this subsection we describe a TP fitness metric that aims to estimate the „feasibility‟ of a

TP without executing it. In order to estimate the feasibility of a TP, we perform an analysis

of all dependencies among the affecting and affected-by transitions in this TP. The aim is

to have a fitness metric that can be used in search and so we need this to be

computationally simple. Our TP feasibility metric is therefore based on a set of

approximate penalty values that are determined in advance.

The penalty value is a numerical estimate of how easily a given guard can be satisfied.

Since a guard can be affected by a previous operation, we consider three factors when

assigning a penalty value to a pair of (affecting, affected-by). First, we consider the guard

type. For example, a guard of type g
vc

 can be classified as the hardest since the option of

selecting the values of either c or v is not available. In contrast, g
pv

 is typically easier to

satisfy since we can choose the value of the parameter. Secondly, we consider the guard

operator. For example, the operator = is normally the most difficult to satisfy and is the

easiest. Finally, we consider the operation of an affecting transition. For example, an

operation of type op
vp

 is potentially useful since the parameter provides an opportunity to

try to select a suitable value while op
vc

 is the worst since it is not possible to select the

value of c. In addition to the penalty between a pair of (affecting, affected-by), it is

possible to have a guard that is not affected by any operation (e.g. g
pc

) and for such a case,

we consider only the first two factors when assigning a penalty value. Table 4 shows the

suggested penalty values for all possible combinations among affecting and affected-by

transitions; for cases where there are no affecting transitions we use „–‟ to indicate that the

choices op
vp

, op
vv

 and op
vc

 are irrelevant. In the case where a TP is definitely infeasible we

give a penalty of 10000 and this value has been chosen for the path length 10 used in the

experiments. If a different path length is used we suggest that the penalty should be 1000

times the path length.

A guard can be given using nested IFs or predicates linked by AND and OR. For

guards that are represented as nested IF or linked by AND, the sum of penalties is applied,

however, the minimum penalty is considered when an OR operator is present.

Table 4. The suggested penalty values

Guard &

operator

Assignment

(nop) (op
vp

) (op
vv

) (op
vc

)

gpv(=) 4 8 16 24

gpv(<, >) 3 6 12 18

gpv(< , >) 2 4 8 12

gpv() 1 2 4 6

gvv(=) 16 20 40 60

gvv(<, >) 12 16 32 48

gvv(< , >) 8 12 24 36

gvv() 4 8 16 24

gvc(=) 40 30 60 10000 if c is different and 0 otherwise

gvc(<, >) 32 24 48 0 if c is different and 10000 otherwise

gvc(< , >) 24 18 36 10000 if c is different and 0 otherwise

gvc() 16 12 24 0 if c is different and 10000 otherwise

gpc(=) 4 - - -

gpc(<, >) 3 - - -

gpc(< , >) 2 - - -

gpc() 1 - - -

gpp(=) 4 - - -

gpp(<, >) 3 - - -

gpp(< , >) 2 - - -

gpp() 1 - - -

gi opposes gj 10000 - - -

The dependency between affecting and affected-by transitions can occur on the basis

of one or more context variables and an affected-by transition can be affected by one or

more transitions in a given TP. Therefore, we record each dependency between a pair of

(affecting, affected-by) transitions and the context variable at which the dependency

occurs. There are three types of assignments and we represent each type by an integer: -2

and -1 mean an assignment of a constant value (op
vc

) and an assignment of a parameter

value (op
vp

) respectively while an assignment that references a context variable (op
vv

) is

represented by a positive integer in [1..m] (m context variables). A number in [1..m]

represents the corresponding context variable appearing on the right-hand side of the

assignment. If an assignment of type (op
vv

) references more than one context variables, we

simplify the calculation by using only one of these. We observe that if we can easily set

(choose) the value of one of these context variables then it may be less important whether

we can set the values of the others. Consider, for example, the problem of satisfying a

guard v=v′ for context variables v and v′. If we can easily set the value of v using a

parameter p then we may be able to choose values for the other parameters, note the value

of v′ and then decide the value of p. As a result we choose the variable vj referenced by

considering the chain of previous assignments that compute the value of vj in the TP and

the following preference: (1) the first (earliest) assignment references a parameter, (2) the

first assignment references a constant; and (3) vj has the shortest chain of assignments that

update its value. Having chosen the vj we compute the value as above. It is possible that

there is no assignment (nop) and so no dependency between the transitions, or there is an

open-ended dependency (a variable references another variable which is not defined). We

represent such cases by 0. Table 5 lists the dependency types and their representation.

Example 1. The EFSM in Fig. 1-1 has five context variables VarsRead, Vb, Pr, Sm, Tm

which we will refer to henceforth by v1, v2, v3, v4, v5 respectively. Consider transitions t1

and t2 from Table 1: t2 is an affected-by transition of type g
vc

 and t1 is an affecting

transition of type op
vc

 at v1 and of type op
vp

 at v2, v3, v4 and v5. From Table 4, the penalty

value is 0 + 18 + 18 + 18 + 18 = 72. Dependencies between t1 and t2 occur at all context

variables so we represent the dependencies as a seven-tuple. The first five fields record the

dependency and penalty which occur at each context variable and the sixth, gp, records the

sum of penalties of guards that do not involve context variables. The last field is a Boolean

and used to record whether there is a penalty between the considered two transitions. The

first five fields have two parts: the dependency type and the associated penalty value:

The information in the above tuple can be read by the help of Tables 4 and 5 as: there

is a dependency between transitions t1 and t2 at v1 where the earlier chain of dependencies

Table 5. Assignment’s types representation

op Representation Meaning

opvp -1 An assignment to v that references a parameter and no context variables

opvc -2 An assignment of a constant to v.

opvv v1..vn An assignment to v that references context variables

nop 0 There is no assignment and so no dependency or open ended dependency

t1

t2 v1= -2 | 0 v2 = -1 | 18 v3 = -1 | 18 v4 = -1 | 18

Penalty? gp: gpc&pp

Assignment type | Penalty

v5 = -1 | 18 0 True

starts with an assignment of a constant value and the associated penalty is 0. Similarly

there are dependencies at v2, v3, v4 and v5 that end (when working backwards) with an

assignment that references parameter values and the penalty is 18 points for each. Also, all

guards of t2 involve context variable and so the gp field has the value of 0.

The mentioned tuple of information is stored in an array, a relation array, to represent

the dependencies and penalties among all the transitions in a given EFSM. The array has

the size of n x n where n is the number of transitions in the considered EFSM. Affected-by

transitions are rows whereas columns represent affecting transitions. Each cell in this array

has the form of the mentioned tuple.

3.1.2. The fitness metric

Fig. 2 shows a high-level description of the algorithm that calculates the TP fitness metric.

The inputs are the transition relation array and a TP with length n > 1. The algorithm first

considers the penalty of any guards that do not involve context variables (Line 10). It then

treats the last transition as a potential affected-by transition and determines which previous

transition are affecting (Line 13). If the current pair of transitions (tn-1, tn) forms a pair of

(affecting, affected-by) then a loop is entered (Line 15) to decide which context variables

provide a dependency or a penalty. There are two cases: (1) The dependency type is in [-

2..0], the related variable is set to be checked (Line 19) and the corresponding penalty is

accumulated. (2) The dependency type is > 0 which means that the dependency continues

by an assignment referencing context variables, the related variable is set to be checked,

the corresponding penalty is accumulated and a call is made to a subroutine check to detect

all the previous assignments that are propagated to the current context variable.

The recursive check subroutine performs data dependency analysis by starting from the

context variable and affecting transition passed to the call and working backwards to find

all previous transitions that may affect the context variable (Line A9). If an earlier

transition tp is found to affect the context variable, then the subroutine finds the type of the

assignment (Line A10). If the assignment type is found to be < 0 then the context variable

is assigned either a constant or a parameter value. Then the subroutine penalizes

referencing to a constant with 60 points and to a parameter with 20 points and stops (no

earlier assignments affect this assignment). If the assignment type is > 0, the assignment

references a context variable v′. Here, the subroutine penalizes this referencing by 40

points and repeats the process by calling check with tp and v′ (Line A15). If the

dependency is open ended (depends on an undefined the initial value of a variable) then 60

points is added (Line A22). When the subroutine stops (Line A21 or A22) it returns the

sum of penalties. After the current pair of transitions (tn-1, tn) is scanned, another cycle

starts to detect any possible relation and penalty between the next pair (tn-2, tn) (Line 12)

and so forth.

3.1.3. The GA encoding for FTP generation

The proposed FTPs generation approach uses the encoding technique from [29] in which a

TP is represented by a sequence of integers where each number defines a transition. Given

an EFSM with k states, let n1, n2.. nk be the number of transitions leaving each state. Then,

the method calculates the lowest common multiplier LCM of n1, n2.. nk. The last step is to

define the ranges r1, r2.. rk for each state as ri = LCM / ni. A chromosome is a sequence of

A TP fitness metric
 1. begin

 2. input: TP, EFSM analysis array

 3. output: non negative integer value

 4. goal: evaluate a TP complexity

 5. initialize variable result = 0; , bool array [1..vk]

 6. for i = n downto first_transition

 7. begin

 8. bool array [1..vk]= false;

 // reset bool array so there is currently no penalty recorded at any Var.

 9. j= i;

10. result := result + [ti,tj].gp;

 // get the penalty of guards that do not have context Vars.

11. repeat

12. j = j -1;

13. if [ti,tj].penalty == true then

 // if there is a penalty between these two Trans.

14. begin

15. for vi = v1 to vk do

 // check at which context Var. the dependency occurs

16. begin

17. (if [ti,tj].vi < 0) &&(not bool[vi]) then

 // the dependency ends by a Param., const or no dependency

18. begin

19. bool[vi] = true;

 / /don’t check the penalty at this Var next time

20. result := result + [ti,tj].vi(penalty)

21. end;

22. (if [ti,tj].v > 0) &&(not bool[vi]) then

 // the dependency continues by referencing a context Var.

23. begin

24. bool[vi] = true;

 / /don’t check the penalty at this Var next time

25. result := result + [ti,tj].vi(penalty) + check(ti,tj,vi);

 // call check function to trace back all the dependencies that propagated

 // at this Var.

26. end;

27. end;

28. end;

29. until j = first_transition

30. end;

31. return result;

32. end

Function check all of a transition dependencies
 A1. begin

 A2. input: ti,tj,v

 A3. output: non negative integer value

 A4. goal: trace back a flow dependence on variable v

 A5. initialize variable result = 0; found = false;

 A6. begin

 A7. p = j + 1;

 A8. repeat

 A9. p = p – 1;

A10. if [ti,tp].vi 0 then

A11. begin

A12. case [ti,tp].vi of

 // check the type of dependency

A13. -2 : result = result + 60;

 // Assignment to a constant

A14. -1 : result = result + 20;

 // Assignment to a Param.

A15. 1..k : result = result + 40 + check(tp, tp-1, v1..k)

 // Assignment to a context Var. recall check

 // function to trace back all the dependencies

 //propagated at this context Var.

A16. end;

A17. found = true;

A18. end;

A19. until P = first_transition or found;

A20. end;

A21. if found then return result

A22. else return result + 60;

 // the dependency is left open ended

A23. end.

Figure 2. High level description of the algorithm that calculates the TP fitness metric

integers i1, i2..in, each in the range [1..LCM]. Each number ii is divided by the

corresponding rj to determine the transition it defines. By using this method of encoding,

every sequence defines a TP.

Example 2. The EFSM in Fig. 1-1 has k = 3 states, n1 = 10, n2 = 10 and n3 = 11. Thus

LCM = 110 and r1 = 11, r2 = 11 and r3 = 10. If a sequence of integer is generated in the

range [1..110] i.e. <5, 55 , 99> then by starting from the first state, the first number

represents t1. Since t1 ends at the same state, we use r1 and the second number represents

t5. Similarly, t5 ends at the second state and so we use r2 and the last number represents t15.

The final TP is: t1t5t15.

3.2. Test sequence generation

Once there is a set of generated TPs that satisfy a test criterion such as transition coverage,

there is a need to trigger each TP in this set and so a method is required to generate test

sequences to exercise these TPs. Any EFSM transition can be treated as a function where

the function name and input parameters are taken from the corresponding transition name

and input parameters [30]. Thus, a TP defines a sequence of function calls and a fitness

function is required to guide search for inputs that can trigger the TP.

The fitness calculation method proposed by Wegener et al. [28] and described in

Subsection 2.5 is effective in structural testing where the test target is represented as a

single node in the main body of a function or a program and this method can be applied to

one function at a time. The approach of Tracey et al. [27] can also be used with one

function at a time. However, the work of Wegener et al. [28], as argued in [2], is more

efficient than the Tracey et al. [27] approach since depending merely on branch distance to

calculate the fitness can cause the search to become stuck in a local minimum. For

example, consider an arbitrary transition (fun1) shown in Fig. 3 which requires two suitable

input values to achieve four nested IF statements. Fig. 4 shows the two fitness function

landscapes of (fun1): the first is calculated by using Wegener et al. [28] approach and the

second is calculated by using Tracey et al. [27] approach. The unnecessary plateaux in the

landscape of Tracey et al. [27] can make search more difficult.

In a path, there is more than one function and so a new fitness function is required. We

propose a fitness function that comprises two components: function distance and function

approach level [30]. The function distance can be calculated by using Wegener et al. [28]

method and so it is equal to zero when the function is taken or it reflects how close a given

input was to executing this function. Each guarded transition in a path is considered as a

critical function at which the execution flow may divert. Therefore, we calculate function

approach level by subtracting 1 from the number of critical functions away from the target.

The function approach level is similar to the approach level (see Equation 2) and used to

determine how close a test sequence was to triggering an extra transition in a path. Based

on this description the proposed fitness function can be given as:

path fitness = norm (function distance) + function approach level (4)

function approach level = NumOfCrticalTransAwayFromTarget – 1 (5)

function distance = norm(branch distance) + approach level (6)

Example 3. Consider a path with transition sequence: fun1(x1,y1)fun1(x2,y2) fun1(x3,y3).

