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Abstract 

Automated test data generation through evolutionary testing (ET) is a topic of interest to the 

software engineering community. While there are many ET-based techniques for automatically 

generating test data from code, the problem of generating test data from an extended finite state 

machine (EFSMs) is more complex and has received little attention. In this paper, we introduce a 

novel approach that addresses the problem of generating input test sequences that trigger given 

feasible paths in an EFSM model by employing an ET-based technique. The proposed approach 

expresses the problem as a search for input parameters to be applied to a set of functions to be 

called sequentially. In order to apply ET-based technique, a new fitness function is introduced to 

cope with the case when a test target involves calls to a set of transitions sequentially. We evaluate 

our approach empirically using five sets of randomly generated paths through two EFSM case 

studies: for INRES and class 2 transport protocols. In the experiments, we apply random and the 

proposed ET-based which utilizes our new fitness function. Experimental results show that the 

proposed approach produces input test sequences that trigger all the feasible paths used with a 

success rate of 100%, however, the random technique failed in most cases with a success rate of 

20.8%. 
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______________________________________________________________________________ 

 

1. Introduction 

 

Errors in software can cause undesired consequences and testing is therefore an important stage 

of the software development process. However, manual testing is an expensive and time 

consuming process as well as error-prone hence automation is desirable. Automated test data 

generation has been the subject of interest to many researchers in the last decade in order to 

develop efficient methods which can replace conventional manual methods [1-4]. 

When a system is implemented, there is a need to test whether the implementation agrees 

with the system specification. This is usually performed by conducting conformance testing 

which tries to find any differences between the behavior of an implementation under test (IUT) 

and its specification. Conformance testing treats the IUT as a black-box, where a tester has no 

information about the internal system structure and only I/O behavior is available.  

In order to derive a test sequence from a system specification, a model that represents the 

specification is required. Finite state machine (FSMs) and extended finite state machine 

(EFSMs) are commonly used for the purpose of test sequence derivation [5]. An FSM can only 
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model the control part of a system; an extension is needed in order to model a system which has 

control and data parts, e.g., communication protocols. Such systems are usually represented 

using an EFSM model.  

The FSM model has been widely studied and many methods are available which employ 

different techniques for the purpose of test data generation [6-9]. Nevertheless, automated test 

data generation from EFSM model is complicated by the presence of infeasible paths and is an 

open research problem [10, 11].  

In an EFSM model, a given path can be classified as either infeasible or feasible. The 

existence of some infeasible paths is due to the variable interdependencies among the actions and 

conditions. If a path is infeasible, there is no input test data that can cause this path to be 

traversed. Thus, if such a path is chosen in order to exercise certain transitions, these transitions 

are not exercised even if they can be exercised through other feasible paths. While the feasibility 

of paths is undecidable, there are several techniques that handle them in certain special cases [10-

13]. An analysis of these techniques is beyond the scope of this paper. 

When testing from an EFSM model, there are several test strategies including: state 

coverage, transition coverage, path coverage and constrained path coverage which can be 

employed in order to generate a test suite [14].  Generally, a test suite can consist of either one or 

many test sequences. In the first case, a single test sequence is applied to the initial state of an 

IUT. Since there is only one test sequence, there is no need to bring the IUT back to its initial 

state. However, in the second case, a test suite requires the availability of a reset method which 

brings the IUT back to its initial state every time a test sequence is applied. Due to the nature of 

EFSM model, a test suite which consists of a single sequence is unlikely to provide a sufficient 

coverage [15]. 

Many techniques for generating test sequences from an EFSM produce a set of paths through 

the EFSM [5], [9-13] and [16-21]. This leaves us with the problem of finding test data for each 

feasible path. Thus an approach which automatically generates test data to trigger a feasible path 

can potentially enhance existing EFSM testing techniques.  

A path test data is the set of input values to be applied to the interaction parameter fields of 

the transitions included in that path in order for it to be taken. According to [22], the process of 

finding such test data is complicated and requires human involvement because of two main 

constraints. First, the domain of the available test data for interactions parameter fields is 

relatively large; however, the suitable test data for a given path is just a selection of only a small 

subset of this domain. Second, this subset is further refined when a path’s transitions have guards 

where the test data should be selected in order to satisfy these guards. Furthermore, when 

different test data are needed to exercise the same path for the purpose of thorough testing, the 

selection of input test data becomes even harder. To this end, the approach presented in this 

paper aims to address the problem described as: 

Given: a feasible path in an EFSM model 

Problem: find a set of input test data that can cause this path to be traversed. 

The contributions of this paper are the following: 

1- It proposes an approach that applies ET-based technique to EFSMs 

2- It introduces a new fitness function that enables ET-based technique to be applied to 

functional testing. 

3- The proposed fitness calculation method is evaluated by comparing it to the existing ET-
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based fitness calculation. 

4- The paper also empirically validates the efficiency of the proposed approach by applying 

the approach to the INRES initiator and class 2 transport protocols EFSMs. 

The technique presented in this paper can be potentially incorporated with other available 

testing techniques that provide a set of paths through an EFSM model to satisfy a particular test 

criterion. We applied our approach to generate transition coverage test suites for two protocol 

case studies namely the INRES initiator [23] and the simplified version of Class 2 transport 

protocol [16, 24].  

The rest of the paper is organized as follows: Section 2 provides background information, 

including an overview of related test generation methods and a description of evolutionary 

algorithm (EA) and evolutionary testing (ET). A new fitness function for EFSM path test data 

generation is given in Section 3. Approach validation and experiments are discussed in Section 4. 

Concluding remarks and our future work are in Section 5. 

2. Preliminaries 

2.1. The model 

A finite state machine (FSM) is a Mealy machine, which has a finite set of states, inputs, and 

outputs. An output is produced upon state transition and this occurs when applying an input to 

the machine. An FSM model can successfully represent the control part of a system e.g., a 

telephone device, however, an extension is needed in order to model a system with control and 

data parts e.g., communication protocols. When extending a Mealy machine with internal 

variables, predicates, and operations we get an extended finite state machine (EFSM). The EFSM 

model is a 6-tuple [16]  (S, s0, V, I, O, T) where:  

- S is the finite set of logical states 

- s0 S is the initial state 

- V is the finite set of internal variables 

- I is the set of input declarations  

- O is the set of output declarations  

- T is the finite set of transitions 

The transition t T is represented by the 5-tuple (ss, i, g, op, se) in which: 

- ss is the start state of t 

- i is the input where i I {Nil} 

- g is the guard and is either Nil or is represented as a set of logical expressions given in 

terms of variables in V
′
 where V

′
V 

- op is the sequential operation which consists of simple statements such as output 

statements and assignment statements 

- se is the end state of t. 

In an EFSM model, there is a set of variables. One variable in particular is used to represent 

the machine state and is called state, also referred to by major state in order to differentiate it 

from the other variables called context variables. The state variable is used to represent the state 

of a finite state machine e.g., idle, wait for connection, connection opened and so on, whereas 

other machine data such as port number, sequencing numbers, data to transfer, etc. are usually 

stored in context variables. A state transition occurs when one of the machine’s transitions is 
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taken. Each transition has two major states: start state (Ss) and end state (Se). Also, each 

transition may have one or more associated atomic operations to be executed upon a successful 

transition occurrence. These operations may update the value of some context variables or 

produce some output signals [20]. 

In order for a transition to be taken, there may be some required input values and associated 

conditions on context variables to be satisfied. According to this, EFSM transitions can be 

classified into two types:  spontaneous and non-spontaneous transitions. Spontaneous transitions 

do not require input values in order to be taken; however, non-spontaneous transitions depend on 

some input value(s) in order to be initiated. Both spontaneous and non-spontaneous transitions 

can be partitioned to conditional and unconditional transitions depending on whether or not there 

exists one or more associated conditions, called guards, to be satisfied before a successful state 

transition can occur.  

 An EFSM is deterministic if for any group of transitions leaving the same state, it is not 

possible to satisfy the guards of more than one transition in this group at the same time and 

otherwise is non-deterministic [25].  

The approach presented in this paper can be applied to an EFSM model with the following 

properties: 

1- The specification represents a deterministic machine. 

2- The specification does not include spontaneous transitions.  

2.2. Examples 

In this paper we present two EFSM case studies that we use in the experiments. For the purpose 

of avoiding repetition, we report only the EFSM definition of the second case study.  