In applying the proposed fitness function (Equation 4), we first calculate the function

distance for each transition by using Wegener et al. [28] approach. Since (fun1) is a

guarded transition (see Fig. 3), we consider each transition in a path as an IF statement and

so we calculate the function approach level at each false exit. Fig. 5 shows the fitness

calculation for the path: fun1(x1,y1)fun1(x2,y2)fun1(x3,y3) using the proposed method.

The manipulation of a path in this way is similar to the structure of nested IF

statements where each IF statement compares the associated function‟s return value with 0.

A similar notion of calculating a path fitness is introduced in [31], however, they calculate

the function distance by using the approach of Tracey et al. [27]. As a result, this method

Double fun1(int x, int y)

 {

 if x >=10

 {if x <=20

 {if y >=0

 {if y <=10

 //result = 0 //Target achieved

 }}}}

Figure 3. A transition with nested IF statements

can experience difficulties in the presence of nesting. Later we use experiments to compare

the approach proposed in this paper by that of [31].

Naturally, transitions‟ guards can be sequenced as nested IF statements or linked with

logical operators AND and OR. In order to apply the proposed fitness metric, guards

linked with AND operator are represented as nested IF statements when calculating

function distance.

If guards are linked with an OR, we split the transition into a number of transitions

equal to the number of OR operators + 1. One benefit of this is that we test each

predicate/condition in a guard, however, the alternative would be to use the minimum

fitness value for a set of conditions linked with OR operator [27]. We will refer to our

proposed test sequence generation approach by (ET-1) and that of [31] by (ET-2).

3.2.1. GA encoding for test sequence generation

An encoding is required and this can be selected on the basis of the machine input

parameter types. It is possible to use binary or integer encoding when all of the considered

machine input parameters are of integer data type; however, if some of the input

parameters are of double data type then real valued encoding can be used. A candidate

solution that represents a test sequence consists of components where each component

represents one input parameter. For example, a possible solution encoding of the path

shown in Fig. 5 consists of six components of type integer <C0, C1, C2, C3, C4, C5>.

4. Empirical evaluation

4.1. Experimental design

In designing our experiment, we aimed to evaluate the effectiveness of the proposed

approach which consists of the TP fitness metric and the fitness function for test sequence

generation. In order to achieve this, there are three factors to be considered.

The first relates to the length of TPs used. A short TP is likely to have a low fitness

metric value and be easy to trigger since it has few guards and operations. Therefore, we

want TPs that are relatively long. Since the EFSMs had 15..31 transitions, we considered

TPs of length ten to be sufficient to avoid the impact of this factor. The second factor

Objective function value Objective function value

Wegener et al. landscape

Figure 4. Objective function landscapes of (fun1) to compare Tracy et al. and Wegener et al.

fitness calculations.

Tracey et al. landscape

x y x y

relates to the number of input parameters required to trigger a TP. We might expect it to

normally be harder to use search to trigger a TP that has many input parameters since it

defines a larger and potentially more complex search space. We used TPs that required

between 0 to 25 parameters.

The third factor is related to each EFSM; it may happen that the given EFSM is simple

and so arbitrary generated TPs can be simple and easy to trigger. As a result we generated

two sets of TPs for each EFSM, each set covering all of the transitions. One set was

generated using search to produce TPs with low fitness and the other set was randomly

generated. The first set was generated using an evolutionary algorithm that implemented

the proposed TP fitness metric and these TPs are denoted by (TP-c-ti-EA) where c denotes

the EFSM number as it appears in Fig. 1, ti denotes a transition that this TP is generated to

cover, and EA means that this TP was generated by using an evolutionary algorithm that

implements the proposed TP fitness metric. The alternative TPs were generated randomly

and are denoted in a similar way (TP-c-ti-RA), RA meaning that the TP was randomly

generated. For the purpose of comparison, we measured the fitness metric value of each

randomly generated TP after it was generated. For each TP, we applied three test sequence

generation techniques:

Figure 5. The proposed fitness calculation method applied to a path case study which consists of the

transition sequence fun1 fun1 fun1

Main target Achieved

x >10 false true

x <20 false true

y >0 false true

y <10 false true

Subtarget-2

Sub-Target
missed

 Sub-Target
missed

 Sub-Target
missed

 Sub-Target
missed

 x >10 false true

x <20 false true

y >0 false true

y <10 false true

Subtarget-3

Sub-Target
missed

 Sub-Target
missed

 Sub-Target
missed

 Sub-Target
missed

Target missed
Approach Level = 1
Branch Distance =
Norm(t2_ function distance)

false

true(t2_function distance =0)

true(t1_function distance =0)

Transition t2

Transition t3

Transition t1

false

x >10

Sub-Target missed
Approach Level = 3
Branch Distance =
Norm(Abs(x-10))

false true

x <20 true

y >0 false true

y <10 false true Sub-Target missed
Approach Level = 2
Branch Distance =
Norm(Abs(x-20))

Sub-Target missed
Approach Level = 0
Branch Distance =
Norm(Abs(y-10))

Subtarget-1

Sub-Target missed
Approach Level = 1
Branch Distance =
Norm(Abs(y-0))

false

Target missed
Approach Level = 2
Branch Distance =
Norm(t1_ function distance)

Target missed
Approach Level = 0
Branch Distance =
Norm(t3_function distance)

false

true(t3_function distance =0)

1- ET-1: An ET technique that implements the proposed fitness function for test

sequence generation;

2- ET-2: An ET technique that implements the fitness function proposed in [31]; and

3- Rand: A random test sequence generator.

All search techniques were implemented in the publicly available Genetic and

Evolutionary Algorithm Toolbox GEATbx [32]. A detailed description of each of the

GEATbx parameters used with EA search and ET-based techniques is beyond the scope of

this paper. However, these parameters are fully explained at the GEATbx website [32] and

we record the values used here to allow the experiment to be replicated.

An integer valued encoding was used to represent individuals and population size was

100 individuals. The selection method was linear-ranking with selective pressure set to 1.8.

Discrete recombination was used to recombine individuals whereas mutate integer method

was used for mutation. GEATbx allows the use of standard random approach by setting the

recombination and mutation methods to „recnone‟ and „mutrandint‟ respectively.

For TP generation, each individual consisted of 10 integers which represented its

transitions. The range of values allowed for each variable varied according to each subject

EFSM as previously described in Subsection 3.1.3. The search terminated after 1000

generations or if a TP fitness metric value was zero.

For test sequence generation, each individual consists of 25 integers which represent

the maximum number of input parameters. The range of values allowed for each variable

was [0-1000]. Thus, the input domain used with each TP had the size of 1×10
75

 possible

candidate solutions. Search terminated if the fitness value of zero was achieved or a

maximum number of 1000 generations was reached. Finally, we repeated the search with

each of the three test sequence generation techniques (ET-1, ET-2 and Rand) ten times for

each subject TP.

4.2. Experimental results

An EA search that implemented the proposed TP fitness metric was applied to generate a

transition coverage set of TPs for each subject EFSM shown in Fig. 1. Also, a random TP

generator was applied to produce an alternative transition coverage set of TPs for each

EFSM. Tables A-1, A-2, A-3, A-4 and A-5 (given in Appendix A) list the two sets of TPs

for each subject EFSM. In these tables, each TP is given as a sequence of ten transitions

together with the associated TP fitness metric and the number of input parameters.

For all the TPs that were generated by using the EA search (123 TPs), the fitness

metric values were in the range [0..208]. This shows that the search found TPs that have a

relatively low (better) fitness value.

The randomly generated TPs (123 TPs) can be divided into two groups: (1) TPs with

fitness values that are in the range [0..910] and (2) TPs that their fitness metric values are ≥

10
4
. In analyzing the results of the experiments we considered three cases:

1- Case 1: If a TP fitness metric value is ≥ 10
4
 then the TP is considered to be

definitely infeasible. This is because the value of 10
4
 means that the analysis has

identified that the TP is infeasible TP (guards in opposition or operation and guard

in opposition).

2- Case 2: The TP fitness metric value is in the range [0..9999] and one of the test

sequence generation methods was able to trigger this TP and so it is feasible.

3- Case 3: The TP fitness metric is in the range [0..9999], however, none of the test

sequence generation methods is able to trigger this TP. In this case, we manually

determined whether the TP is feasible.

For TPs that were generated randomly, there are 76 TPs with fitness metric values ≥

10
4
 and so, according to Case 1, are definitely infeasible. This shows that the considered

EFSM models are non-trivial since almost 61.8 % of the randomly generated TPs are

found to be infeasible. The remaining randomly generated TPs (47 TPs) have fitness

metric values in the range [0..910], thus these TPs can belong to either Case 2 or Case 3.

Similarly, the fitness metric values for TPs that were generated by using the EA search

were in the range [0..208] and so these TPs belong to either Case 2 or Case 3.

The three test sequence generation techniques (Rand, ET-1 and ET-2) were applied to

each generated TP. Since the complete set of results cannot fit in this paper, Tables 6, 7, 8,

9 and 10 report the performance of each test sequence generation method in terms of the

average number of generations required by a particular technique in ten tries and whether

the considered TP was successfully triggered.

For the rest of the randomly generated TPs (47 TPs), Tables 6, 7, 8, 9 and 10, show

that 42 TPs are triggered by at least one of the test sequence generation techniques. Thus

there were 5 additional potentially infeasible TPs: (TP4-3-RA, TP4-5-RA, TP4-10-RA, TP5-4-

RA, TP5-12-RA) where the first three belong to the ATM EFSM and the last two belong to

the Inres initiator EFSM. We manually inspected these and found that they are infeasible

because of a guard that references a counter variable (a variable that counts the number of

times that a transition has been repeated).

From Fig. 1-4, TP4-3-RA, TP4-5-RA and TP4-10-RA have the transition t3 which requires

the use of t2 three times to increase the value of the counter variable attempts. The guard of

t3 requires the counter variable (attempts = 3). Also, both of TP5-4-RA and TP5-12-RA have a

similar problem with the variable counter.

For TPs generated by EA search, Tables 6, 7, 8, 9 and 10 show that 119 TPs of the 123

TPs were triggered by at least one of the test sequence generation techniques. This leaves

us with 4 TPs that were not triggered by any test sequence generation techniques. These

TPs are (TP4-3-EA, TP5-4-EA, TP5-9-EA, TP5-11-EA) where the first TP belongs to ATM

EFSM and the other three TPs belong to Inres Initiator EFSM. A manual inspection of

these TPs showed that they are infeasible due to a guard over a counter variable. For

example, TP5-4-EA has the transition t4 with a guard that checks whether (counter≥4) and

so the transition t3 must occur four times before t4.

From these results, we can state that the random path generator was able to produce

FTPs with an accuracy rate approximately 34.15 %. In contrast, the proposed fitness

metric successfully guided the EA search to generate a set of FTPs with an accuracy rate

approximately 96.75 %. The remaining 3.25 % of infeasible paths belonged to the case

where TPs have a guard over a counter variable. For example, if we consider the TP5-4-EA

in the Inres initiator EFSM, the current fitness metric algorithm will always penalize the

sequence t3, t3, t4 more than the sequence t3, t4 since t3 has an operation of type op
vv

, a

guard of type g
vc

 and t3 is affected by t3. Thus, every time t3 is followed by t3 there is a

penalty to be added. Thus, if we minimize the fitness then it is unlikely to get t3 to occur

more than once. This description also applies to all the infeasible TPs with low fitness. We

are currently investigating this problem and see this as an important area of future work.

Table 6. Results of three test data generation techniques on the in-flight EFSM subject TPs
Path ID Path Fitness Taken(Rand) Avg. Gen. Rand Taken(ET-1) Avg. Gen. ET-1 Taken(ET-2) Avg. Gen. ET-2

TP1-1-EA 72 No 1000 Yes 48.2 Yes 59

TP1-1-RA 288 No 1000 Yes 954.7 No 1000

TP1-2-EA 180 No 1000 Yes 710.7 No 1000

TP1-2-RA 234 No 1000 Yes 803.2 No 1000

TP1-3-EA 72 No 1000 Yes 117.3 Yes 89.7

TP1-3-RA 40198 No 1000 No 1000 No 1000

TP1-4-EA 72 No 1000 Yes 57.3 Yes 42.4

TP1-4-RA 41246 No 1000 No 1000 No 1000

TP1-5-EA 72 Yes 666.7 Yes 39.3 Yes 42.8

TP1-5-RA 41246 No 1000 No 1000 No 1000

TP1-6-EA 72 Yes 617.1 Yes 47.1 Yes 31.3

TP1-6-RA 30090 No 1000 No 1000 No 1000

TP1-7-EA 126 No 1000 Yes 288.3 No 1000

TP1-7-RA 234 No 1000 Yes 809.2 No 1000

TP1-8-EA 72 No 1000 Yes 77.4 Yes 50.4

TP1-8-RA 40042 No 1000 No 1000 No 1000

TP1-9-EA 72 No 1000 Yes 102.5 Yes 87.8

TP1-9-RA 30108 No 1000 No 1000 No 1000

TP1-10-EA 72 Yes 948.4 Yes 155.3 Yes 65

TP1-10-RA 30204 No 1000 No 1000 No 1000

TP1-11-EA 72 No 1000 Yes 81.2 Yes 44.5

TP1-11-RA 40072 No 1000 No 1000 No 1000

TP1-12-EA 72 No 1000 Yes 79 Yes 53.2

TP1-12-RA 30180 No 1000 No 1000 No 1000

TP1-13-EA 72 Yes 299 Yes 31.4 Yes 32.2

TP1-13-RA 30228 No 1000 No 1000 No 1000

TP1-14-EA 126 No 1000 Yes 230.8 No 1000

TP1-14-RA 40180 No 1000 No 1000 No 1000

TP1-15-EA 78 Yes 656 Yes 39.5 Yes 23.2

TP1-15-RA 40102 No 1000 No 1000 No 1000

TP1-16-EA 126 No 1000 Yes 213.1 No 1000

TP1-16-RA 30108 No 1000 No 1000 No 1000

TP1-17-EA 126 No 1000 Yes 157.5 No 1000

TP1-17-RA 30222 No 1000 No 1000 No 1000

TP1-18-EA 126 No 1000 Yes 147.2 No 1000

TP1-18-RA 30204 No 1000 No 1000 No 1000

TP1-19-EA 126 No 1000 Yes 518.9 No 1000

TP1-19-RA 30186 No 1000 No 1000 No 1000

TP1-20-EA 126 No 1000 Yes 248.2 No 1000

TP1-20-RA 40198 No 1000 No 1000 No 1000

TP1-21-EA 126 No 1000 Yes 172.9 No 1000

TP1-21-RA 40276 No 1000 No 1000 No 1000

TP1-22-EA 72 Yes 56.2 Yes 13.3 Yes 19.1

TP1-22-RA 40036 No 1000 No 1000 No 1000

TP1-23-EA 78 Yes 2.9 Yes 6.4 Yes 5.5

TP1-23-RA 30132 No 1000 No 1000 No 1000

TP1-24-EA 72 Yes 249.1 Yes 20.6 Yes 22.9

TP1-24-RA 30162 No 1000 No 1000 No 1000

TP1-25-EA 78 Yes 3.2 Yes 5.5 Yes 5

TP1-25-RA 40204 No 1000 No 1000 No 1000

TP1-26-EA 72 Yes 1 Yes 1 Yes 1.1

TP1-26-RA 30168 No 1000 No 1000 No 1000

TP1-27-EA 78 Yes 1 Yes 1 Yes 1

TP1-27-RA 30222 No 1000 No 1000 No 1000

TP1-28-EA 72 Yes 7.5 Yes 4 Yes 6

TP1-28-RA 30180 No 1000 No 1000 No 1000

TP1-29-EA 78 Yes 1 Yes 1 Yes 1

TP1-29-RA 20162 No 1000 No 1000 No 1000

TP1-30-EA 126 No 1000 Yes 192.2 No 1000

TP1-30-RA 40198 No 1000 No 1000 No 1000

TP1-31-EA 126 No 1000 Yes 187.4 No 1000

TP1-31-RA 30168 No 1000 No 1000 No 1000

Total FTPs FTPs Taken by Random FTPs Taken by ET-1 FTPs Taken by ET-2

31 TPs-EA 31 13 31 20

31 TPs-RA 3 0 3 0

Table 11 provides a summary of the results in terms of the number of generated TPs

for each case, TPs generation method (EA or RA), how many TPs of each set were

feasible and how many FTPs from each set were triggered by each test sequence

generation technique. This table also reports the success rate of each generation method

(EA and RA) and for each test sequence generation method (ET-1, ET-2 and Rand).

For the EA generation method that utilizes the TP fitness metric, this was able to

generate FTPs with a success rate approximately 96.75 %. Compared to Rand TP

generation, Rand was able to generate FTPs with a success rate approximately 34.15 %.

The Rand performance shows that generating FTPs form the considered EFSMs is not an

easy task.

For TPs that were generated randomly, we can state that the proposed ET-1 technique

was able to trigger all the randomly generated FTPs (42 FTPs) and so it has the success

rate of 100 %. The ET-2 technique was able to exercise 31 FTPs with a success rate

Table 7. Results of three test sequence generation techniques on the Class II EFSM subject TPs

Path ID Path Fitness Taken(Rand) Avg. Gen. Rand Taken(ET-1) Avg. Gen. ET-1 Taken (ET-2) Avg. Gen. ET-2

TP2-0-EA 0 Yes 1 Yes 1 Yes 1

TP2-0-RA 7 Yes 897.6 Yes 22.6 Yes 115.8

TP2-1-EA 0 Yes 1 Yes 1 Yes 1

TP2-1-RA 10070 No 1000 No 1000 No 1000

TP2-2-EA 4 Yes 1 Yes 1 Yes 1

TP2-2-RA 10068 No 1000 No 1000 No 1000

TP2-3-EA 6 Yes 1 Yes 1 Yes 1

TP2-3-RA 82 Yes 20.3 Yes 4.8 Yes 8.3

TP2-4-EA 0 Yes 1 Yes 1 Yes 1

TP2-4-RA 10070 No 1000 No 1000 No 1000

TP2-5-EA 4 Yes 1 Yes 1 Yes 1

TP2-5-RA 34 Yes 18.9 Yes 6.2 Yes 5.9

TP2-6-EA 0 Yes 1 Yes 1 Yes 1

TP2-6-RA 4 Yes 1 Yes 1 Yes 1

TP2-7-EA 28 Yes 1 Yes 1 Yes 1

TP2-7-RA 910 No 1000 Yes 332.3 No 1000

TP2-8-EA 40 Yes 16.4 Yes 7.3 Yes 8.1

TP2-8-RA 10040 No 1000 No 1000 No 1000

TP2-9-EA 10 Yes 1 Yes 1 Yes 1

TP2-9-RA 10496 No 1000 No 1000 No 1000

TP2-10-EA 4 Yes 1 Yes 1 Yes 1

TP2-10-RA 10358 No 1000 No 1000 No 1000

TP2-11-EA 40 Yes 718.7 Yes 18.7 Yes 448.4

TP2-11-RA 160 No 1000 Yes 251.4 Yes 642

TP2-12-EA 34 Yes 27.6 Yes 8.2 Yes 6.4

TP2-12-RA 772 No 1000 Yes 251.4 No 1000

TP2-13-EA 46 Yes 6.7 Yes 7.6 Yes 5.3

TP2-13-RA 834 No 1000 Yes 338.5 No 1000

TP2-14-EA 40 Yes 3 Yes 2.1 Yes 2.3

TP2-14-RA 306 Yes 748.4 Yes 16.4 Yes 18.6

TP2-15-EA 28 Yes 1 Yes 1 Yes 1

TP2-15-RA 10058 No 1000 No 1000 No 1000

TP2-16-EA 4 Yes 1 Yes 1 Yes 1

TP2-16-RA 68 Yes 86.8 Yes 7.4 Yes 7.1

TP2-17-EA 4 Yes 1 Yes 1 Yes 1

TP2-17-RA 10092 No 1000 No 1000 No 1000

TP2-18-EA 0 Yes 1 Yes 1 Yes 1

TP2-18-RA 4 Yes 1 Yes 1 Yes 1

TP2-19-EA 4 Yes 1 Yes 1 Yes 1

TP2-19-RA 10 Yes 1 Yes 1 Yes 1

TP2-20-EA 4 Yes 1 Yes 1 Yes 1

TP2-20-RA 16 Yes 1 Yes 1 Yes 1

Total FTPs FTPs Taken by Random FTPs Taken by ET-1 FTPs Taken by ET-2

21 TPs-EA 21 21 21 21

21 TPs-RA 13 9 13 10

approximately 73.81 % whereas the Rand technique triggered only 14 FTPs and the

success rate was approximately 33.34 %.

For TPs that were generated by the EA search, the proposed test sequence generation

technique ET-1 was able to trigger all the FTPs with a success rate of 100%. In contrast,

the ET-2 technique had a success rate approximately 73.95 % whereas the Rand technique

exhibited the worst performance with a success rate approximately 46.22 %.

If we consider only the FTPs that were generated randomly and by the EA search, we

can state that the proposed ET-1 technique was found to be efficient since it exercised all

Table 8. Results of three test sequence generation techniques on the Lift EFSM subject TPs

Path ID Path Fitness Taken(Rand) Avg. Gen. Rand Taken(ET-1) Avg. Gen. ET-1 Taken (ET-2) Avg. Gen. ET-2

TP3-0-EA 72 No 1000 Yes 743 Yes 593.2

TP3-0-RA 40214 No 1000 No 1000 No 1000

TP3-1-EA 72 No 1000 Yes 679 Yes 664.9

TP3-1-RA 30242 No 1000 No 1000 No 1000

TP3-2-EA 72 No 1000 Yes 737 Yes 536.9

TP3-2-RA 40214 No 1000 No 1000 No 1000

TP3-3-EA 110 No 1000 Yes 891.9 No 1000

TP3-3-RA 40184 No 1000 No 1000 No 1000

TP3-4-EA 130 No 1000 Yes 969.8 No 1000

TP3-4-RA 30204 No 1000 No 1000 No 1000

TP3-5-EA 92 No 1000 Yes 821.3 Yes 998.3

TP3-5-RA 30168 No 1000 No 1000 No 1000

TP3-6-EA 112 No 1000 Yes 831 No 1000

TP3-6-RA 30196 No 1000 No 1000 No 1000

TP3-7-EA 92 No 1000 Yes 847.8 Yes 945.7

TP3-7-RA 30206 No 1000 No 1000 No 1000

TP3-8-EA 92 No 1000 Yes 904.4 No 1000

TP3-8-RA 30232 No 1000 No 1000 No 1000

TP3-9-EA 152 No 1000 Yes 965.4 No 1000

TP3-9-RA 20252 No 1000 No 1000 No 1000

TP3-10-EA 130 No 1000 Yes 924.3 No 1000

TP3-10-RA 40214 No 1000 No 1000 No 1000

TP3-11-EA 112 No 1000 Yes 926.6 No 1000

TP3-11-RA 30192 No 1000 No 1000 No 1000

TP3-12-EA 132 No 1000 Yes 960.8 No 1000

TP3-12-RA 40222 No 1000 No 1000 No 1000

TP3-13-EA 92 No 1000 Yes 896.2 Yes 947.7

TP3-13-RA 40210 No 1000 No 1000 No 1000

TP3-14-EA 92 No 1000 Yes 892.2 No 1000

TP3-14-RA 30210 No 1000 No 1000 No 1000

TP3-15-EA 152 No 1000 Yes 920.1 No 1000

TP3-15-RA 40214 No 1000 No 1000 No 1000

TP3-16-EA 110 No 1000 Yes 793.6 No 1000

TP3-16-RA 10232 No 1000 No 1000 No 1000

TP3-17-EA 92 No 1000 Yes 818.4 No 1000

TP3-17-RA 40182 No 1000 No 1000 No 1000

TP3-18-EA 112 No 1000 Yes 969.9 No 1000

TP3-18-RA 30196 No 1000 No 1000 No 1000

TP3-19-EA 114 No 1000 Yes 848 No 1000

TP3-19-RA 30210 No 1000 No 1000 No 1000

TP3-20-EA 114 No 1000 Yes 890.7 No 1000

TP3-20-RA 20240 No 1000 No 1000 No 1000

TP3-21-EA 114 No 1000 Yes 837.3 No 1000

TP3-21-RA 40214 No 1000 No 1000 No 1000

TP3-22-EA 156 No 1000 Yes 922.3 No 1000

TP3-22-RA 30194 No 1000 No 1000 No 1000

TP3-23-EA 134 No 1000 Yes 873.7 No 1000

TP3-23-RA 198 No 1000 Yes 944.9 No 1000

TP3-24-EA 114 No 1000 Yes 797 No 1000

TP3-24-RA 20236 No 1000 No 1000 No 1000

Total FTPs FTPs Taken by Random FTPs Taken by ET-1 FTPs Taken by ET-2

25 TPs-EA 25 0 25 6

25 TPs-RA 1 0 1 0

Table 9. Results of three test sequence generation techniques on the ATM EFSM subject TPs

Path ID Path Fitness Taken(Rand) Avg. Gen. Rand Taken(ET-1) Avg. Gen. ET-1 Taken(ET-2) Avg. Gen. ET-2

TP4-1-EA 36 No 1000 Yes 29.4 Yes 27.8

TP4-1-RA 120 No 1000 Yes 597.5 Yes 504

TP4-2-EA 54 No 1000 Yes 55.2 Yes 144.6

TP4-2-RA 10238 No 1000 No 1000 No 1000

TP4-3-EA 208 No 1000 No 1000 No 1000

TP4-3-RA 380 No 1000 No 1000 No 1000

TP4-4-EA 36 Yes 911 Yes 34.7 Yes 27.7

TP4-4-RA 104 No 1000 Yes 647.8 Yes 466.7

TP4-5-EA 36 Yes 797 Yes 20.7 Yes 26

TP4-5-RA 414 No 1000 No 1000 No 1000

TP4-6-EA 36 Yes 939.9 Yes 25.3 Yes 34.2

TP4-6-RA 10222 No 1000 No 1000 No 1000

TP4-7-EA 36 Yes 759.6 Yes 25.8 Yes 23

TP4-7-RA 20088 No 1000 No 1000 No 1000

TP4-8-EA 36 Yes 953.6 Yes 26.3 Yes 19.5

TP4-8-RA 60 No 1000 Yes 140.3 Yes 207.7

TP4-9-EA 36 Yes 927.2 Yes 30.2 Yes 29

TP4-9-RA 60 No 1000 Yes 121.1 Yes 99.5

TP4-10-EA 36 Yes 980.7 Yes 33.1 Yes 36.5

TP4-10-RA 232 No 1000 No 1000 No 1000

TP4-11-EA 60 No 1000 Yes 206.2 Yes 114.4

TP4-11-RA 20072 No 1000 No 1000 No 1000

TP4-12-EA 60 No 1000 Yes 105.7 Yes 137.7

TP4-12-RA 104 No 1000 Yes 530 Yes 421.8

TP4-13-EA 56 No 1000 Yes 76.8 Yes 55.8

TP4-13-RA 270 No 1000 Yes 374.8 Yes 162.7

TP4-14-EA 76 No 1000 Yes 110.9 Yes 82.4

TP4-14-RA 242 No 1000 Yes 138.4 Yes 262.4

TP4-15-EA 56 No 1000 Yes 72.3 Yes 60.7

TP4-15-RA 100 No 1000 Yes 309.8 Yes 475.5

TP4-16-EA 56 No 1000 Yes 72.9 Yes 57.8

TP4-16-RA 124 No 1000 Yes 68.2 Yes 82.7

TP4-17-EA 72 No 1000 Yes 87.9 Yes 166.1

TP4-17-RA 10102 No 1000 No 1000 No 1000

TP4-18-EA 56 No 1000 Yes 59.1 Yes 73.9

TP4-18-RA 80 No 1000 Yes 337.5 Yes 401.7

TP4-19-EA 60 No 1000 Yes 272.2 Yes 186.4

TP4-19-RA 108 No 1000 Yes 669 Yes 557.7

TP4-20-EA 60 No 1000 Yes 115.4 Yes 199.6

TP4-20-RA 100 No 1000 Yes 592.9 Yes 364.3

TP4-21-EA 56 No 1000 Yes 62.2 Yes 53.1

TP4-21-RA 84 No 1000 Yes 507.7 Yes 535.5

TP4-22-EA 56 No 1000 Yes 44.2 Yes 60.9

TP4-22-RA 108 No 1000 Yes 800.8 Yes 674.5

TP4-23-EA 48 No 1000 Yes 49.2 Yes 59.2

TP4-23-RA 20066 No 1000 No 1000 No 1000

TP4-24-EA 72 No 1000 Yes 95.8 Yes 81.7

TP4-24-RA 20208 No 1000 No 1000 No 1000

TP4-25-EA 36 Yes 817.6 Yes 25.6 Yes 21.8

TP4-25-RA 116 No 1000 Yes 88.3 Yes 963.9

TP4-26-EA 36 No 1000 Yes 24.8 Yes 24.3

TP4-26-RA 230 No 1000 Yes 88.3 Yes 90.4

TP4-27-EA 98 No 1000 Yes 162.8 Yes 914.8

TP4-27-RA 264 No 1000 Yes 832 No 1000

TP4-28-EA 98 No 1000 Yes 329.7 Yes 953.8

TP4-28-RA 196 No 1000 Yes 731 No 1000

TP4-29-EA 98 No 1000 Yes 334.7 No 1000

TP4-29-RA 146 No 1000 Yes 647 No 1000

TP4-30-EA 98 No 1000 Yes 226.9 Yes 938.1

TP4-30-RA 254 No 1000 Yes 805.7 No 1000

Total FTPs FTPs Taken by Random FTPs Taken by ET-1 FTPs Taken by ET-2

30 TPs-EA 29 8 29 28

30 TPs-RA 20 0 20 16

the FTPs, however, this is not the case with both ET-2 and Rand techniques where the rate

of successfully triggering the generated FTPs were approximately 73.92 % and 42.86 %

respectively.