The first case study is the EFSM model of the INRES protocol initiator [23]. The INRES 

protocol is a connection- oriented and comprises the initiator, which establishes a connection and 

sends data, and the responder which receives data and terminates connections. INRES protocol 

has been designed to be similar to real protocols and yet small enough to allow conducting 

Fig.1 INRES protocol initiator as an EFSM 
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Fig. 2.  Class 2 transport protocol EFSM model 
  

              Table 1. The core transitions in a class 2 transport protocol 

t  ssse Input  declarations Guards Transition atomic operations 

t0  s1s2 U?TCONreq(dst_add, 

prop_opt) 

Nil opt := prop_opt; 

R_credit :=0; N!TrCR 

t1  s1s3 N?TrCR(peer_add, opt_ind, cr) Nil opt:= opt_ind; 

S_credit:=cr; 

R_credit:=0; U!TCONind 

t2  s2s4 N?TrCC(opt_ind, cr) opt_ind < opt TRsq:=0; 

TSsq:=0; 

opt:=opt_ind; 

S_credit:=cr; U!TCONconf 

t3  s2s5 N?TrCC(opt_ind, cr) opt_ind > opt U!TDISind; N!TrDR 

t4  s2s1 N?TrDR(disc_reason, switch) Nil U!TDISind; N!terminated 

t5  s3s4 U?TCONresp(accpt_opt) accpt_opt< opt opt:= accpt_opt; 

TRsq:=0; 

TSsq:=0; N!TrCC 

t6  s3s6 U?TDISreq() Nil N!TrDR 

t7  s4s4 U?TDATAreq(Udata, E0SDU) S_credit > 0 S_credit:= S_credit -1; 

TSsq := (TSsq +1)mod128; N!TrDT 

t8  s4s4 N?TrDT(Send_sq, Ndata, 

E0TSDU) 

R_credit <> 0 and Send_sq= TRsq TRsq:=(TRsq+1)mod128; 

R_credit:=R_credit -1; 

U!DATAind; N!TrAK 

t9  s4s4 N?TrDT(Send_sq, Ndata, 

E0TSDU) 

R_credit = 0 V Send_sq <> TRsq U!error; N!error 

t10  s4s4 U?U READY(cr) Nil R_credit:= R_credit + cr;   N!TrAK 

t11  s4s4 N?TrAK(XpSsq, cr) TSsq > XpSsq & cr + XpSsq – TSsq > 0 & 

cr +XpSsq – TSsq < 15 

S_credit := cr + XpSsq – TSsq 

t12  s4s4 N?TrAK(XpSsq, cr) TSsq > XpSsq & (cr + XpSsq – TSsq < 0 V 

cr +XpSsq – TSsq >0) 

U!error; N!error 

t13  s4s4 N?TrAK(XpSsq, cr) TSsq < XpSsq & cr + XpSsq – TSsq – 128 > 

0 & cr + XpSsq – TSsq – 128 < 15 

S_credit:= cr+ XpSsq –TSsq – 128 

t14  s4s4 N?TrAK(XpSsq, cr) TSsq < XpSsq & (cr + XpSsq – TSsq – 128 

< 0 V cr + XpSsq – TSsq – 128 > 15 ) 

U!error; N!error 

t15  s4s4 N?Ready() S_creidit >0 U!Ready 

t16  s4s5 U?TDISreq() Nil N!TrDR 

t17  s4s6 N?TrDR(disc_reason, switch) Nil U!TDISind; N!TrDC 

t18  s6s1 N?terminated() Nil U!TDISconf 

t19  s5s1 N?TrDC() Nil N!terminated; U!TDISconf 

t20  s5s1 N?TrDR(disc_reason, switch) Nil N!terminated 
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experiments for research purposes.  Fig. 1 shows the INRES initiator EFSM together with the 

transitions’ specifications. 

The second case study is a major model based on the AP-module of the simplified version of a 

class 2 transport protocol. The EFSM model represents the core protocol transitions as described 

in [16] and [24]. This EFSM has two interaction points U and N for connecting to transport 

service access point and a mapping module respectively. The considered EFSM is involved in 

connection establishment, data transfer, end-to-end flow control and segmentation.The model 

transitions are shown in Fig.2 and described in Table1. The class 2 transport protocol EFSM is 

defined by: 

- S = {s1, s2, s3, s4, s5, s6} 

- s0 = s1 

- V = {opt, R-credit, S-Credit, TRsq , TSsq} 

- I  = {U?TCONconf(dst_add, prop_opt), N?TrCR(peer_add, opt_ind, cr),            

N?TrCC(opt_ind, cr), N?TrDR(disc_reason, switch), U?TCONresp(accpt_opt), 

U?TDISreq, U?TDATAreq(Udata, EoSDU), N?TrDT(Send_sq, Ndata, EoTSDU), 

U?UREADY(cr), N?TrAK(XpSsq, cr), N?Ready, U?TDISreq(), N?TrDC, N?terminated}  

- O = {U!TCONreq(opt), U!TCONind(peer_add, opt), U!TDISind(msg), U?TDISconf, 

U!TDATind(data, EoTSDU), U!error, U!READY, N!TrCR(dest_add, opt, credit), 

N!TrDR(reason, switch), N!terminated, N!TrCC(opt, credit), N!TrDT(sq_no, data, 

EoSDU), N!TrAK(XpSsq, cr), N!error, N!TrDC} 

- T = { t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15, t16, t17, t18, t19, t20} 

In these two EFSMs, all the variables in the variable set V and the input parameters in the input 

declarations set I are of integer data type. 

2.3. Evolutionary algorithms (EAs) 

Evolutionary algorithms are optimisation searching techniques that adopt the evolution notion as 

a search mechanism. Genetic Algorithms (GAs), probably the most common type of EA, were 

introduced by John Holland [26] and his colleagues in the United State in the early 1970s where 

they implemented the natural selection theory to present a powerful, simple, and sturdy 

technique which can be applied to solve optimization problems. GAs work on a set of candidate 

solutions, referred to as a population, rather than a single solution and this allows more points in 

the search domain to be sampled. GAs require a suitable representation of solutions in order to 

be applied to a particular problem. This can be achieved by using solution encoding. When 

representing solutions, each solution is called a chromosome. Each chromosome consists of 

many components, these components are called genes. Each gene may have different possible 

values. The value, that a gene may have, is called an allele. The locus refers to a gene’s position 

in the chromosome string [27]. GAs work on genotypes which refer to the encoded structures of 

solutions whereas the decoded structures of solutions are called phenotype. For example, let the 

initial set of solutions be integer values such as {7, 6, 8}. Each number in this set is called 

phenotype while the following set {0111, 0110, 1000} represents chromosomes or genotypes. 

Any bit within the above strings represents a gene with either 0 or 1 value which is an allele. 

The GAs cycle starts by evaluating the fitness of each individual. The fitness of an individual 

is a positive value that measures how ‘fit’ this individual and hence its chance of use as a parent. 
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Then a selection based on fitness is made to perform ‘breeding’. There are many selection 

methods that can be used e.g., Roulette wheel and ranking selections, however, the question 

about which method is better is problem dependent [28]. 

Through ‘breeding’ new individuals are introduced. This is accomplished by applying a 

crossover operator (also called recombination). Crossover acts on two individuals to produce two 

new individuals and can be performed in several ways. The simplest one is referred to as one-

point crossover. It operates by choosing a random position on the chromosome’s bit string, and 

then the substrings before that position are kept while the tails are swapped [29]. For example, if 

the two parents’ chromosomes are P1 and P2 with crossing point at locus 4, then C1 and C2 are the 

offspring chromosomes. 

 

P1 {011|00}   C1 {011|11} 

P2 {101|11}   C2 {011|00} 

In order to maintain population diversity, new characteristics are infrequently injected by 

applying mutation. Mutation acts on one chromosome at a time, where it randomly changes the 

values of some of the chromosome’s genes [29]. For example, the chromosomes C1 above might 

become C1
′ after mutating the genes on locus 1 and 5. 

C1 {01111}   C1
′ {11110} 

The GAs cycle will most probably yield ‘fitter’ individuals referred to as a new generation 

and these are used to update the population. The population undergoes a number of updates until 

fulfilling one of the stopping criteria such as finding the best solution or reaching a maximum 

number of generations [30].  

2.4. Evolutionary testing (ET) 

Evolutionary testing (ET) is a technique that employs EA to automatically generate test data 

from a test target. In test data generation, EA is employed to solve a minimization problem 

where the lower the fitness of a solution the better it is and the optimal solution(s) will have a 

fitness equal to zero. Two aspects are central in applying ET to generate test data automatically. 