Fig. 6 has three graphs that show the fitness metric value of each TP generated from

the five EFSMs by using the EA search (123 TPs). In this Figure, each graph plots TP

fitness against the average number of generations required to trigger the TP averaged over

ten tries. Since the ET-1 technique triggered all the generated FTPs, the third graph can be

considered as a baseline to compare with.

The first graph shows that all the FTPs that were triggered by Rand (55 FTPs) were

associated with a fitness metric value that did not exceed 78. However, there are still some

FTPs (28 FTPs) with TP fitness values less than 78 that were not triggered randomly.

The second graph shows that the ET-2 technique triggered all the FTPs with TP fitness

values in [0...98] but failed for FTPs with TP fitness metric greater than 98. We can see

that ET-2 outperformed that Rand technique performance but exhibited worse performance

than the proposed ET-1 technique.

The third graph clearly illustrates that ET-1 was most effective since all the generated

FTPs were successfully triggered. The third graph seems to show a trend between an FTP

fitness and how easily this FTP can be triggered in terms of the required number of

generations. There is also some evidence of this trend in the first and the second graphs;

when the FTP fitness metric did not exceed 75, these FTPs appeared to require fewer

Table 10. Results of three test sequence generation techniques on the Inres EFSM subject TPs

Path ID Path Fitness Taken(Rand) Avg. Gen. Rand Taken(ET-1) Avg. Gen. ET-1 Taken(ET-2) Avg. Gen. ET-2

TP5-0-EA 0 Yes 1 Yes 1 Yes 1

TP5-0-RA 0 Yes 1 Yes 1 Yes 1

TP5-1-EA 0 Yes 1 Yes 1 Yes 1

TP5-1-RA 20000 No 1000 No 1000 No 1000

TP5-2-EA 0 Yes 1 Yes 1 Yes 1

TP5-2-RA 0 Yes 1 Yes 1 Yes 1

TP5-3-EA 0 Yes 1 Yes 1 Yes 1

TP5-3-RA 0 Yes 1 Yes 1 Yes 1

TP5-4-EA 136 No 1000 No 1000 No 1000

TP5-4-RA 136 No 1000 No 1000 No 1000

TP5-5-EA 0 Yes 1 Yes 1 Yes 1

TP5-5-RA 0 Yes 1 Yes 1 Yes 1

TP5-6-EA 48 No 1000 Yes 29.9 Yes 23.6

TP5-6-RA 10000 No 1000 No 1000 No 1000

TP5-7-EA 24 Yes 13.5 Yes 8.5 Yes 10

TP5-7-RA 20024 No 1000 No 1000 No 1000

TP5-8-EA 6 Yes 1 Yes 1 Yes 1

TP5-8-RA 10160 No 1000 No 1000 No 1000

TP5-9-EA 142 No 1000 No 1000 No 1000

TP5-9-RA 10006 No 1000 No 1000 No 1000

TP5-10-EA 0 Yes 1 Yes 1 Yes 1

TP5-10-RA 10000 No 1000 No 1000 No 1000

TP5-11-EA 136 No 1000 No 1000 No 1000

TP5-11-RA 10000 No 1000 No 1000 No 1000

TP5-12-EA 0 Yes 1 Yes 1 Yes 1

TP5-12-RA 324 No 1000 No 1000 No 1000

TP5-13-EA 0 Yes 1 Yes 1 Yes 1

TP5-13-RA 0 Yes 1 Yes 1 Yes 1

TP5-14-EA 0 Yes 1 Yes 1 Yes 1

TP5-14-RA 20000 No 1000 No 1000 No 1000

TP5-15-EA 0 Yes 1 Yes 1 Yes 1

TP5-15-RA 10000 No 1000 No 1000 No 1000

Total FTPs FTPs Taken by Random FTPs Taken by ET-1 FTPs Taken by ET-2

16 TPs-EA 13 13 13 13

16 TPs-RA 5 5 5 5

generations to be triggered. While this trend is relatively clear in the third graph, we cannot

consider this as strong evidence but merely worth noting at this point.

The experimental results provide strong evidence that the proposed fitness metric

algorithm can effectively guide an EA search towards TPs that are likely to be feasible.

Furthermore, the experiments suggest that the proposed test sequence generation approach

(ET-1) is effective in finding test data to trigger an FTP.

4.3. Threats to validity

In this subsection we discuss the potential threats to the validity of our study. Threats to

external validity are the conditions that restrict our ability to generalize our results. The

threats to external validity of this study are related to: First, the subject EFSM models,

though nontrivial, they have relatively few states and transitions, and larger EFSM model

might be helpful to derive more general conclusions about the validity of the proposed

approach. Nevertheless, this threat has been limited by using two synthesized EFSMs and

another three EFSMs that are commonly used in evaluating other EFSM testing

techniques. Second, a specific path length was chosen. Paths with more transitions may be

subject to a different cost e.g., test sequence generation might require more generations in

order to traverse a path. Additional experiments with larger EFSMs could investigate the

impact of using longer paths.

5. Related work

Many test generation approaches for systems modeled as EFSMs appear in the literature

[6-9, 16, 29, 31, 33-38]. An approach to generate a unified test sequence (UTS) for EFSM

models is presented in [33] based on two techniques: one to test the control part (FSM) and

the other to test the data part by using data flow analysis technique. The resultant UTS is

then checked for executability by using a constraint satisfaction method. However, some

assumptions about the EFSM model i.e. the existence of self-loop influencing (a loop that

modifies a global predicate variable) restrict its applicability.

Generating test sequence from EFSMs by employing functional program testing was

studied in [38]. The approach converted the specification written in Estelle [39] into a

simpler form in order to construct control and data flow graphs to be used in test sequence

derivation. However, the approach restricted the use of common code constructs such as

Table 11. A summary of the experimental results
EFSM TPs by TPs FTPs FTPs taken (Rand) FTPs taken (ET-1) FTPs taken (ET-2)

in-flight EA 31 31 13 31 20

RA 31 3 0 3 0

Class II EA 21 21 21 21 21

RA 21 13 9 13 10

Lift EA 25 25 0 25 6

RA 25 1 0 1 0

ATM EA 30 29 8 29 28

RA 30 20 0 20 16

Inres EA 16 13 13 13 13

RA 16 5 5 5 5

Totals

EA 123 119 55 119 88

RA 123 42 14 42 31

Success rate

EA 123 ≈96.75 % ≈46.22 = 100 % ≈73.95 %

RA 123 ≈34.15 % ≈33.34 = 100 % ≈73.81 %

EA&RA 246 161 ≈42.86 % = 100 % ≈73.92 %

functions calls and conditional statements. Also, it did not describe how test sequences can

be generated.

Other methods that test from an EFSM using FSM-based test techniques appear in [34-

36] but these require an EFSM to be converted into an FSM. There are two main

approaches, the first being to expand the data in the EFSM. However, the number of states

in the resultant FSM can easily become prohibitively large [14]. The alternative is to

abstract the data from the EFSM to produce an FSM. This approach has two limitations

that motivate the work described in this paper: there is a need to produce test sequences to

trigger the paths chosen and these paths are not necessarily feasible in the original EFSM.

A technique for generating unique state identification sequences for EFSM models is

presented in [16]. The technique is based on computing a new type of state identification

for each state called context independent unique sequence (CIUS). This requires that all the

paths that start from any state be context independent. That is, all the guards included in

any path can be interpreted symbolically and each state must have a CIUS. This appears to

limit the applicability of the approach. The authors did not consider the problem of

generating test sequences for the generated paths and here the approach proposed in this

paper might help.

An approach which employs software data flow testing to derive a test sequence from

EFSM models is presented in [9]. The selection of each test case depends on identifying all

the associations between each output and all the inputs that affects that output. However,

as stated in [40], the approach might not always provide the intended coverage.

1. Rand performance on EA TPs

0

75

150

225

0 200 400 600 800 1000

Generation

F
it

n
e

s
s

 m
e

tr
ic

Triggered Not Triggered

2. ET-2 performance on EA TPs

0

75

150

225

0 200 400 600 800 1000

Generation

F
it

n
e

s
s

 m
e

tr
ic

Triggered Not Triggered

3. ET-1 performance on EA TPs

0

75

150

225

0 200 400 600 800 1000

Generation

F
it

n
e

s
s

 m
e

tr
ic

Triggered Not Triggered

Figure 6. The performance of the three test sequence generation techniques on EA TPs

Approaches that study the path feasibility problem are introduced in [6, 7]. In [7], a

method is given to convert EFSMs into EFSMs in which all paths are feasible but this

requires guards and operations to be linear. In [6], the infeasible path problem was

overcome through two steps. First, the SDL (Specification and Description Language)

model is rewritten in order to derive a normal form-EFSM (NF-EFSM). Second, the

resultant NF-EFSM is extended to Expanded-EFSM (EEFSM) in order to aid testability.

As a result, all the paths presented in the output EEFSM are feasible. However, these two

approaches [6, 7] did not tackle the problem of generating test sequences that trigger the

resultant paths and here the approach proposed in this paper could be used.

Approaches that utilize search algorithms to test from EFSMs are introduced in [29,

31]. The approach proposed in [31] describes a fitness calculation method to find a test

sequence for a path. The considered fitness function applies Tracey et al. [27] technique to

each transition in a path. Path fitness is defined by considering each function in the path as

a critical node. The limitation of this study is the assumption that each function does not

have an internal path i.e. nested IF statements for which Tracey et al. [27] approach does

not always provide a sufficient guidance as argued in [2]. Furthermore, the work did not

consider the problem of choosing a path that is likely to be feasible. In [29], a GA

approach to generate FTPs from EFSM model was presented. This is the only previous

work that utilizes a GA to generate FTPs from a given EFSM. The approach evaluated the

feasibility of a given TP according to the number and the types of guards found in that TP.

However, the dependences between transitions in a path were not considered.

6. Conclusion

Although the EFSM is a powerful model and has been widely applied, testing from this

model is a challenging task for two reasons: some paths may be infeasible and it may be

difficult to produce a test sequence to execute a feasible transition path. Despite the fact

that optimization algorithms have proven to be effective in automating the process of

software testing, previously these have mainly been applied to white-box testing.

We can approach testing from an EFSM by first finding a set of paths that satisfy a

given test criterion. It is important that these paths are feasible and so we would like to use

an optimization algorithm to guide search towards paths that are likely to be feasible. It is

also necessary to have a method that can guide a second search towards a test sequence to

trigger a given feasible path.

This paper addressed this problem by proposing the first integrated search-based

approach for automatically testing from EFSM models. The proposed approach uses two

techniques: (1) a TP fitness metric that can be utilized by an optimization algorithm to

guide search towards paths that are likely to be feasible and that satisfy a give test criterion

such as the transition coverage. The proposed TP fitness metric is based on analyzing the

data dependencies in a TP. (2) A test sequence fitness function that can guide a search for

the required test sequence to exercise a given feasible TP. The proposed fitness function

treats transitions in an EFSM model as a set of functions and the problem of test sequence

generation is a search for a suitable test sequence to be applied to a set of functions that are

called in a sequence. The fitness of a test sequence has two components: the function

distance that measures how close a given input for a particular transition was to execute

this transition and the function approach level which determines how far the whole set of

path inputs was to reach the target (executing the last transition in a path).

We carried out experiments using five EFSMs with the aim of evaluating the proposed

approach. A total of 123 transition paths were generated using the proposed fitness metric

and 123 paths were randomly generated for the purpose of comparison. For each path,

three test sequence generation methods were applied: the proposed technique (ET-1), the

alternative technique from the literature (ET-2) and a random generator (Rand).

Experimental results showed that the proposed fitness metric successfully guided an EA

search towards paths that are feasible with an accuracy rate of approximately 96.75 %. The

remaining 3.25 % of paths were found to be infeasible due to a counter. The random path

generator showed that the considered EFSMs are non trivial since 61.8 % of the randomly

generated paths were infeasible. Furthermore, the proposed test sequence generation

technique was found to be effective and successfully triggered all of the generated feasible

paths. This was not the case with the other two techniques, the success rates being

approximately 73.92 % for ET-2 and 42.86 % for Rand test generation.

Further research will focus on refining the TP fitness metric approach to overcome the

counter problem. This can be achieved by determining which other transitions are involved

and how many times they must be called [41]. Once this can be automatically determined,

the test adequacy criterion can be adapted so that it includes these required extra

transitions that affect the counter variable. It would also be interesting to investigate how

different penalty values can affect the TP fitness metric efficiency of guiding the search

towards paths that are likely to be feasible.