First, the test adequacy criterion which is a property that a test must satisfy in order to be 

considered sufficient. Many test adequacy criteria require that a set of structures in the code or 

specification to be covered in testing [4]. For example, we might require that all of the statements 

in the code are exercised (covered) in testing (statement coverage). The second is the objective 

function which will be used to evaluate the members of the population. If we considered the 

branch coverage test adequacy criterion, then all the branches in the subject program need to be 

taken (covered). In this case, an objective function that depends on a branch distance can be used 

in order to evaluate the input values. A branch distance is computed to measure how close a 

particular input was to executing the target branch that is missed e.g., |A-B| is the branch distance 

for the predicate (A > B). The lower |A-B| is the closer is A to B and the closer the test is to 

taking the branch. A full list of different types of conditions and their branch distance 

computations is provided by Tracey et al. [31].  

Often, programs have nested predicates, for example an IF statement could be contained in a 

loop. In this case, an objective function which only employs branch distance is not sufficient and 

extra information is needed to guide the search. This is given in terms of approach level or 
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approximation level [32] which measures how close an input vector was to executing the 

structure under test. A central notion to approach level calculation is a critical node which is a 

branching node at which the path control flow may divert. An approach level is calculated by 

subtracting 1 from the number of the critical nodes away from the target node (Equation 2). For 

example, Fig. 5 (Node A) shows the approach level calculation for 4 critical nodes away from 

Subtarget-1. If the false branch of any of them (shown in dashed arrows) is taken then the target 

node is missed. Since it is necessary that the branch distance of the upper IF statement is always 

greater than the ones in a lower level, the branch distance of each IF statement is normalized to a 

value in the range of [0..1] (Equation 1). The normalized branch distance is then added to the 

associated approach level of that branch to form the fitness value of that branch (Equation 3). In 

this way, the cost associated with each branch is clearly contrasted among other and so the 

branch distance of the upper IF statement is always greater than the branch which is located in a 

lower level. Therefore, a set of test data that achieve more conditions (longer path) is always 

associated with better (lower) fitness that that which achieve fewer conditions. 

 A recent survey [2] has focused on evolutionary test data generation. The technique 

presented in this paper adapts the notion of branch distance and approach level in order to 

construct a new fitness function, described in Section 3, for an automatic generation of a path test 

data through EFSM models.  

norm (d)  = 1 – 1.05
-d

          (1) 

approach level= numOfCriticalNodesAwayFromTarget –1    (2)
 

fitness = approach level +  norm (d)          (3) 

Where d is a branch distance, and norm (d) is the branch distance value scaled between [0, 1]. 

2.5. Related work 

Many test generation approaches for systems modeled as EFSMs appear in the literature [10], 

[11], [12], [13], [15], [16], [18], [20], [22], [33] and [34]. An approach to generate a unified test 

sequence (UTS) for EFSM models is presented in [12] based on two techniques: one to test the 

control part (FSM) and the other to test the data part by using data flow analysis technique. The 

resultant UTS is then checked for executability by using a constraint satisfaction method. 

However, some assumptions about the EFSM model i.e. the existence of self-loop influencing (a 

loop that modifies a global predicate variable) may not be applicable for other EFSM models.       

Generating test sequence for EFSM models by employing functional program testing is 

studied in [20]. The approach converts the specification written in Estelle [35] into a simpler 

form in order to construct control and data flow graphs to be used in test sequence derivation. 

However, the approach does not allow automatic generation of the test sequences. Also, the 

approach does not allow some common code constructs such as functions calls and conditional 

statements.  

Other methods that test an EFSM model using FSM-based test techniques appear in  [15], 

[33] and [34]. A technique that transforms a class of EFSM models into a class of FSMs is used 

by [33] for the purpose of deriving test sequences from VHDL or bestmap-C hardware 

specifications. The transformation allows available FSM testing methods to be applied to each 

resultant FSM separately. This technique requires that all the input variables have finite domains. 

However, the approach may easily lead to a large number of configurations which cannot be 
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handled in practice. A detailed study of various FSM-based test generation techniques for the 

purpose of fault coverage was conducted by [15], whereas a study of the four main formal 

methods paths, distinguishing sequences, characterizing sequences and unique I/O (UIO) 

sequences for protocol testing based on FSM models is presented in [34].  

Generally, the notion of testing EFSM models based on FSM methods requires a 

transformation from EFSM to FSM model. There are two approaches to conduct this: the first is 

to abstract the data from an EFSM model so the resultant is an FSM model. The limitation of this 

approach is that the paths taken from the FSM model are not necessarily feasible in the 

corresponding EFSM model. The second approach is to expand an EFSM model to become an 

FSM model, however, the number of states in the resultant FSM can easily become prohibitively 

large [36]. 

A technique for generating unique state identification sequences for EFSM models is 

presented in [16, 18]. The technique is based on computing a new type of state identification for 

each state called context independent unique sequence (CIUS). This requires that all the paths 

that start from any state be context independent. That is, all the guards included in any path can 

be interpreted symbolically. Furthermore, each state must have a CIUS. Since these two 

requirements may not be satisfied by a given EFSM model, the applicability of this approach is 

limited. Furthermore, the approach does not provide a method to generate input test data to be 

used in testing the generated paths.   

An approach which employs software data flow testing to derive a test sequence from EFSM 

models is presented in [22]. The selection of each test case depends on identifying all the 

associations between each output and all the inputs that affects that output. A potential limitation 

of this approach is the cost associated with the analysis phase when nontrivial EFSM models are 

considered. 

A test sequence generation approach that overcomes the feasibility problem in advance is 

introduced by [10, 11]. The approach requires that all the conditions and actions in an EFSM 

model are linear, functions or procedures should be transformed, and the target model represents 

a single process. The approach converts a class of EFSMs into consistent EFSMs in order to 

enable test sequences generation. However, the approach does not provide a technique to 

generate input test sequence that will test the generated paths. 

Another study that focuses on the EFSM path feasibility problem is presented in [13]. The 

study presents a technique to bypass the infeasible path problem in an EFSM model through two 

steps. First, the SDL (Specification and Description Language) model specifications are 

rewritten in order to derive a normal form-EFSM (NF-EFSM). Second, the resultant NF-EFSM is 

extended to Expanded-EFSM (EEFSM) in order to aid the testability. As a result, all the paths 

presented in the output EEFSM are feasible. However, the study does not tackle the problem of 

generating test data for the final output feasible paths.     

A recent study about a fitness calculation method in the presence of function calls appears in 

[37, 38]. The study proposed a fitness calculation method to derive test data from a state 

machine. The approach of fitness calculation presented in Tracey et al. [31] is first applied to 

each function, and then path fitness is constructed by considering each function in the path as a 

critical node where objective function value is calculated by adding each function’s return value 

to its associated approach level in the considered path. Experiments were conducted on a set of 



 10 

Java classes and showed that the proposed approach was successful in producing valid test input. 

However, the limitation of this study is the assumption that each function does not have an 

internal path i.e. nested IF statements for which Tracey et al. [31] approach does not always 

provide a sufficient guidance as argued in [2, 32]. 

Another study that describes a fitness calculation in the presence of flow functions calls 

appears in [39]. The study compares the conventional fitness calculation approach and a 

proposed fitness calculation in the presence of functions calls. The experiment was conducted on 

two case studies and showed that the proposed fitness calculation was faster and successfully 

achieved the test targets in all the tries while the conventional fitness calculation was slower and 

failed in some tries. However, the study assumes that a set of functions are manipulating the 

same input parameters i.e. each function receives the same input values received by the 

previously called function which is a special case of functions calls.  

3. Proposed test generation approach 

Although the available techniques highlighted in Section 2, made considerable contributions 

towards the domain of EFSM testing, the problem of generating test data to follow a given 

feasible path in an EFSM has received little attention. The motivation of our study is that all 

present techniques [5], [9-13] and [16-21] that produce tests from an EFSM model through 

generating a set of paths can potentially incorporate our technique.  

The fitness calculation method described previously in Subsection 2.4 is effective in 

structural testing where the test target is represented as a single node in the main body of the 

function or the program. However, this technique is not designed to cope with the case when 

there is a test objective that involves calls to a set of transitions sequentially. In this case, the 

main test target comprises a set of subtargets that have to be achieved in order to achieve the 

main test target i.e. taking successfully the last transition in a path. 

For example, in functional testing it is necessary to trigger a path in order to reach a specific 

state in the machine. In this scenario, the first transition in the path must be triggered 

successfully in order to be able to try to trigger the next transition and so forth. Since an EFSM 

transition can be considered as a function with input parameters and conditions, the problem of 

generating test data to trigger a given path can be seen as finding suitable input parameter values 

to be applied to each transition (function) in that path in a sequential way.  

In order to describe the proposed fitness calculation method, consider the first function (fun1) 

shown in Fig.3 which requires two suitable input values to achieve a set of four nested IF 

statements. For a given path comprising the transition sequence fun1(x1,y1)fun1(x2,y2) 

fun1(x3,y3), the search should first locate  suitable input values (x1,y1) that trigger successfully the 

first transition before it can progress to find the next suitable input values (x2,y2) that trigger the 

next transition in the path and so forth. 

The manipulation of a path in this way is similar to the structure of nested IF statements 

where each IF statement compares the associated function’s return value with 0. If a function is 

successfully triggered then its return value is set to 0 otherwise it should reflect the fitness of the 

input values in respect only to this particular function (we will refer to this fitness value 

henceforth as the function distance). In this way, the first transition in the path can be considered 

as the upper IF statement and then functions which come next are treated as nested IF 
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statements. Therefore, the fitness function for a given path can be based upon the work of 

Wegener et al. [32] where the approach level here represents transition approach level which 

measures how close a given set of input was to taking the target (final) transition (see Equation 

4). The transition approach level is derived in the same way as the approach level described 

previously. That is, for a given path, any transition which has guard(s) is considered a critical 

transition and so the transition approach level is derived by subtracting 1 from the number of 

critical transitions away from the target transition (Equation 5).  

The value of function distance will determine whether or not the corresponding function is 

achieved. The previous work of [37, 38] calculated this component by using the approach of 

Tracey et al. [31] which is effective when conditions within each function are linked by ‘AND’ 

operator. Nevertheless, in the presence of nested IF statements, the use of Tracey et al. [31] 

approach leads to some plateaux in the corresponding objective function landscape which is not 

the case if Wegner et al. [32] approach is applied instead. For example, Fig.4 shows the objective 

function landscapes of the first function case study (fun1) given in Fig.3. The unnecessary 

plateaux of the landscape of Tracey et al. [31] approach can cause the search to be hindered or 

even falls in a local minima. A similar case study that compares Tracey et al. [31] and Wegener 

et al. [32] approaches is reported in [2]. Therefore, Applying the approach of Wegener et al. [32] 

to calculate a function distance is more efficient and provide a better guidance ( Equation 6). 

path fitness = norm (function distance) + transition approach level            (4) 

transition approach level = NumOfCrticalTransAwayFromTarget – 1 (5) 

function distance = norm(branch distance) + approach level   (6) 

 

  
x y x y 

Objective function value Objective function value Tracey et al. landscape Wegener et al. landscape 

Fig.4 Objective function landscapes of the first function case study by using Teracy et al. and Wegener et al. 

fitness calculations. 

Double fun2( int x, int y, int z) 

 { 

  if x >=10 

   {if x <=20  

    {if y >=0  

     {if y <=10 

      {if z >=30 

       {if z <= 40 

        //result = 0 //Target achieved      

 }}}}}} 

 

Double fun1( int x, int y) 

 { 

  if x >=10 

   {if x <=20  

    {if y >=0  

     {if y <=10 

      //result = 0 //Target achieved 

 }}}} 

Fig.3 Two function case studies with nested IF statements 
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The proposed method of calculating a path fitness can be seen simply as applying the 

approach of Wegener et al. [32] two times: the first is to calculate a function distance for each 

function in a path whereas the next time is to calculate a path fitness after considering each 

function as a nested IF statement. For example, Fig. 5 shows the fitness calculation for the path  

Fig.5 The proposed fitness calculation method applied to a path case study which consists of three sequential calls to 

function fun1. 
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Fig.6 Two fitness plots that compare between the conventional and proposed approaches on the two path case 

studies. Plot -A- is for path1 and plot -B- is for path2. 
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fun1(x1,y1)fun1(x2,y2)fun1(x3,y3) using the proposed method. However, the alternative option 

is to apply Tracey et al. [31] method in order to calculate a function distance for each function in 

a path and then use Wegener et al. [32] method to calculate the path fitness. We will refer to this 

alternative option as the conventional approach for the purpose of justifying the proposed 

method. The conventional approach is the same as the approach reported in [37, 38] which is the 

only previous work that utilize GAs for testing form state machines. 

Naturally, transitions’ guards are either sequenced as nested IF statements or linked with 

logical operators ‘AND’ and ‘OR’, for such a case, in order to apply the proposed fitness 

calculation method, transition’s guards linked with ‘AND’ operator will be represented as nested 

IF statements when calculating a function distance. It is always possible to convert conditions 

linked with ‘AND’ to nested IF statements, however the reverse is not always valid. Thus, the 

proposed approach has an advantage over the conventional one since it can deal with both cases.    

If a transition guards are linked with ‘OR’ operator, we split the transition into a number of 

transitions equal to the number of ‘OR’ operators used + 1. One of the benefits is that we test 

each condition and so no guards are left unexercised, however, an alternative method would be 

to apply an approach similar to that of  Tracey et al. [31] where the minimum fitness value for a 

set of conditions linked with ‘OR’ operator is used. 

In order to apply an ET- based technique, a suitable form of solution encoding is required. 

This can be selected according to the considered machine input parameters type. That is, it is 

possible to use binary or integer encoding when all of the considered machine input parameters 

are of integer data type; however, if some of the machine input parameters are of double data 

type then real valued encoding can be used. A candidate solution that represents a path test data 

comprises a set of components where each component represents one input parameter. For 

example, a possible solution encoding of the path case study shown in Fig.5 consists of six 

components of type integer <C0, C1, C2, C3, C4, C5>. 

3.1. Fitness function justification 

In order to justify the proposed path fitness calculation, we present two path case studies: the 

first case study is path1: fun1(x1,y1)fun1(x2,y2)fun1(x3,y3) shown in Fig.5 whereas the second 

case study consists of three sequential calls to the function (fun2) given in Fig.3 path2: 

fun2(x1,y1,z1)fun2(x2,y2,z2)fun2(x3,y3,z3). The differences between these two paths are the 

number of required input parameters and the level of nested IF statements in each function. In 

order to estimate the ease with which each path can be triggered, we applied a random algorithm 

to each path. Also we applied the conventional and the proposed approaches for the purpose of 

comparison. In this experiment, a population of 100 individuals and integer valued encoding was 

used with a range of [-1000..1000] for each input parameters. The experiment was conducted 10 

times and each time 1000 generations were allowed before the search was terminated. The 

graphs plotted in Fig.6 (-A- for path1 and B- for path2) show the best fitness obtained so far in 

the search for a particular generation, averaged over ten repetitions of the experiment. For both 

paths, it was not surprising that the random search failed in finding the required input values and 

so these two paths cannot be easily triggered.   

For path1, due to the almost unidirectional landscape of the conventional approach, this 

approach failed to make any progress after 400 generations. Nevertheless, the landscape of the 

proposed approach provided better guidance and it hit the target after 259 generations. For path2, 
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the landscape of the conventional approach was worse than that observed on path1 and the 

performance was similar to that of the random search. This was not the case with the proposed 

approach where its landscape was similar to that observed on path1 and provided better guidance 

to hitting the target after 440 generations. The results of this experiment suggest that the 

performance of the conventional approach can be inefficient when nested IF statements are 

existed. It also seems likely that the performance of the conventional approach will be even 

worse when longer paths are used. As shown in Fig.3, having more functions in a path leads to 

more plateaux in the final objective function landscape of that path. Therefore, there are more 

chances that the search may stuck in a local minima. However, this is not the case with the 

proposed approach since each included function landscape does not suffer from the plateaux 

existence in the first place.  

In addition to this experiment, we have conducted another set of initial experiments with 

different level of nested IF statements and we observed that when there are 3 or fewer nested IF 

statements in each function of a path, the conventional approach performs almost similarly to the 

proposed one and this is because fewer plateaux exist in each function landscape.     

4. Empirical verification 

4.1. Experiment design 

In designing our experiment, we aimed to evaluate the efficiency of the proposed fitness function 

in guiding the search for test data that can trigger the subject transition paths (TPs) under the test. 

In order to achieve this, there are three factors to be considered.  

The first is related to the length of TPs to be generated. Naturally, a short TP is likely to be 

easy to trigger since it has fewer guards. In order to avoid the impact of this factor in our 

experiment, we want to generate TPs that are relatively long and cover various TPs lengths.  