References:

[1]. Korel, B., Automated software test data generation. Software Engineering, IEEE Transactions on,

1990. 16(8): p. 870-879.

[2]. McMinn, P., Search-based software test data generation: a survey: Research Articles. Software

Testing, Verification & Reliability, 2004. 14(2): p. 105-156.

[3]. Harman, M. Automated Test Data Generation using Search Based Software Engineering. in

Automation of Software Test , 2007. AST '07. Second International Workshop on. 2007.

[4]. Michael, C.C., G. McGraw, and M.A. Schatz, Generating software test data by evolution. Software

Engineering, IEEE Transactions on, 2001. 27(12): p. 1085-1110.

[5]. Petrenko, A., S. Boroday, and R. Groz, Confirming configurations in EFSM testing. Software

Engineering, IEEE Transactions on, 2004. 30(1): p. 29-42.

[6]. Hierons, R.M., T.-H. Kim, and H. Ural, On the testability of SDL specifications. Computer Networks,

2004. 44(5): p. 681-700.

[7]. Duale, A.Y. and M.U. Uyar, A method enabling feasible conformance test sequence generation for

EFSM models. Computers, IEEE Transactions on, 2004. 53(5): p. 614-627.

[8]. Duale, A.Y., M.U. Uyar, B.D. McClure, and S. Chamberlain. Conformance testing: towards refining

VHDL specifications. in Military Communications Conference Proceedings, 1999. MILCOM 1999.

IEEE. 1999.

[9]. Ural, H. and B. Yang, A test sequence selection method for protocol testing. Communications, IEEE

Transactions on, 1991. 39(4): p. 514-523.

[10]. Hierons, R.M., Separating sequence overlap for automated test sequence generation. Automated

Software Engineering., 2006. 13(2): p. 283-301.

[11]. Derderian, K., R.M. Hierons, M. Harman, and Q. Guo, Automated Unique Input Output Sequence

Generation for Conformance Testing of FSMs. The Computer Journal, 2006. 49(3): p. 331-344.

[12]. Lai, R., A survey of communication protocol testing. Journal of Systems and Software, 2002. 62(1): p.

21-46.

[13]. Lee, D. and M. Yannakakis, Principles and methods of testing finite state machines-a survey.

Proceedings of the IEEE, 1996. 84(8): p. 1090-1123.

[14]. Hierons, R.M. and M. Harman, Testing conformance of a deterministic implementation against a non-

deterministic stream X-machine. Theoretical Computer Science, 2004. 323(1-3): p. 191-233.

[15]. Kalaji, A.S., R.M. Hierons, and S. Swift. Generating Feasible Transition Paths for Testing from an

Extended Finite State Machine (EFSM). in Software Testing, Verification, and Validation (ICST), 2009

2nd International IEEE Conference on. 2009. Denver, Colorado - USA: IEEE.

[16]. Ramalingom, T., K. Thulasiraman, and A. Das, Context independent unique state identification

sequences for testing communication protocols modelled as extended finite state machines. Computer

Communications, 2003. 26(14): p. 1622-1633.

[17]. Shih, C.-H., J.-D. Huang, and J.-Y. Jou. Stimulus generation for interface protocol verification using

the nondeterministic extended finite state machine model. in High-Level Design Validation and Test

Workshop, 2005. Tenth IEEE International. 2005.

[18]. Bochmann, G.V., Specifications of a simplified transport protocol using different formal description

techniques. Computer Networks and ISDN Systems, 1990. 18(5): p. 335-377.

[19]. Korel, B., L.H. Tahat, and B. Vaysburg. Model based regression test reduction using dependence

analysis. in Software Maintenance, 2002. Proceedings. International Conference on. 2002: IEEE.

[20]. Hogrefe, D., OSI formal specification case study: the Inres protocol and service. Technical Report

IAM-91-012. 1991, University of Bern, Institute of Computer Science and Applied Methematics. p. 5.

[21]. Tai, K.-C., A program complexity metric based on data flow information in control graphs, in

Proceedings of the 7th international conference on Software engineering. 1984, IEEE Press: Orlando,

Florida, United States.

[22]. Weiser, M., Program slicing, in Proceedings of the 5th international conference on Software

engineering. 1981, IEEE Press: San Diego, California, United States.

[23]. Holland, J.H., Adaptation in natural and artificial systems. 1992, Cambridge, MA: MIT Press. 211.

[24]. Yao, X. Global optimisation by evolutionary algorithms. in Parallel Algorithms/Architecture

Synthesis, 1997. Proceedings. Second Aizu International Symposium. 1997.

[25]. Srinivas, M. and L.M. Patnaik, Genetic algorithms: a survey. Computer, 1994. 27(6): p. 17-26.

[26]. Baresel, A., D. Binkley, M. Harman, and B. Korel, Evolutionary testing in the presence of loop-

assigned flags: a testability transformation approach, in Proceedings of the 2004 ACM SIGSOFT

international symposium on Software testing and analysis. 2004, ACM: Boston, Massachusetts, USA.

[27]. Tracey, N., J. Clark, K. Mander, and J. McDermid. An automated framework for structural test-data

generation. in Automated Software Engineering, 1998. Proceedings. 13th IEEE International

Conference on. 1998.

[28]. Wegener, J., A. Baresel, and H. Sthamer, Evolutionary test environment for automatic structural

testing. Information and Software Technology, 2001. 43(14): p. 841-854.

[29]. Derderian, K., R.M. Hierons, M. Harman, and Q. Guo, Generating feasible input sequences for

extended finite state machines (EFSMs) using genetic algorithms, in Proceedings of the 2005

conference on Genetic and evolutionary computation. 2005, ACM: Washington DC, USA.

[30]. Kalaji, A.S., R.M. Hierons, and S. Swift. A Search-Based Approach for Automatic Test Generation

from Extended Finite State Machine (EFSM). in Testing: Academia & Industry Conference - Practice

And Research Techniques (TAIC-PART 2009). 2009. Windsor, UK: IEEE.

[31]. Lefticaru, R. and F. Ipate, Functional Search-based Testing from State Machines, in Proceedings of the

2008 International Conference on Software Testing, Verification, and Validation. 2008, IEEE

Computer Society.

[32]. Pohlheim, H. GEATbx - Genetic and Evolutionary Algorithm Toolbox for Matlab. 1994-2008 [cited;

Available from: http://www.geatbx.com.

[33]. Chanson, S.T. and J. Zhu. A unified approach to protocol test sequence generation. in INFOCOM '93.

Proceedings.Twelfth Annual Joint Conference of the IEEE Computer and Communications Societies.

Networking: Foundation for the Future. IEEE. 1993.

[34]. Cheng, K.-T. and A.S. Krishnakumar, Automatic generation of functional vectors using the extended

finite state machine model. ACM Transactions on Design Automation of Electronic Systems., 1996.

1(1): p. 57-79.

[35]. Dahbura, T.A., K.K. Sabnani, and M.U. Uyar, Formal methods for generating protocol conformance

test sequences. Proceedings of the IEEE, 1990. 78(8): p. 1317-1326.

http://www.geatbx.com/

[36]. Petrenko, A., G.v. Bochmann, and M. Yao, On fault coverage of tests for finite state specifications.

Computer Networks and ISDN Systems, 1996. 29(1): p. 81-106.

[37]. Ramalingom, T., K. Thulasiraman, and A. Das. Context independent unique sequences generation for

protocol testing. in INFOCOM '96. Fifteenth Annual Joint Conference of the IEEE Computer

Societies. Networking the Next Generation. Proceedings IEEE. 1996.

[38]. Sarikaya, B., G.v. Bochmann, and E. Cerny, A Test Design Methodology for Protocol Testing.

Software Engineering, IEEE Transactions on, 1987. SE-13(5): p. 518-531.

[39]. Budkowski, S. and P. Dembinski, An introduction to Estelle: a specification language for distributed

systems. Computer Networks and ISDN Systems., 1987. 14(1): p. 3-23.

[40]. Bourhfir, C., R. Dssouli, and E.M. Aboulhamid, Automatic Test Generation for EFSM-based Systems.

Technical report. 1996, University of Montreal, TR-1043. p. 1-59.

[41]. Kalaji, A.S., R.M. Hierons, and S. Swift. A Testability Transformation Approach for State-Based

Programs. in Search Based Software Engineering, 2009 1st International Symposium on. 2009.

Windsor, UK: IEEE.

Appendix –A: Subject Transition Paths

This appendix reports the subject transition paths for each EFSM case study. Each table

shows the subject paths that were generated by (1) the EA search that implements the

proposed TP fitness metric and (2) the random path generator.

Table A-1. Two sets of subject paths for the in-flight EFSM
Path ID Subject paths Fitness Params.

TP1-1-EA t0(),t1(p1,p2,p3,p4),t6(),t8(p5,p6,p7,p8),t12(),t8(p9,p10,p11,p12),t14(),t22(p13,p14,p15,p16),t24(),t22(p17,p18,p19,p20) 72 20

TP1-1-RA t0(),t1(p1,p2,p3,p4),t2(),t1(p5,p6,p7,p8),t2(),t1(p9,p10,p11,p12),t2(),t1(p13,p14,p15,p16),t2(),t1(p17,p18,p19,p20) 288 20

TP1-2-EA t0(),t1(p1,p2,p3,p4),t2(),t1(p5,p6,p7,p8),t30(),t22(p9,p10,p11,p12),t18(),t8(p13,p14,p15,p16),t11(),t8(p17,p18,p19,p20) 180 20

TP1-2-RA t0(),t1(p1,p2,p3,p4),t2(),t1(p5,p6,p7,p8),t2(),t1(p9,p10,p11,p12),t28(),t22(p13,p14,p15,p16),t18(),t8(p17,p18,p19,p20) 234 20

TP1-3-EA t0(),t1(p1,p2,p3,p4),t3(),t8(p5,p6,p7,p8),t9(),t8(p9,p10,p11,p12),t9(),t8(p13,p14,p15,p16),t9(),t8(p17,p18,p19,p20) 72 20

TP1-3-RA t0(),t28(),t22(p1,p2,p3,p4),t18(),t11(),t8(p5,p6,p7,p8),t16(),t31(),t3(),t8(p9,p10,p11,p12) 40198 12

TP1-4-EA t0(),t1(p1,p2,p3,p4),t4(),t8(p5,p6,p7,p8),t9(),t8(p9,p10,p11,p12),t10(),t8(p13,p14,p15,p16),t9(),t8(p17,p18,p19,p20) 72 20

TP1-4-RA t0(),t1(p1,p2,p3,p4),t29(),t24(),t31(),t4(),t12(),t13(),t22(p5,p6,p7,p8),t21() 41246 8

TP1-5-EA t0(),t1(p1,p2,p3,p4),t5(),t8(p5,p6,p7,p8),t9(),t8(p9,p10,p11,p12),t16(),t22(p13,p14,p15,p16),t24(),t22(p17,p18,p19,p20) 72 20

TP1-5-RA t0(),t1(p1,p2,p3,p4),t29(),t21(),t13(),t24(),t31(),t5(),t8(p5,p6,p7,p8),t16() 41246 8

TP1-6-EA t0(),t1(p1,p2,p3,p4),t6(),t8(p5,p6,p7,p8),t9(),t8(p9,p10,p11,p12),t10(),t8(p13,p14,p15,p16),t13(),t22(p17,p18,p19,p20) 72 20

TP1-6-RA t0(),t1(p1,p2,p3,p4),t6(),t8(p5,p6,p7,p8),t8(p9,p10,p11,p12),t12(),t8(p13,p14,p15,p16),t12(),t10(),t13() 30090 16

TP1-7-EA t0(),t1(p1,p2,p3,p4),t6(),t8(p5,p6,p7,p8),t10(),t8(p9,p10,p11,p12),t11(),t8(p13,p14,p15,p16),t7(),t1(p17,p18,p19,p20) 126 20

TP1-7-RA t0(),t1(p1,p2,p3,p4),t6(),t8(p5,p6,p7,p8),t7(),t1(p9,p10,p11,p12),t2(),t1(p13,p14,p15,p16),t2(),t1(p17,p18,p19,p20) 234 20

TP1-8-EA t0(),t1(p1,p2,p3,p4),t6(),t8(p5,p6,p7,p8),t10(),t8(p9,p10,p11,p12),t12(),t8(p13,p14,p15,p16),t11(),t8(p17,p18,p19,p20) 72 20

TP1-8-RA t0(),t2(),t28(),t21(),t8(p1,p2,p3,p4),t13(),t22(p5,p6,p7,p8),t25(),t22(p9,p10,p11,p12),t22(p13,p14,p15,p16) 40042 16

TP1-9-EA t0(),t1(p1,p2,p3,p4),t6(),t8(p5,p6,p7,p8),t9(),t8(p9,p10,p11,p12),t9(),t8(p13,p14,p15,p16),t9(),t8(p17,p18,p19,p20) 72 20

TP1-9-RA t0(),t2(),t29(),t23(),t22(p1,p2,p3,p4),t17(),t8(p5,p6,p7,p8),t9(),t8(p9,p10,p11,p12),t12() 30108 12

TP1-10-EA t0(),t1(p1,p2,p3,p4),t4(),t8(p5,p6,p7,p8),t9(),t8(p9,p10,p11,p12),t9(),t8(p13,p14,p15,p16),t10(),t8(p17,p18,p19,p20) 72 20

TP1-10-RA t0(),t2(),t1(p1,p2,p3,p4),t28(),t22(p5,p6,p7,p8),t31(),t29(),t22(p9,p10,p11,p12),t21(),t10() 30204 12

TP1-11-EA t0(),t1(p1,p2,p3,p4),t4(),t8(p5,p6,p7,p8),t11(),t8(p9,p10,p11,p12),t11(),t8(p13,p14,p15,p16),t9(),t8(p17,p18,p19,p20) 72 20

TP1-11-RA t0(),t3(),t11(),t8(p1,p2,p3,p4),t11(),t8(p5,p6,p7,p8),t10(),t10(),t11(),t8(p9,p10,p11,p12) 40072 12

TP1-12-EA t0(),t1(p1,p2,p3,p4),t6(),t8(p5,p6,p7,p8),t10(),t8(p9,p10,p11,p12),t12(),t8(p13,p14,p15,p16),t9(),t8(p17,p18,p19,p20) 72 20