The second factor is related to the number of input parameters required to trigger a given 

subject TP. A TP that requires fewer input parameters is typically easier to trigger. For example, 

finding ten parameter values to be applied to a given TP transitions is usually harder than finding 

one parameter value. As a result, we generated TPs that require relatively many input 

parameters. We therefore eliminate any generated TP that requires less than 4 input parameters. 

The third factor is to determine how easy it is to trigger a generated TP; we use a random test 

data generator to assess this. For example, if we can quickly randomly find the suitable input 

values to trigger a generated TP then we can state that this TP is easy to trigger. 

Since the subject EFSM that represents INRES protocol (see Fig.1) consists of 15 transitions, 

we randomly
1
 generated two sets of 15 subject TPs (see Table 2 and Table 3) with a length of 8 

and 11 transitions respectively. In these two sets, each TP is responsible for exercising a 

particular transition and so both sets define, if all TPs are feasible, a transition coverage test suite 

for INRES initiator EFSM. Also, the subject TPs in these two sets required various number of 

input parameters and so they include a variety of TP cases. 

For the subject EFSM that represents the class 2 transport protocol, which consists of 21 

transitions (see Fig.2), we randomly
 
generated three sets of 21 TPs with each set representing a 

transition coverage test suite for the considered EFSM. The lengths of the subjects TPs in each 

                                                 
1 We use a random path generator for the purpose of evaluating our proposed approach; however, there are many other efficient approaches to 

generate a set of paths through an EFSM model that includes all the machine’s transitions.  
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Table 3. The second set of subject TPs for INRES protocol: each TP consists of 11 transitions 

Path 

ID 
Params Subject paths  

I2-0 5 T11(none)T11(none)T0(none)T1(none)T4(P0)T7(P1)T6(P2)T4(P3)T9(none)T5(P4) T13(none) 

I2-1 6 T0(none)T1(none)T4(P0)T6(P1)T4(P2)T5(P3)T4(P4)T9(none)T7(P5)T14(none)T0(none) 

I2-2 8 T0(none)T2(none)T1(none)T4(P0)T6(P1)T4(P2)T5(P3)T4(P4)T7(P5)T6(P6)T4(P7) 

I2-3 4 T0(none)T2(none)T2(none)T2(none)T3(none)T0(none)T1(none)T4(P0)T6(P1)T4(P2)T5(P3) 

I2-4 5 T0(none)T1(none)T4(P0)T6(P1)T4(P2)T7(P3)T5(P4)T13(none)T0(none)T2(none)T12(none) 

I2-5 7 T0(none)T1(none)T4(P0)T6(P1)T4(P2)T9(none)T7(P3)T9(none)T5(P4)T4(P5)T6(P6) 

I2-6 5 T0(none)T12(none)T11(none)T0(none)T2(none)T1(none)T4(P0)T7(P1)T6(P2)T4(P3)T5(P4) 

I2-7 6 T0(none)T12(none)T0(none)T1(none)T4(P0)T6(P1)T4(P2)T9(none)T7(P3)T5(P4)T4(P5) 

I2-8 7 T0(none)T1(none)T4(P0)T6(P1)T4(P2)T7(P3)T7(P4)T7(P5)T9(none)T8(P6)T0(none) 

I2-9 7 T11(none)T0(none)T1(none)T4(P0)T9(none)T6(P1)T4(P2)T7(P3)T5(P4)T4(P5)T6(P6) 

I2-10 5 T0(none)T12(none)T0(none)T1(none)T4(P0)T6(P1)T4(P2)T9(none)T7(P3)T7(P4)T10(none) 

I2-11 7 T11(none)T0(none)T2(none)T1(none)T4(P0)T6(P1)T4(P2)T7(P3)T5(P4)T4(P5)T6(P6) 

I2-12 6 T0(none)T12(none)T11(none)T0(none)T1(none)T4(P0)T6(P1)T4(P2)T7(P3)T7(P4)T5(P5) 

I2-13 5 T11(none)T0(none)T1(none)T4(P0)T7(P1)T9(none)T6(P2)T4(P3)T5(P4)T13(none)T11(none) 

I2-14 6 T0(none)T1(none)T4(P0)T6(P1)T4(P2)T5(P3)T4(P4)T7(P5)T9(none)T14(none)T11(none) 

 

 

 

Table 2. The first set of subject TPs for INRES protocol: each TP consists of 8 transitions 

Path ID Params Subject paths  

I1-0 6 T0(none)T1(none)T4(P0)T7(P1)T6(P2)T4(P3) T5(P4)T4(P5) 

I1-1 6 T0(none)T1(none)T4(P0)T6(P1)T4(P2)T7(P3)T5(P4)T4(P5) 

I1-2 5 T0(none)T2(none)T1(none)T4(P0)T7(P1)T6(P2)T4(P3)T5(P4) 

I1-3 4 T0(none)T3(none)T0(none)T1(none)T4(P0)T6(P1)T4(P2)T7(P3) 

I1-4 6 T0(none)T1(none)T4(P0)T7(P1)T7(P2)T6(P3)T4(P4)T5(P5) 

I1-5 6 T0(none)T1(none)T4(P0)T6(P1)T4(P2)T5(P3)T4(P4)T6(P5) 

I1-6 6 T0(none)T1(none)T4(P0)T6(P1)T4(P2)T7(P3)T7(P4)T5(P5)  

I1-7 6 T0(none)T1(none)T4(P0)T7(P1)T6(P2)T4(P3)T7(P4)T5(P5) 

I1-8 5 T0(none)T2(none)T1(none)T4(P0)T7(P1)T7(P2)T7(P3)T8(P4) 

I1-9 5 T0(none)T1(none)T4(P0)T6(P1)T4(P2)T5(P3)T4(P4)T9(none) 

I1-10 5 T0(none)T1(none)T4(P0)T7(P1)T7(P2)T7(P3)T7(P4)T10(none) 

I1-11 5 T11(none)T0(none)T1(none)T4(P0)T6(P1)T4(P2)T5(P3)T4(P4) 

I1-12 4 T0(none)T12(none)T0(none)T1(none)T4(P0)T7(P1)T7(P2)T7(P3) 

I1-13 5 T0(none)T1(none)T4(P0)T6(P1)T4(P2)T7(P3)T5(P4)T13(none) 

I1-14 5 T0(none)T1(none)T4(P0)T6(P1)T4(P2)T5(P3)T4(P4)T14(none) 

 

 

 

Table 4. The first set of subject TPs for the class 2 transport protocol: each TP consists of 5 transitions 

Path ID Params Subject paths  

P1-0 6 T0(P0)T4(none)T1(P1,P2)T5(P3)T11(P4,P5) 

P1-1 6 T1(P0)T5(P1)T13(P2,P3)T11(P4,P5)T16(none) 

P1-2 8 T0(P0)T2(P1,P2)T11(P3,P4)T11(P5,P6)T9(P7) 

P1-3 6 T0(P0)T3(P1,P2)T19(none)T0(P3)T3(P4,P5) 

P1-4 6 T0(P0)T4(none)T0(P1)T2(P2,P3) T13(P4,P5) 

P1-5 8 T1(P0,P1)T5(P2)T13(P3,P4)T12(P5,P6)T9(P7) 

P1-6 5 T0(P0)T3(P1,P2)T20(none)T1(P3,P4)T6(none) 

P1-7 7 T1(P0,P1)T5(P2)T11(P3,P4)T7(none)T13(P5,P6) 

P1-8 6 T0(P0)T2(P1,P2)T10(P3)T8(P4)T9(P5) 

P1-9 6 T1(P0,P1)T5(,P2)T12(P3,P4)T9(P5)T15(none) 

P1-10 8 T0(P0)T2(P1,P2)T11(P3,P4)T10(P5)T11(P6,P7) 

P1-11 7 T1(P0,P1)T5(P2)T11(P3,P4)T13(P5,P6)T16(none) 

P1-12 7 T1(P0,P1)T5(P2)T15(none)T13(P3,P4)T12(P5,P6) 

P1-13 7 T1(P0,P1)T5(P2)T13(P3,P4)T13(P5,P6)T17(none) 

P1-14 9 T0(P0)T2(P1,P2)T11(P3,P4)T12(P5,P6)T14(P7,P8) 

P1-15 5 T0(P0)T2(P1,P2)T10(P3)T8(P4) T15(none) 

P1-16 7 T0(P0)T2(P1,P2)T14(P3,P4)T12(P5,P6)T16(none) 

P1-17 5 T1(P0,P1)T5(P2)T11(P3,P4)T17(none)T18(none) 

P1-18 5 T1(P0,P1)T6(none)T18(none)T1(P2,P3)T5(P4) 

P1-19 6 T0(P0)T3(P1,P2)T19(none)T0(P3)T3(P4,P5)  

P1-20 6 T0(P0)T3(P1,P2)T20(none)T0(P3)T3(P4,P5) 
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set are 5, 8 and 11 transitions respectively. In this way, we have subject TPs that cover various 

TPs lengths and also different numbers of required input parameters. The three sets of randomly 

generated paths through the class 2 transport protocol EFSM are given in Tables 4, 5, and 6 

respectively. 