TP1-12-RA t0(),t30(),t22(p1,p2,p3,p4),t17(),t8(p5,p6,p7,p8),t8(p9,p10,p11,p12),t12(),t12(),t8(p13,p14,p15,p16),t7() 30180 16

TP1-13-EA t0(),t1(p1,p2,p3,p4),t3(),t8(p5,p6,p7,p8),t13(),t22(p9,p10,p11,p12),t24(),t22(p13,p14,p15,p16),t24(),t22(p17,p18,p19,p20) 72 20

TP1-13-RA t0(),t1(p1,p2,p3,p4),t27(),t17(),t13(),t22(p5,p6,p7,p8),t26(),t19(),t8(p9,p10,p11,p12),t13() 30228 12

TP1-14-EA t0(),t1(p1,p2,p3,p4),t5(),t8(p5,p6,p7,p8),t12(),t8(p9,p10,p11,p12),t14(),t22(p13,p14,p15,p16),t19(),t8(p17,p18,p19,p20) 126 20

TP1-14-RA t0(),t30(),t22(p1,p2,p3,p4),t22(p5,p6,p7,p8),t31(),t5(),t8(p9,p10,p11,p12),t14(),t31(),t1(p13,p14,p15,p16) 40180 16

TP1-15-EA t0(),t1(p1,p2,p3,p4),t5(),t8(p5,p6,p7,p8),t9(),t8(p9,p10,p11,p12),t15(),t22(p13,p14,p15,p16),t24(),t22(p17,p18,p19,p20) 78 20

TP1-15-RA t0(),t5(),t8(p1,p2,p3,p4),t11(),t15(),t23(),t22(p5,p6,p7,p8),t24(),t24(),t22(p9,p10,p11,p12) 40102 12

TP1-16-EA t0(),t1(p1,p2,p3,p4),t6(),t8(p5,p6,p7,p8),t10(),t8(p9,p10,p11,p12),t16(),t22(p13,p14,p15,p16),t21(),t8(p17,p18,p19,p20) 126 20

TP1-16-RA t0(),t6(),t10(),t10(),t8(p1,p2,p3,p4),t14(),t22(p5,p6,p7,p8),t18(),t8(p9,p10,p11,p12),t16() 30108 12

TP1-17-EA t0(),t1(p1,p2,p3,p4),t3(),t8(p5,p6,p7,p8),t13(),t22(p9,p10,p11,p12),t17(),t8(p13,p14,p15,p16),t12(),t8(p17,p18,p19,p20) 126 20

TP1-17-RA t0(),t1(p1,p2,p3,p4),t29(),t22(p5,p6,p7,p8),t17(),t8(p9,p10,p11,p12),t9(),t12(),t9(),t7() 30222 12

TP1-18-EA t0(),t1(p1,p2,p3,p4),t3(),t8(p5,p6,p7,p8),t13(),t22(p9,p10,p11,p12),t18(),t8(p13,p14,p15,p16),t13(),t22(p17,p18,p19,p20) 126 20

TP1-18-RA t0(),t27(),t22(p1,p2,p3,p4),t24(),t22(p5,p6,p7,p8),t20(),t8(p9,p10,p11,p12),t10(),t15(),t18() 30204 12

TP1-19-EA t0(),t1(p1,p2,p3,p4),t3(),t8(p5,p6,p7,p8),t14(),t22(p9,p10,p11,p12),t19(),t8(p13,p14,p15,p16),t9(),t8(p17,p18,p19,p20) 126 20

TP1-19-RA t0(),t2(),t28(),t22(p1,p2,p3,p4),t18(),t8(p5,p6,p7,p8),t16(),t19(),t8(p9,p10,p11,p12),t15() 30186 12

TP1-20-EA t0(),t1(p1,p2,p3,p4),t4(),t8(p5,p6,p7,p8),t16(),t22(p9,p10,p11,p12),t20(),t8(p13,p14,p15,p16),t9(),t8(p17,p18,p19,p20) 126 20

TP1-20-RA t0(),t1(p1,p2,p3,p4),t1(p5,p6,p7,p8),t28(),t26(),t20(),t8(p9,p10,p11,p12),t11(),t7(),t1(p13,p14,p15,p16) 40198 16

TP1-21-EA t0(),t1(p1,p2,p3,p4),t5(),t8(p5,p6,p7,p8),t13(),t22(p9,p10,p11,p12),t21(),t8(p13,p14,p15,p16),t16(),t22(p17,p18,p19,p20) 126 20

TP1-21-RA t0(),t1(p1,p2,p3,p4),t28(),t21(),t16(),t22(p5,p6,p7,p8),t18(),t15(),t17(),t8(p9,p10,p11,p12) 40276 12

TP1-22-EA t0(),t1(p1,p2,p3,p4),t28(),t22(p5,p6,p7,p8),t26(),t22(p9,p10,p11,p12),t24(),t22(p13,p14,p15,p16),t24(),t22(p17,p18,p19,p20) 72 20

TP1-22-RA t0(),t28(),t17(),t15(),t19(),t8(p1,p2,p3,p4),t9(),t8(p5,p6,p7,p8),t13(),t22(p9,p10,p11,p12) 40036 12

TP1-23-EA t0(),t1(p1,p2,p3,p4),t30(),t22(p5,p6,p7,p8),t24(),t22(p9,p10,p11,p12),t24(),t22(p13,p14,p15,p16),t23(),t22(p17,p18,p19,p20) 78 20

TP1-23-RA t0(),t3(),t16(),t22(p1,p2,p3,p4),t23(),t22(p5,p6,p7,p8),t20(),t10(),t8(p9,p10,p11,p12),t9() 30132 12

TP1-24-EA t0(),t1(p1,p2,p3,p4),t5(),t8(p5,p6,p7,p8),t14(),t22(p9,p10,p11,p12),t24(),t22(p13,p14,p15,p16),t26(),t22(p17,p18,p19,p20) 72 20

TP1-24-RA t0(),t1(p1,p2,p3,p4),t29(),t22(p5,p6,p7,p8),t22(p9,p10,p11,p12),t23(),t25(),t24(),t22(p13,p14,p15,p16),t18() 30162 16

TP1-25-EA t0(),t1(p1,p2,p3,p4),t28(),t22(p5,p6,p7,p8),t24(),t22(p9,p10,p11,p12),t25(),t22(p13,p14,p15,p16),t26(),t22(p17,p18,p19,p20) 78 20

TP1-25-RA t0(),t29(),t22(p1,p2,p3,p4),t25(),t17(),t14(),t22(p5,p6,p7,p8),t31(),t30(),t22(p9,p10,p11,p12) 40204 12

TP1-26-EA t0(),t1(p1,p2,p3,p4),t30(),t22(p5,p6,p7,p8),t26(),t22(p9,p10,p11,p12),t24(),t22(p13,p14,p15,p16),t26(),t22(p17,p18,p19,p20) 72 20

TP1-26-RA t0(),t1(p1,p2,p3,p4),t27(),t22(p5,p6,p7,p8),t19(),t12(),t12(),t8(p9,p10,p11,p12),t16(),t26() 30168 12

TP1-27-EA t0(),t1(p1,p2,p3,p4),t27(),t22(p5,p6,p7,p8),t26(),t22(p9,p10,p11,p12),t26(),t22(p13,p14,p15,p16),t26(),t22(p17,p18,p19,p20) 78 20

TP1-27-RA t0(),t1(p1,p2,p3,p4),t27(),t31(),t1(p5,p6,p7,p8),t30(),t22(p9,p10,p11,p12),t17(),t12(),t16() 30222 12

TP1-28-EA t0(),t1(p1,p2,p3,p4),t28(),t22(p5,p6,p7,p8),t24(),t22(p9,p10,p11,p12),t26(),t22(p13,p14,p15,p16),t26(),t22(p17,p18,p19,p20) 72 20

TP1-28-RA t0(),t4(),t13(),t22(p1,p2,p3,p4),t17(),t8(p5,p6,p7,p8),t7(),t28(),t22(p9,p10,p11,p12),t26() 30180 12

TP1-29-EA t0(),t1(p1,p2,p3,p4),t29(),t22(p5,p6,p7,p8),t26(),t22(p9,p10,p11,p12),t26(),t22(p13,p14,p15,p16),t26(),t22(p17,p18,p19,p20) 78 20

TP1-29-RA t0(),t1(p1,p2,p3,p4),t29(),t18(),t9(),t8(p5,p6,p7,p8),t15(),t22(p9,p10,p11,p12),t25(),t22(p13,p14,p15,p16) 20162 16

TP1-30-EA t0(),t1(p1,p2,p3,p4),t30(),t22(p5,p6,p7,p8),t21(),t8(p9,p10,p11,p12),t9(),t8(p13,p14,p15,p16),t9(),t8(p17,p18,p19,p20) 126 20

TP1-30-RA t0(),t1(p1,p2,p3,p4),t1(p5,p6,p7,p8),t30(),t22(p9,p10,p11,p12),t26(),t18(),t14(),t20(),t8(p13,p14,p15,p16) 40198 16

TP1-31-EA t0(),t1(p1,p2,p3,p4),t3(),t8(p5,p6,p7,p8),t13(),t22(p9,p10,p11,p12),t31(),t1(p13,p14,p15,p16),t3(),t8(p17,p18,p19,p20) 126 20

TP1-31-RA t0(),t1(p1,p2,p3,p4),t29(),t22(p5,p6,p7,p8),t26(),t26(),t26(),t31(),t1(p9,p10,p11,p12),t30() 30168 12

Table A-2. Two sets of subject paths for the class II transport protocol EFSM

Path ID Subject paths Fitness Params.

TP2-0-EA t0(p0),t4(),t0(p1),t4(),t1(p2,p3),t6(),t18(),t1(p4,p5),t6(),t18() 0 6

TP2-0-RA t0(p0),t2(p1,p2),t12(p3,p4),t14(p5,p6),t17(),t18(),t1(p7,p8),t6(),t18(),t0(p9) 7 10

TP2-1-EA t1(p0,p1),t6(),t18(),t1(p2,p3),t6(),t18(),t1(p4,p5),t6(),t18(),t1(p6,p7) 0 8

TP2-1-RA t1(p0,p1),t5(p2),t14(p3,p4),t8(p5),t16(),t20(),t0(p6),t3(p7,p8),t20(),t1(p9,p10) 10070 11

TP2-2-EA t1(p0,p1),t6(),t18(),t1(p2,p3),t6(),t18(),t0(p4),t2(p5,p6),t17(),t18(), 4 7

TP2-2-RA t0(p0),t2(p1,p2),t11(p3,p4),t8(p5),t16(),t20(),t0(p6),t4(),t1(p7,p8),t5(p9) 10068 10

TP2-3-EA t1(p0,p1),t6(),t18(),t0(p2),t3(p3,p4),t19(),t0(p5),t4(),t1(p6,p7),t6() 6 8

TP2-3-RA t0(p0),t3(p1,p2),t19(),t1(p3,p4),t5(p5),t13(p6,p7),t7(),t9(p8),t10(p9),t16() 82 10

TP2-4-EA t1(p0,p1),t6(),t18(),t1(p2,p3),t6(),t18(),t0(p4),t4(),t0(p5),t4() 0 6

TP2-4-RA t0(p0),t4(),t0(p1),t3(p2,p3),t19(),t0(p4),t2(p5,p6),t8(p7),t14(p8,p9),t16() 10070 10

TP2-5-EA t1(p0,p1),t5(p2),t16(),t19(),t1(p3,p4),t6(),t18(),t1(p5,p6),t6(),t18() 4 7

TP2-5-RA t1(p0,p1),t6(),t18(),t1(p2,p3),t5(p4),t12(p5,p6),t17(),t18(),t1(p7,p8),t6() 34 9

TP2-6-EA t0(p0),t4(),t1(p1,p2),t6(),t18(),t0(p3),t4(),t0(p4),t4(),t0(p5) 0 6

TP2-6-RA t1(p0,p1),t6(),t18(),t1(p2,p3),t6(),t18(),t0(p4),t2(p5,p6),t16(),t20() 4 7

TP2-7-EA t0(p0),t4(),t1(p1,p2),t6(),t18(),t1(p3,p4),t5(p5),t7(),t17(),t18() 28 6

TP2-7-RA t0(p0),t2(p1,p2),t7(),t7(),t14(p3,p4),t12(p5,p6),t14(p7,p8),t14(p9,p10),t15(),t11(p11,p12) 910 13

TP2-8-EA t1(p0,p1),t5(p2),t10(p3),t8(p4),t16(),t19(),t1(p5,p6),t6(),t18(),t1(p7,p8) 40 9

TP2-8-RA t0(p0),t3(p1,p2),t20(),t1(p3,p4),t6(),t18(),t1(p5,p6),t5(p7),t9(p8),t8(p9) 10040 10

TP2-9-EA t1(p0,p1),t6(),t18(),t0(p2),t4(),t0(p3),t4(),t0(p4),t2(p5,p6),t9(p7) 10 8

TP2-9-RA t0(p0),t2(p1,p2),t7(),t15(),t7(),t8(p3),t9(p4),t11(p5,p6),t17(),t18() 10496 7

TP2-10-EA t1(p0,p1),t6(),t18(),t0(p2),t2(p3,p4),t10(p5),t17(),t18(),t1(p6,p7),t6() 4 8

TP2-10-RA t1(p0,p1),t5(p2),t8(p3),t15(),t10(p4),t10(p5),t7(),t13(p6,p7),t12(p8,p9),t15() 10358 10

TP2-11-EA t1(p0,p1),t6(),t18(),t0(p2),t2(p3,p4),t10(p5),t11(p6,p7),t17(),t18(),t1(p8,p9) 40 10

TP2-11-RA t1(p0,p1),t5(p2),t15(),t15(),t12(p3,p4),t11(p5,p6),t13(p7,p8),t17(),t18(),t1(p9,p10) 160 11

TP2-12-EA t1(p0,p1),t6(),t18(),t0(p2),t2(p3,p4),t12(p5,p6),t16(),t19(),t1(p7,p8),t6() 34 9

TP2-12-RA t0(p0),t2(p1,p2),t10(p3),t7(),t8(p4),t8(p5),t11(p6,p7),t12(p8,p9),t11(p10,p11),t12(p12,p13) 772 14

TP2-13-EA t0(p0),t4(),t1(p1,p2),t6(),t18(),t1(p3,p4),t5(p5),t13(p6,p7),t17(),t18() 46 8

TP2-13-RA t0(p0),t2(p1,p2),t13(p3,p4),t7(),t7(),t7(),t12(p5,p6),t11(p7,p8),t12(p9,p10),t11(p11,p12) 834 13

TP2-14-EA t0(p0),t4(),t0(p1),t4(),t1(p2,p3),t6(),t18(),t1(p4,p5),t5(p6),t14(p7,p8) 40 9

TP2-14-RA t0(p0),t2(p1,p2),t15(),t7(),t14(p3,p4),t12(p5,p6),t17(),t18(),t0(p7),t4() 306 8

TP2-15-EA t1(p0,p1),t6(),t18(),t0(p2),t2(p3,p4),t15(),t16(),t19(),t1(p5,p6),t6() 28 7

TP2-15-RA t0(p0),t3(p1,p2),t19(),t1(p3,p4),t6(),t18(),t1(p5,p6),t5(p7),t8(p8),t15() 10058 9

TP2-16-EA t1(p0,p1),t6(),t18(),t1(p2,p3),t6(),t18(),t1(p4,p5),t5(p6),t16(),t19() 4 7

TP2-16-RA t1(p0,p1),t5(p2),t16(),t20(),t0(p3),t2(p4,p5),t10(p6),t9(p7),t7(),t17() 68 8

TP2-17-EA t1(p0,p1),t6(),t18(),t1(p2,p3),t6(),t18(),t1(p4,p5),t5(p6),t17(),t18() 4 7

TP2-17-RA t0(p0),t2(p1,p2),t8(p3),t14(p4,p5),t15(),t16(),t20(),t1(p6,p7),t5(p8),t17() 10092 9

TP2-18-EA t1(p0,p1),t6(),t18(),t1(p2,p3),t6(),t18(),t1(p4,p5),t6(),t18(),t1(p6,p7) 0 8

TP2-18-RA t0(p0),t4(),t0(p1),t4(),t0(p2),t4(),t1(p3,p4),t5(p5),t17(),t18() 4 6

TP2-19-EA t1(p0,p1),t6(),t18(),t0(p2),t2(p3,p4),t16(),t19(),t0(p5),t4(),t0(p6) 4 7

TP2-19-RA t1(p0,p1),t5(p2),t17(),t18(),t0(p3),t3(p4,p5),t19(),t0(p6),t4(),t0(p7) 10 8

TP2-20-EA t1(p0,p1),t6(),t18(),t0(p2),t2(p3,p4),t16(),t20(),t0(p5),t4(),t1(p6,p7) 4 8

TP2-20-RA t1(p0,p1),t5(p2),t17(),t18(),t0(p3),t3(p4,p5),t20(),t0(p6),t3(p7,p8),t19() 16 9

Table A-3. Two sets of subject paths for the Lift system EFSM

Path ID Subject paths Fitness Params.

TP3-0-EA t0(),t1(p1),t2(p2,p3),t1(p4),t2(p5,p6),t1(p7),t2(p8,p9),t1(p10),t2(p11,p12),t1(p13) 72 13

TP3-0-RA t0(),t1(p1),t19(p2,p3,p4),t21(p5),t8(p6,p7),t4(p8,p9,p10),t19(p11,p12,p13),t21(p14),t7(p15),t22(p16,p17,p18) 40214 18

TP3-1-EA t0(),t1(p1),t2(p2,p3),t1(p4),t2(p5,p6),t1(p7),t2(p8,p9),t1(p10),t2(p11,p12),t1(p13) 72 13

TP3-1-RA t0(),t17(p1,p2,p3),t13(p4),t13(p5),t14(p6,p7),t11(p8,p9,p10),t6(p11,p12,p13),t1(p14),t1(p15),t5(p16,p17,p18) 30242 18

TP3-2-EA t0(),t1(p1),t2(p2,p3),t1(p4),t2(p5,p6),t1(p7),t2(p8,p9),t1(p10),t2(p11,p12),t1(p13) 72 13

TP3-2-RA t0(),t2(p1,p2),t16(p3,p4,p5),t13(p6),t23(p7,p8,p9),t20(p10),t2(p11,p12),t19(p13,p14,p15),t24(p16),t11(p17,p18,p19) 40214 19

TP3-3-EA t0(),t1(p1),t2(p2,p3),t3(p4,p5,p6),t7(p7),t8(p8,p9),t7(p10),t8(p11,p12),t7(p13),t8(p14,p15) 110 15

TP3-3-RA t0(),t3(p1,p2,p3),t7(p4),t8(p5,p6),t22(p7,p8,p9),t20(p10),t2(p11,p12),t1(p13),t1(p14),t17(p15,p16,p17) 40184 17

TP3-4-EA t0(),t5(p1,p2,p3),t7(p4),t8(p5,p6),t7(p7),t8(p8,p9),t7(p10),t8(p11,p12),t4(p13,p14,p15),t1(p16) 130 16

TP3-4-RA t0(),t5(p1,p2,p3),t4(p4,p5,p6),t2(p7,p8),t19(p9,p10,p11),t24(p12),t14(p13,p14),t11(p15,p16,p17),t7(p18),t8(p19,p20) 30204 20

TP3-5-EA t0(),t5(p1,p2,p3),t7(p4),t8(p5,p6),t7(p7),t8(p8,p9),t7(p10),t8(p11,p12),t7(p13),t8(p14,p15) 92 15

TP3-5-RA t0(),t1(p1),t5(p2,p3,p4),t8(p5,p6),t9(p7,p8,p9),t14(p10,p11),t14(p12,p13),t15(p14,p15,p16),t1(p17),t2(p18,p19) 30168 19

TP3-6-EA t0(),t5(p1,p2,p3),t6(p4,p5,p6),t1(p7),t2(p8,p9),t1(p10),t2(p11,p12),t1(p13),t2(p14,p15),t1(p16) 112 16

TP3-6-RA t0(),t19(p1,p2,p3),t24(p4),t14(p5,p6),t13(p7),t14(p8,p9),t11(p10,p11,p12),t7(p13),t6(p14,p15,p16),t2(p17,p18) 30196 18

TP3-7-EA t0(),t5(p1,p2,p3),t7(p4),t8(p5,p6),t7(p7),t8(p8,p9),t7(p10),t8(p11,p12),t7(p13),t8(p14,p15) 92 15

TP3-7-RA t0(),t5(p1,p2,p3),t22(p4,p5,p6),t24(p7),t11(p8,p9,p10),t12(p11,p12,p13),t13(p14),t14(p15,p16),t11(p17,p18,p19),t7(p20) 30206 20

TP3-8-EA t0(),t5(p1,p2,p3),t7(p4),t8(p5,p6),t7(p7),t8(p8,p9),t7(p10),t8(p11,p12),t7(p13),t8(p14,p15) 92 15

TP3-8-RA t0(),t2(p1,p2),t2(p3,p4),t3(p5,p6,p7),t22(p8,p9,p10),t21(p11),t8(p12,p13),t22(p14,p15,p16),t20(p17),t19(p18,p19,p20) 30232 20

TP3-9-EA t0(),t1(p1),t2(p2,p3),t19(p4,p5,p6),t21(p7),t9(p8,p9,p10),t13(p11),t14(p12,p13),t13(p14),t14(p15,p16) 152 16

TP3-9-RA t0(),t2(p1,p2),t19(p3,p4,p5),t21(p6),t9(p7,p8,p9),t23(p10,p11,p12),t20(p13),t16(p14,p15,p16),t11(p17,p18,p19),t7(p20) 20252 20

TP3-10-EA t0(),t1(p1),t2(p2,p3),t17(p4,p5,p6),t13(p7),t14(p8,p9),t10(p10,p11,p12),t7(p13),t8(p14,p15),t7(p16) 130 16

TP3-10-RA t0(),t19(p1,p2,p3),t24(p4),t14(p5,p6),t14(p7,p8),t14(p9,p10),t10(p11,p12,p13),t4(p14,p15,p16),t19(p17,p18,p19),t20(p20) 40214 20

TP3-11-EA t0(),t17(p1,p2,p3),t11(p4,p5,p6),t7(p7),t8(p8,p9),t7(p10),t8(p11,p12),t7(p13),t8(p14,p15),t7(p16) 112 16

TP3-11-RA t0(),t17(p1,p2,p3),t13(p4),t13(p5),t14(p6,p7),t23(p8,p9,p10),t21(p11),t8(p12,p13),t9(p14,p15,p16),t11(p17,p18,p19) 30192 19

TP3-12-EA t0(),t17(p1,p2,p3),t11(p4,p5,p6),t12(p7,p8,p9),t13(p10),t14(p11,p12),t13(p13),t14(p14,p15),t13(p16),t14(p17,p18) 132 18

TP3-12-RA t0(),t17(p1,p2,p3),t14(p4,p5),t14(p6,p7),t15(p8,p9,p10),t1(p11),t19(p12,p13,p14),t21(p15),t8(p16,p17),t12(p18,p19,p20) 40222 20

TP3-13-EA t0(),t17(p1,p2,p3),t13(p4),t14(p5,p6),t13(p7),t14(p8,p9),t13(p10),t14(p11,p12),t13(p13),t14(p14,p15) 92 15

TP3-13-RA t0(),t1(p1),t16(p2,p3,p4),t13(p5),t14(p6,p7),t14(p8,p9),t15(p10,p11,p12),t3(p13,p14,p15),t22(p16,p17,p18),t21(p19) 40210 19

TP3-14-EA t0(),t17(p1,p2,p3),t13(p4),t14(p5,p6),t13(p7),t14(p8,p9),t13(p10),t14(p11,p12),t13(p13),t14(p14,p15) 92 15

TP3-14-RA t0(),t2(p1,p2),t1(p3),t2(p4,p5),t19(p6,p7,p8),t24(p9),t14(p10,p11),t10(p12,p13,p14),t4(p15,p16,p17),t5(p18,p19,p20) 30210 20

TP3-15-EA t0(),t1(p1),t2(p2,p3),t1(p4),t2(p5,p6),t19(p7,p8,p9),t24(p10),t15(p11,p12,p13),t1(p14),t2(p15,p16) 152 16

TP3-15-RA t0(),t1(p1),t17(p2,p3,p4),t14(p5,p6),t23(p7,p8,p9),t21(p10),t7(p11),t22(p12,p13,p14),t24(p15),t15(p16,p17,p18) 40214 18

TP3-16-EA t0(),t1(p1),t2(p2,p3),t16(p4,p5,p6),t13(p7),t14(p8,p9),t13(p10),t14(p11,p12),t13(p13),t14(p14,p15) 110 15

TP3-16-RA t0(),t1(p1),t1(p2),t2(p3,p4),t16(p5,p6,p7),t10(p8,p9,p10),t22(p11,p12,p13),t20(p14),t19(p15,p16,p17),t21(p18) 10232 18

TP3-17-EA t0(),t17(p1,p2,p3),t13(p4),t14(p5,p6),t13(p7),t14(p8,p9),t13(p10),t14(p11,p12),t13(p13),t14(p14,p15) 92 15

TP3-17-RA t0(),t17(p1,p2,p3),t13(p4),t10(p5,p6,p7),t7(p8),t8(p9,p10),t6(p11,p12,p13),t3(p14,p15,p16),t7(p17),t8(p18,p19) 40182 19

TP3-18-EA t0(),t17(p1,p2,p3),t18(p4,p5,p6),t1(p7),t2(p8,p9),t1(p10),t2(p11,p12),t1(p13),t2(p14,p15),t1(p16) 112 16

TP3-18-RA t0(),t19(p1,p2,p3),t24(p4),t13(p5),t18(p6,p7,p8),t2(p9,p10),t16(p11,p12,p13),t23(p14,p15,p16),t24(p17),t13(p18) 30196 18

TP3-19-EA t0(),t1(p1),t2(p2,p3),t1(p4),t2(p5,p6),t19(p7,p8,p9),t24(p10),t13(p11),t14(p12,p13),t13(p14) 114 14

TP3-19-RA t0(),t2(p1,p2),t2(p3,p4),t19(p5,p6,p7),t21(p8),t7(p9),t8(p10,p11),t9(p12,p13,p14),t10(p15,p16,p17),t12(p18,p19,p20) 30210 20

TP3-20-EA t0(),t1(p1),t2(p2,p3),t1(p4),t2(p5,p6),t1(p7),t2(p8,p9),t19(p10,p11,p12),t20(p13),t1(p14) 114 14

TP3-20-RA t0(),t2(p1,p2),t1(p3),t5(p4,p5,p6),t8(p7,p8),t22(p9,p10,p11),t20(p12),t3(p13,p14,p15),t4(p16,p17,p18),t1(p19) 20240 19

TP3-21-EA t0(),t1(p1),t2(p2,p3),t1(p4),t2(p5,p6),t19(p7,p8,p9),t21(p10),t7(p11),t8(p12,p13),t7(p14) 114 14

TP3-21-RA t0(),t2(p1,p2),t19(p3,p4,p5),t21(p6),t6(p7,p8,p9),t2(p10,p11),t19(p12,p13,p14),t21(p15),t4(p16,p17,p18),t2(p19,p20) 40214 20

TP3-22-EA t0(),t1(p1),t2(p2,p3),t1(p4),t2(p5,p6),t19(p7,p8,p9),t21(p10),t22(p11,p12,p13),t24(p14),t13(p15) 156 15

TP3-22-RA t0(),t19(p1,p2,p3),t24(p4),t13(p5),t14(p6,p7),t11(p8,p9,p10),t22(p11,p12,p13),t21(p14),t22(p15,p16,p17),t20(p18) 30194 18

TP3-23-EA t0(),t17(p1,p2,p3),t13(p4),t14(p5,p6),t13(p7),t14(p8,p9),t23(p10,p11,p12),t24(p13),t13(p14),t14(p15,p16) 134 16

TP3-23-RA t0(),t1(p1),t2(p2,p3),t19(p4,p5,p6),t24(p7),t23(p8,p9,p10),t20(p11),t19(p12,p13,p14),t24(p15),t13(p16) 198 16

TP3-24-EA t0(),t1(p1),t2(p2,p3),t1(p4),t2(p5,p6),t19(p7,p8,p9),t24(p10),t13(p11),t14(p12,p13),t13(p14) 114 14

TP3-24-RA t0(),t2(p1,p2),t19(p3,p4,p5),t24(p6),t10(p7,p8,p9),t22(p10,p11,p12),t20(p13),t19(p14,p15,p16),t20(p17),t2(p18,p19) 20236 19

Table A-4. Two sets of subject paths for the ATM EFSM

Path ID Subject paths Fitness Params.