As mentioned earlier, In these two EFSMs the maximum level of nested IF statements is less 

or equal to 3 and so we do not apply the conventional approach here since these models will not 

help contrasting the two performances, nevertheless, they are suitable to evaluate the 

performance of the proposed approach. 

In all tables of subject TPs, each TP is given as a sequence of transition labels together with 

the parameters required by each transition and the total number of input parameters required 

Table 6. The third set of subject TPs for the class 2 transport protocol: each TP consists of 11 transitions 

Path 

ID 
Params Subject paths  

P3-0 11 T0(P0)T4(none)T1(P1,P2)T6(none)T18(none)T1(P3,P4)T5(P5)T9(P6)T7(none)T11(P7,P8) T12(P9,P10) 

P3-1 9 T1(P0,P1)T6(none)T18(none)T1(P2,P3)T5(P4)T10(P5)T15(none)T8(P6)T7(none)T13(P7,P8) T17(none) 

P3-2 11 T0(P0)T2(P1,P2)T13(P3,P4)T14(P5,P6)T13(P7,P8)T15(none)T17(none)T18(none)T0(P9)T4(none)T0(P10) 

P3-3 8 T1(P0,P1)T6(none)T18(none)T0(P2)T3(P3,P4)T20(none)T1(P5,P6)T5(P7)T15(none)T7(none)T15(none) 

P3-4 12 T0(P0)T4(none)T1(P1,P2)T5(P3)T10(P4)T7(none)T7(none)T12(P5,P6)T14(P7,P8)T13(P9,P10)T10(P11) 

P3-5 10 T1(P0,P1)T6(none)T18(none)T1(P2,P3)T5(P4)T15(none)T10(P5)T8(P6)T7(none)T11(P7,P8)T8(P9) 

P3-6 7 T1(P0,P1)T6(none)T18(none)T1(P2,P3)T6(none)T18(none)T1(P4,P5)T6(none)T18(none)T0(P6)T4(none) 

P3-7 9 T0(P0)T4(none)T1(P1,P2)T5(P3)T10(P4)T11(P5,P6)T11(P7,P8)T15(none)T15(none)T7(none)T16(none) 

P3-8 9 T1(P0,P1)T5(P2)T14(P3,P4)T10(P5)T7(none)T8(P6)T10(P7)T15(none)T17(none)T18(none)T0(P8) 

P3-9 11 T0(P0)T2(P1,P2)T12(P3,P4)T14(P5,P6)T15(none)T9(P7)T15(none)T10(P8)T16(none)T20(none)T1(P9,P10) 

P3-10 10 T1(P0,P1)T5(P2)T10(P3)T11(P4,P5)T8(P6)T9(P7)T7(none)T17(none)T18(none)T1(P8,P9)T6(none) 

P3-11 12 T1(P0,P1)T5(P2)T7(none)T9(P3)T7(none)T10(P4)T8(P5)T13(P6,P7)T13(P8,P9)T11(P10,P11)T16(none) 

P3-12 10 T1(P0,P1)T5(P2)T12(P3,P4)T9(P5)T7(none)T17(none)T18(none)T0(P6)T2(P7,P8)T9(P9)T7(none) 

P3-13 10 T1(P0,P1)T5(P2)T13(P3,P4)T15(none)T13(P5,P6)T10(P7)T13(P8,P9)T7 (none)T7(none)T17(none)T18(none) 

P3-14 12 T1(P0,P1)T6(none)T18(none)T1(P2,P3)T5(P4)T14(P5,P6)T10(P7)T13(P8,P9)T7(none)T15(none)T13(P10,P11) 

P3-15 13 T1(P0,P1)T5(P2)T14(P3,P4)T15(none)T9(P5)T7(none)T14(P6,P7)T13(P8,P9)T15(none)T9(P10)T11(P11,P12) 

P3-16 12 T1(P0,P1)T5(P2)T12(P3,P4)T15(none)T15(none)T11(P5,P6)T12(P7,P8)T16(none)T20(none)T1(P9,P10)T5(P11) 

P3-17 7 T1(P0,P1)T5(P2)T11(P3,P4)T10(P5)T15(none)T15(none)T7(none)T7(none)T10(P6)T17(none)T18(none) 

P3-18 10 T0(P0)T2(P1,P2)T10(P3)T8(P4)T17(none)T18(none)T1(P5,P6)T5(P7)T14(P8,P9)T7(none)T15(none) 

P3-19 12 T0(P0)T2(P1,P2)T12(P3,P4)T7(none)T12(P5,P6)T13(P7,P8)T16(none)T19(none)T0(P9)T3(P10,P11)T19(none) 

P3-20 12 T0(P0)T2(P1,P2)T13(P3,P4) T14(P5,P6) T8(P7)T7(none)T13(P8,P9)T8(P10) T16(none)T20(none)T0(P11) 

 

 

 

Table 5. The second set of subject TPs for the class 2 transport protocol: each TP consists of 8 transitions 

Path ID Params Subject paths  

P2-0 11 T0(P0)T2(P1,P2)T14(P3,P4)T14(P5,P6)T13(P7,P8)T12(P9,P10) T16(none)T20(none) 

P2-1 6 T1(P0,P1)T5(P2)T10(P3)T15(none)T15(none)T14(P4,P5)T16(none)T20(none) 

P2-2 9 T0(P0)T3(P1,P2)T20(none)T0(P3)T2(P4,P5)T9(P6)T7(none)T11(P7,P8) 

P2-3 9 T0(P0)T3(P1,P2)T20(none)T0(P3) T4(none)T1(P4,P5)T5(P6)T13(P7,P8) 

P2-4 7 T0(P0)T4(none)T0(P1)T2(P2,P3)T9(P4)T12(P5,P6)T7(none)T17(none) 

P2-5 11 T1(P0,P1)T5(P2)T11(P3,P4)T13(P5,P6)T9(P7)T7(none)T13(P8,P9)T10(P10) 

P2-6 9 T1(P0,P1)T6(none)T18(none)T1(P2,P3)T5(P4)T12(P5,P6)T13(P7,P8)T7(none)  

P2-7 10 T0(P0)T2(P1,P2)T9(P3)T11(P4,P5)T7(none)T10(P6)T9(P7)T12(P8,P9) 

P2-8 9 T0(P0)T2(P1,P2)T9(P3)T7(none)T10(P4)T8(P5)T9(P6)T11(P7,P8) 

P2-9 9 T0(P0)T4(none)T1(P1,P2)T5(P3)T11(P4,P5)T11(P6,P7)T9(P8)T7(none) 

P2-10 11 T1(P0,P1)T5(P2)T13(P3,P4)T11(P5,P6)T10(P7)T15(none)T10(P8)T13(P9,P10) 

P2-11 7 T0(P0)T2(P1,P2)T15(none)T7(none)T11(P3,P4)T14(P5,P6)T17(none)T18(none) 

P2-12 7 T1(P0,P1)T5(P2)T7(none)T7(none) T12(P3,P4)T13(P5,P6)T7(none)T7(none) 

P2-13 10 T0(P0)T2(P1,P2)T12(P3,P4)T13(P5,P6)T17(none)T18(none)T0(P7)T3(P8,P9) 

P2-14 9 T0(P0)T2(P1,P2)T14(P3,P4)T14(P5,P6)T7(none)T17(none)T18(none)T1(P7,P8) 

P2-15 10 T1(P0,P1)T5(P2)T9(P3)T10(P4) T14(P5,P6)T15(none)T11(P7,P8)T10(P9) 

P2-16 7 T1(P0,P1)T5(P2)T16(none)T19(none)T1(P3,P4)T6(none)T18(none)T1(P5,P6) 

P2-17 7 T0(P0)T2(P1,P2)T7(none)T14(P3,P4)T7(none)T17(none)T18(none)T1(P5,P6) 

P2-18 10 T0(P0)T2(P1,P2)T14(P3,P4)T11(P5,P6)T9(P7)T17(none)T18(none)T1(P8,P9) 

P2-19 11 T0(P0)T3(P1,P2)T19(none)T1(P3,P4)T5(P5)T13(P6,P7)T10(P8)T12(P9,P10) 

P2-20 8 T1(P0,P1)T5(P2)T13(P3,P4)T16(none)T19(none)T0(P5)T3(P6,P7)T20(none) 
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by each TP. Transitions that do not require input parameters have the label none in their 

parameter section. Once the subject TPs were ready, we applied to each subject TP two search 

techniques, random and ET-based with the proposed fitness approach. 