TP4-1-EA t1(),t4(p0),t6(p1),t25(),t26(),t7(),t9(),t8(),t10(),t25() 36 2

TP4-1-RA t1(),t4(p0),t5(p1),t23(p2),t1(),t4(p3),t6(p4),t8(),t17(p5),t22(p6) 120 7

TP4-2-EA t1(),t4(p0),t6(p1),t25(),t26(),t7(),t9(),t23(p2),t1(),t2(p3) 54 4

TP4-2-RA t1(),t3(p0),t1(),t4(p1),t24(p2),t1(),t2(p3),t3(p4),t1(),t4(p5) 10238 6

TP4-3-EA t1(),t2(p0),t3(p1),t1(),t4(p2),t5(p3),t7(),t9(),t8(),t10() 208 4

TP4-3-RA t1(),t2(p0),t3(p1),t1(),t2(p2),t3(p3),t1(),t4(p4),t24(p5),t1() 380 6

TP4-4-EA t1(),t4(p0),t6(p1),t8(),t10(),t25(),t26(),t25(),t26(),t7(), 36 2

TP4-4-RA t1(),t4(p0),t6(p1),t8(),t20(p2),t22(p3),t20(p4),t22(p5),t18(p6),t21(p7) 104 8

TP4-5-EA t1(),t4(p0),t5(p1),t7(),t9(),t25(),t26(),t25(),t26(),t25() 36 2

TP4-5-RA t1(),t2(p0),t3(p1),t1(),t4(p2),t5(p3),t25(),t28(p4,p5,p6),t30(p7),t28(p8,p9,p10) 414 11

TP4-6-EA t1(),t4(p0),t6(p1),t25(),t26(),t25(),t26(),t25(),t26(),t25(), 36 2

TP4-6-RA t1(),t2(p0),t3(p1),t1(),t3(p2),t1(),t4(p3),t6(p4),t7(),t13(p5) 10222 6

TP4-7-EA t1(),t4(p0),t5(p1),t25(),t26(),t7(),t9(),t8(),t10(),t8() 36 2

TP4-7-RA t1(),t3(p0),t1(),t3(p1),t1(),t4(p2),t5(p3),t7(),t14(p4),t15(p5) 20088 6

TP4-8-EA t1(),t4(p0),t5(p1),t8(),t10(),t7(),t9(),t25(),t26(),t7() 36 2

TP4-8-RA t1(),t4(p0),t6(p1),t8(),t10(),t7(),t11(p2),t15(p3),t9(),t8() 60 4

TP4-9-EA t1(),t4(p0),t6(p1),t25(),t26(),t25(),t26(),t7(),t9(),t25() 36 2

TP4-9-RA t1(),t4(p0),t6(p1),t7(),t12(p2),t15(p3),t9(),t8(),t10(),t25() 60 4

TP4-10-EA t1(),t4(p0),t6(p1),t8(),t10(),t25(),t26(),t25(),t26(),t25() 36 2

TP4-10-RA t1(),t2(p0),t3(p1),t1(),t4(p2),t6(p3),t8(),t20(p4),t22(p5),t10() 232 6

TP4-11-EA t1(),t4(p0),t5(p1),t25(),t26(),t7(),t11(p2),t16(p3),t9(),t25() 60 4

TP4-11-RA t1(),t3(p0),t1(),t3(p1),t1(),t4(p2),t6(p3),t7(),t11(p4),t15(p5) 20072 6

TP4-12-EA t1(),t4(p0),t5(p1),t7(),t12(p2),t15(p3),t9(),t8(),t10(),t8() 60 4

TP4-12-RA t1(),t4(p0),t6(p1),t7(),t13(p2),t16(p3),t11(p4),t16(p5),t12(p6),t15(p7) 104 8

TP4-13-EA t1(),t4(p0),t6(p1),t7(),t9(),t7(),t13(p2),t16(p3),t9(),t8() 56 4

TP4-13-RA t1(),t2(p0),t4(p1),t5(p2),t7(),t14(p3),t15(p4),t13(p5),t15(p6),t14(p7) 270 8

TP4-14-EA t1(),t4(p0),t6(p1),t7(),t14(p2),t16(p3),t9(),t8(),t10(),t25() 76 4

TP4-14-RA t1(),t2(p0),t4(p1),t5(p2),t25(),t26(),t7(),t14(p3),t16(p4),t12(p5) 242 6

TP4-15-EA t1(),t4(p0),t6(p1),t7(),t9(),t25(),t26(),t7(),t13(p2),t15(p3) 56 4

TP4-15-RA t1(),t4(p0),t6(p1),t7(),t9(),t7(),t14(p2),t15(p3),t12(p4),t15(p5) 100 6

TP4-16-EA t1(),t4(p0),t5(p1),t7(),t9(),t7(),t13(p2),t16(p3),t9(),t25() 56 4

TP4-16-RA t1(),t4(p0),t6(p1),t7(),t11(p2),t16(p3),t14(p4),t15(p5),t12(p6),t15(p7) 124 8

TP4-17-EA t1(),t4(p0),t5(p1),t8(),t17(p2),t21(p3),t10(),t25(),t26(),t7() 72 4

TP4-17-RA t1(),t3(p0),t1(),t4(p1),t6(p2),t8(),t17(p3),t22(p4),t19(p5),t22(p6) 10102 7

TP4-18-EA t1(),t4(p0),t6(p1),t25(),t26(),t7(),t9(),t8(),t18(p2),t22(p3) 56 4

TP4-18-RA t1(),t4(p0),t6(p1),t8(),t20(p2),t22(p3),t18(p4),t22(p5),t10(),t25() 80 6

TP4-19-EA t1(),t4(p0),t5(p1),t8(),t10(),t8(),t19(p2),t21(p3),t10(),t8() 60 4

TP4-19-RA t1(),t4(p0),t5(p1),t23(p2),t1(),t4(p3),t6(p4),t8(),t19(p5),t21(p6) 108 7

TP4-20-EA t1(),t4(p0),t6(p1),t8(),t10(),t8(),t20(p2),t22(p3),t10(),t8() 60 4

TP4-20-RA t1(),t4(p0),t5(p1),t8(),t18(p2),t21(p3),t18(p4),t21(p5),t20(p6),t22(p7) 100 8

TP4-21-EA t1(),t4(p0),t5(p1),t8(),t18(p2),t21(p3),t10(),t25(),t26(),t8() 56 4

TP4-21-RA t1(),t4(p0),t6(p1),t25(),t26(),t8(),t20(p2),t21(p3),t19(p4),t21(p5) 84 6

TP4-22-EA t1(),t4(p0),t5(p1),t8(),t18(p2),t22(p3),t10(),t25(),t26(),t7() 56 4

TP4-22-RA t1(),t4(p0),t5(p1),t8(),t20(p2),t22(p3),t20(p4),t21(p5),t19(p6),t22(p7) 108 8

TP4-23-EA t1(),t4(p0),t6(p1),t7(),t9(),t25(),t26(),t25(),t26(),t23(p2) 48 3

TP4-23-RA t1(),t3(p0),t1(),t3(p1),t1(),t4(p2),t6(p3),t23(p4),t1(),t2(p5) 20066 6

TP4-24-EA t1(),t4(p0),t24(p1),t1(),t4(p2),t5(p3),t7(),t9(),t8(),t10() 72 4

TP4-24-RA t1(),t3(p0),t1(),t2(p1),t4(p2),t24(p3),t1(),t3(p4),t1(),t2(p5) 20208 6

TP4-25-EA t1(),t4(p0),t5(p1),t7(),t9(),t25(),t26(),t25(),t26(),t8() 36 2

TP4-25-RA t1(),t4(p0),t5(p1),t25(),t27(p2,p3,p4),t29(p5),t26(),t23(p6),t1(),t2(p7) 116 8

TP4-26-EA t1(),t4(p0),t5(p1),t7(),t9(),t25(),t26(),t25(),t26(),t8() 36 2

TP4-26-RA t1(),t2(p0),t4(p1),t5(p2),t7(),t14(p3),t16(p4),t9(),t25(),t26() 230 5

TP4-27-EA t1(),t4(p0),t5(p1),t25(),t27(p2,p3,p4),t30(p5),t26(),t25(),t26(),t8() 98 6

TP4-27-RA t1(),t4(p0),t5(p1),t25(),t27(p2,p3,p4),t29(p5),t28(p6,p7,p8),t30(p9),t28(p10,p11,p12),t29(p13) 264 14

TP4-28-EA t1(),t4(p0),t6(p1),t7(),t9(),t25(),t26(),t25(),t28(p2,p3,p4),t30(p5) 98 6

TP4-28-RA t1(),t4(p0),t6(p1),t25(),t27(p2,p3,p4),t29(p5),t28(p6,p7,p8),t29(p9),t27(p10,p11,p12),t30(p13) 196 14

TP4-29-EA t1(),t4(p0),t5(p1),t25(),t26(),t25(),t26(),t25(),t27(p2,p3,p4),t29(p5) 98 6

TP4-29-RA t1(),t4(p0),t6(p1),t25(),t28(p2,p3,p4),t29(p5),t27(p6,p7,p8),t29(p9),t26(),t25() 146 10

TP4-30-EA t1(),t4(p0),t5(p1),t25(),t27(p2,p3,p4),t30(p5),t26(),t8(),t10(),t25() 98 6

TP4-30-RA t1(),t4(p0),t6(p1),t25(),t28(p2,p3,p4),t30(p5),t28(p6,p7,p8),t30(p9),t26(),t8() 254 10

Table A-5. Two sets of subject paths for the Inres initiator EFSM

Path ID Subject paths Fitness Params.

TP5-0-EA t0(),t1(),t2(),t5(),t15(),t12(),t1(),t13(),t12(),t1() 0 0

TP5-0-RA t0(),t12(),t1(),t3(),t2(),t5(),t15(),t1(),t3(),t2() 0 0

TP5-1-EA t0(),t1(),t2(),t14(),t12(),t12(),t12(),t12(),t12(),t1() 0 0

TP5-1-RA t0(),t1(),t4(),t12(),t12(),t12(),t1(),t4(),t12(),t1() 20000 0

TP5-2-EA t0(),t12(),t1(),t3(),t13(),t12(),t1(),t2(),t14(),t1() 0 0

TP5-2-RA t0(),t12(),t12(),t12(),t1(),t13(),t1(),t2(),t14(),t1() 0 0

TP5-3-EA t0(),t1(),t13(),t12(),t1(),t13(),t12(),t12(),t1(),t3() 0 0

TP5-3-RA t0(),t12(),t12(),t12(),t1(),t13(),t1(),t13(),t1(),t3() 0 0

TP5-4-EA t0(),t1(),t2(),t14(),t1(),t13(),t1(),t3(),t4(),t1() 136 0

TP5-4-RA t0(),t1(),t3(),t4(),t1(),t13(),t12(),t1(),t3(),t2() 136 0

TP5-5-EA t0(),t12(),t12(),t1(),t2(),t14(),t1(),t2(),t5(),t10() 0 0

TP5-5-RA t0(),t1(),t3(),t13(),t12(),t1(),t2(),t5(),t10(),t15() 0 0

TP5-6-EA t0(),t12(),t1(),t2(),t5(),t7(p0),t5(),t6(p1),t5(),t15() 48 2

TP5-6-RA t0(),t1(),t2(),t5(),t6(p0),t14(),t12(),t1(),t2(),t14() 10000 1

TP5-7-EA t0(),t1(),t2(),t5(),t7(p0),t5(),t15(),t1(),t13(),t12() 24 1

TP5-7-RA t0(),t1(),t4(),t1(),t4(),t1(),t2(),t5(),t7(p0),t5() 20024 1

TP5-8-EA t0(),t1(),t3(),t2(),t5(),t8(p0),t15(),t1(),t13(),t12() 6 1

TP5-8-RA t0(),t1(),t4(),t12(),t1(),t2(),t5(),t8(p0),t8(p1),t15() 10160 2

TP5-9-EA t0(),t1(),t2(),t5(),t10(),t9(p0),t12(),t1(),t13(),t1() 142 1

TP5-9-RA t0(),t12(),t1(),t2(),t5(),t9(p0),t1(),t13(),t12(),t12() 10006 1

TP5-10-EA t0(),t12(),t1(),t3(),t13(),t1(),t3(),t2(),t5(),t10() 0 0

TP5-10-RA t0(),t1(),t4(),t1(),t13(),t12(),t1(),t2(),t5(),t10() 10000 0

TP5-11-EA t0(),t12(),t12(),t1(),t2(),t5(),t10(),t11(),t12(),t1() 136 0

TP5-11-RA t0(),t1(),t2(),t14(),t1(),t3(),t2(),t5(),t11(),t12(), 10000 0

TP5-12-EA t0(),t12(),t1(),t2(),t14(),t12(),t1(),t2(),t14(),t1() 0 0

TP5-12-RA t0(),t1(),t3(),t3(),t4(),t12(),t12(),t1(),t2(),t14() 324 0

TP5-13-EA t0(),t1(),t13(),t12(),t1(),t2(),t14(),t12(),t12(),t12() 0 0

TP5-13-RA t0(),t1(),t3(),t13(),t1(),t2(),t5(),t15(),t12(),t1() 0 0

TP5-14-EA t0(),t12(),t1(),t2(),t14(),t12(),t1(),t3(),t2(),t14() 0 0

TP5-14-RA t0(),t1(),t4(),t1(),t2(),t14(),t12(),t12(),t1(),t4() 20000 0

TP5-15-EA t0(),t1(),t2(),t14(),t1(),t2(),t5(),t15(),t1(),t3() 0 0

TP5-15-RA t0(),t1(),t13(),t1(),t4(),t1(),t2(),t5(),t15(),t12() 10000 0