Both of the ET-based and random techniques were implemented with the publicly available 

Genetic and Evolutionary Algorithm Toolbox GEATbx [40]. A detailed description of each of 

the GEATbx parameters used with ET-based technique is beyond the scope of this paper. 

However, these parameters are fully explained at the GEATbx website [40] and we record the 

values used here to allow experiments to be replicated. An integer valued encoding was use to 

represent the input parameters. The population size was 100 individuals where each individual 

consists of 13 integer variables which represent the maximum number of input parameters 

required by the considered longest TP. The range of values allowed for each variable was [0-

1000]. The selection method was linear-ranking with a selective pressure set to 1.8. Discrete 

recombination was used to recombine individuals whereas mutate integer method was used for 

mutation. GEATbx allows the use of standard random approach by setting the recombination and 

mutation methods to ‘recnone’ and ‘mutrandint’ respectively. The two techniques were given 

1000 generations before search was terminated. Also, search termination occurred if the 

objective value of zero was achieved. Finally, we repeated the search with each technique 10 

times for each subject path. 

Table 7. The results achieved by the proposed and random techniques on each subject TP from the first set of 

subjects TPs of INRES protocol. 

Path 

ID 
Method Gen. 

Time

/m 

Input parameters : integer 

P0 P1 P2 P3 P4 P5 

I1-0 

Proposed 65 0.04 781 250 1 342 0 363 

Random 1000 0.44 - - - - - - 

I1-1 
Proposed 56 0.04 555 1 138 106 0 381 

Random 1000 0.44 - - - - - - 

I1-2 
Proposed 58 0.04 97 836 1 747 0 - 

Random 1000 0.44 - - - - - - 

I1-3 
Proposed 1000 0.46 - - - - - - 

Random 1000 0.44 - - - - - - 

I1-4 
Proposed 46 0.03 253 987 169 1 630 0 

Random 1000 0.44 - - - - - - 

I1-5 
Proposed 74 0.04 922 1 262 0 651 1 

Random 1000 0.44 - - - - - - 

I1-6 
Proposed 57 0.04 869 1 704 2 867 0 

Random 1000 0.46 - - - - - - 

I1-7 
Proposed 37 0.03 246 935 1 667 666 0 

Random 1000 0.44 - - - - - - 

I1-8 
Proposed 1 0.01 25 121 10 15 5 - 

Random 1 0.01 100 10 15 33 47 - 

I1-9 
Proposed 33 0.03 414 1 220 0 219 - 

Random 1000 0.44 - - - - - - 

I1-10 
Proposed 1 0.01 841 646 140 345 934 - 

Random 1 0.01 999 528 634 397 167 - 

I1-11 
Proposed 31 0.03 581 1 769 0 958 - 

Random 1000 0.44 - - - - - - 

I1-12 
Proposed 1 0.01 33 15 44 68 - - 

Random 1 0.01 19 45 67 98 - - 

I1-13 
Proposed 31 0.03 921 1 552 726 0 - 

Random 1000 0.44 - - - - - - 

I1-14 
Proposed 35 0.03 678 1 999 0 604 - 

Random 1000 0.45 - - - - - - 
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4.2. Experiment results 

The ET using proposed fitness and random approaches were applied ten times to each subject 

TP. During the search, we recorded the value of context variables, State variable, input 

parameters and the name of the transition being taken. Also, we recorded the time and the 

number of generations passed until the search was terminated. Since the complete extended set 

of results cannot fit in this paper, we only report summaries of the results which show the 

average number of generations (Gen.) in ten tries, average time elapsed, and a set of input 

parameters values achieved by each applied technique for each subject TP in each set. 

 

4.2.1. Results of INRES Protocol 

The results achieved from the first and second set of subject TPs derived from INRES EFSM are 

reported in Tables 7 and 8. From Table 7, we observe that random search was only successful on 

3 TPs where only one generation was required to trigger each of these TPs, however, the 

proposed technique successfully triggered 14 TPs. There was only one TP (I1-3) that none of the 

two approaches was successful on. This TP is infeasible due to transition t3 being called after 

transition t0. From Fig.1, t3 has a guard (counter > 4), however t0  has an operation (counter :=0) 

therefore the specified path is infeasible. If we excluded the infeasible path, the proposed 

approach was successful on all the feasible TPs included in this set. 

From Table 8, all the 15 TPs included on the second set were successfully triggered by the 

Table 8. The results achieved by the proposed and random techniques on each subject TP from the second set of 

subjects TPs of INRES protocol. 

Path 

ID 
Method Gen. 

Time

/m 

Input parameters : integer 

P0 P1 P2 P3 P4 P5 P6 P7 

I2-0 

Proposed 43 0.06 140 729 1 752 0 - - - 

Random 1000 0.44 - - - - - - - - 

I2-1 
Proposed 37.2 0.04 711 1 765 0 628 134 - - 

Random 1000 0.44 - - - - - - - - 

I2-2 
Proposed 101 0.09 800 1 323 0 24 495 1 420 

Random 1000 0.44 - - - - - - - - 

I2-3 
Proposed 59 0.04 830 1 738 0 - - - - 

Random 1000 0.44 - - - - - - - - 

I2-4 
Proposed 41 0.04 757 1 547 107 0 - - - 

Random 1000 0.44 - - - - - - - - 

I2-5 
Proposed 91 0.08 841 1 177 612 0 648 1 - 

Random 1000 0.44 - - - - - - - - 

I2-6 
Proposed 46 0.04 181 535 1 430 0 - - - 

Random 1000 0.46 - - - - - - - - 

I2-7 
Proposed 49 0.04 284 1 947 369 0 439 - - 

Random 1000 0.44 - - - - - - - - 

I2-8 
Proposed 8 0.01 924 1 961 184 646 921 658 - 

Random 19 0.03 215 1 785 333 150 633 681 - 

I2-9 
Proposed 87 0.08 258 1 352 450 0 16 1 - 

Random 1000 0.44 - - - - - - - - 

I2-10 
Proposed 9 0.01 885 1 322 45 558 - - - 

Random 17 0.01 775 1 780 552 350 - - - 

I2-11 
Proposed 81 0.08 859 1 421 55 0 356 1 - 

Random 1000 0.44 - - - - - - - - 

I2-12 
Proposed 36 0.03 504 1 908 489 819 0 - - 

Random 1000 0.45 - - - - - - - - 

I2-13 
Proposed 35 0.03 706 253 1 709 0 - - - 

Random 1000 0.44 - - - - - - - - 

I2-14 
Proposed 33 0.03 205 1 400 0 792 356 - - 

Random 1000 0.44 - - - - - - - - 
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proposed approach, however, random search was only successful on two TPs where it is 

observed that these two TPs required relatively few generations. Furthermore, the proposed 

approach performance in terms of the required generations on these two TPs was better than that 

of random. However, the performance, in terms of the number of successfully triggered TPs, of 

random search was worse than that observed in the first set which can be related to that fact that 

the second set has longer TPs than that of the first set. 

From both tables, we can state that the majority of TPs were not easy to trigger according to 

the random search performance. Nevertheless, the proposed technique performed similarly on 

both sets of TPs and successfully triggered all the feasible ones.  

4.2.2. Results of class 2 transport protocol 

The results achieved from the three sets of subject TPs derived from the class 2 transport 

protocol are reported in Tables 9, 10 and 11. From Table 9, we can identify two categories of 

Table 9. The results achieved by the proposed and random techniques on each TP from the first set of subjects TPs 

of class 2 transport protocol. 

Path 

ID 
Method Gen. 

Time/

m 

Input parameters : integer 

P0 P1 P2 P3 P4 P5 P6 P7 P8 

P1-0 

Proposed 76.8 0.05 850 626 169 386 0 0 - - - 

Random 1000 0.77 - - - - - - - - - 

P1-1 
Proposed 145 0.09 796 618 286 55 83 0 - - - 

Random 1000 0.78 - - - - - - - - - 

P1-2 
Proposed 264.2 0.18 966 151 548 0 0 0 0 352 - 

Random 1000 0.75 - - - - - - - - - 

P1-3 
Proposed 1 0.01 232 951 21 389 839 871 - - - 

Random 1 0.01 117 635 570 248 794 714 - - - 

P1-4 
Proposed 13.7 0.01 111 774 149 958 138 0 - - - 

Random 51.9 0.06 586 661 481 750 3 131 - - - 

P1-5 
Proposed 204.9 0.15 844 669 669 83 48 0 0 868 - 

Random 1000 0.74 - - - - - - - - - 

P1-6 
Proposed 1 0.01 638 743 450 985 461 - - - - 

Random 1 0.01 413 423 819 930 763 - - - - 

P1-7 
Proposed 148.1 0.11 597 176 228 0 7 27 117 - - 

Random 1000 0.79 - - - - - - - - - 

P1-8 
Proposed 110.1 0.08 700 293 442 1 0 230 - - - 

Random 1000 0.79 - - - - - - - - - 

P1-9 
Proposed 69.2 0.05 858 358 678 0 0 446 - - - 

Random 1000 0.78 - - - - - - - - - 

P1-10 
Proposed 271.6 0.18 829 127 415 0 4 96 0 4 - 

Random 1000 0.78 - - - - - - - - - 

P1-11 
Proposed 149.2 0.09 724 78 392 0 1 96 45 - - 

Random 1000 0.79 - - - - - - - - - 

P1-12 
Proposed 163.9 0.12 895 191 112 93 45 0 0 - - 

Random 1000 0.78 - - - - - - - - - 

P1-13 
Proposed 99.7 0.07 622 744 187 137 5 2 134 - - 

Random 1000 0.77 - - - - - - - - - 

P1-14 
Proposed 323.4 0.22 613 419 126 0 13 0 0 102 0 

Random 1000 0.70 - - - - - - - - - 

P1-15 
Proposed 18.2 0.01 696 573 10 613 0 - - - - 

Random 84.2 0.04 877 878 844 234 642 - - - - 

P1-16 
Proposed 145.9 0.12 350 155 590 25 74 0 0 - - 

Random 1000 0.74 - - - - - - - - - 

P1-17 
Proposed 83 0.05 729 331 354 0 11 - - - - 

Random 1000 0.75 - - - - - - - - - 

P1-18 
Proposed 1 0.01 208 361 826 5 68 - - - - 

Random 1 0.01 622 598 565 410 120 - - - - 

P1-19 
Proposed 1 0.01 22 779 781 269 416 404 - - - 

Random 1 0.01 883 936 443 145 589 842 - - - 

P1-20 
Proposed 1 0.01 500 639 493 321 465 244 - - - 

Random 1 0.01 486 736 612 168 174 625 - - - 
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subjects TPs, the first contains the TPs that were successfully randomly triggered (7 TPs) 

whereas the other category includes the rest of the subject TPs (13 TPs) where a random search 

was unsuccessful. In both categories we observe that the proposed approach was successful and 

so all the subject TPs included in the first set of subject TPs were triggered successfully. Since 

not all the paths through an EFSM model have the same level of difficulty, it is natural to have 

some TPs that are likely to be triggered randomly. This tendency is likely to be observed with 

short TPs since they have fewer transitions and so fewer guards. For example, if we consider the 

subject TP P1_6 shown in Table 4, we notice that this TP has only one guarded transition t3 (see 

Table 1.) and so this TP is likely to be triggered randomly as observed in Table 9. Furthermore, 

for TPs that were triggered randomly, the proposed approach performance was superior since it 

always required either the same or fewer generations.  

From Table 10, we also observe the same two categories of TPs identified previously: one 

includes TPs that were triggered randomly (4 TPs) and the other contains the rest of the TPs 

Table 10. The results achieved by the proposed and random techniques on each TP from the second set of subjects 

TPs of class 2 transport protocol. 

Path 

ID 
Method Gen. 

Time/

m 

Input parameters : integer 

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

P2-0 

Proposed 365 0.23 869 37 740 81 4 80 24 80 62 0 0 

Random 1000 0.78 - - - - - - - - - - - 

P2-1 
Proposed 1 0.01 453 80 509 852 550 126 - - - - - 

Random 1 0.01 878 886 376 410 596 331 - - - - - 

P2-2 
Proposed 95.8 0.07 150 931 765 396 50 153 7 0 9  - 

Random 1000 0.75 - - - - - - - - - - - 

P2-3 
Proposed 22.5 0.02 8 827 363 28 785 145 270 1 132 - - 

Random 52.1 0.03 6 837 118 512 854 115 550 46 84 - - 

P2-4 
Proposed 83.2 0.06 521 264 75 342 665 0 0 - - - - 

Random 1000 0.78 - - - - - - - - - - - 

P2-5 
Proposed 265.5 0.18 955 222 461 0 11 134 0 382 9 122 375 

Random 1000 0.76 - - - - - - - - - - - 

P2-6 
Proposed 209.7 0.15 5 160 844 101 332 0 0 1 136  - 

Random 1000 0.74 - - - - - - - - - - - 

P2-7 
Proposed 283.7 0.20 1000 292 767 659 0 2 0 810 0 0 - 

Random 1000 0.74 - - - - - - - - - - - 

P2-8 
Proposed 307 0.21 581 43 450 608 1 0 877 0 13  - 

Random 1000 0.79 - - - - - - - - - - - 

P2-9 
Proposed 235.6 0.16 602 648 116 67 0 0 0 12 840 - - 

Random 1000 0.74 - - - - - - - - - - - 

P2-10 
Proposed 337.3 0.23 970 883 704 108 30 0 12 995 247 2 126 

Random 1000 0.81 - - - - - - - - - - - 

P2-11 
Proposed 197.7 0.13 613 173 868 1 5 112 9 - - - - 

Random 1000 0.72 - - - - - - - - - - - 

P2-12 
Proposed 211 0.15 456 487 55 0 0 3 140 - - - - 

Random 1000 0.72 - - - - - - - - - - - 

P2-13 
Proposed 216.8 0.15 679 248 494 0 0 30 102 379 426 532 - 

Random 1000 0.73 - - - - - - - - - - - 

P2-14 
Proposed 87.9 0.05 935 796 625 13 16 42 73 279 883  - 

Random 1000 0.74 - - - - - - - - - - - 

P2-15 
Proposed 129 0.08 438 845 435 765 412 85 0 0 0 152 - 

Random 1000 0.78 - - - - - - - - - - - 

P2-16 
Proposed 1 0.01 885 796 505 19 369 390 395 - - - - 

Random 1 0.01 550 711 265 530 935 100 768 - - - - 

P2-17 
Proposed 88 0.07 969 49 67 0 1 305 856 - - - - 

Random 1000 0.74 - - - - - - - - - - - 

P2-18 
Proposed 145.7 0.09 684 180 697 4 68 0 8 657 966 572 - 

Random 1000 0.76 - - - - - - - - - - - 

P2-19 
Proposed 145.2 0.09 507 515 173 621 338 18 90 50 400 0 0 

Random 1000 0.77 - - - - - - - - - - - 

P2-20 
Proposed 91.6 0.07 612 81 267 0 290 261 344 551 - - - 

Random 109.3 0.07 939 273 544 122 19 305 411 508 - - - 
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where a random search was unsuccessful (16 TPs). In both categories, the proposed approach 

was successful and so all the TPs included in the second set were triggered. Since the second set 

of subject TPs included longer TPs than the first set, it was not surprising that fewer TPs were 

randomly triggered. However, the performance of the proposed approach was the same since it 

triggered all of the subject TPs. Furthermore, the proposed approach performance on the subject 

TPs that were randomly triggered was also superior since it required always same or fewer 

generations than a random search.    

From Table 11, we can divide the results into three categories: the first category contains TPs 

that were randomly triggered (3 TPs), the second category contains TPs where a random search 

was unsuccessful (16 TPs) and the proposed approach was successful whereas the third category 

includes TPs where the two applied techniques were unsuccessful (only the last TP P3_20). In the 

first two categories, we observe that the proposed approach produced a valid input test data that 

successfully triggered the subject TPs (19 TPs). Furthermore, since TPs included in the third set 

Table 11. The results achieved by the proposed and random techniques on each TP from the third set of subjects 

TPs of class 2 transport protocol. 

Path 

ID 
Method Gen. 

Time/

m 

Input parameters : integer 

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 

P3-0 

Proposed 169.8 0.12 691 863 962 944 4 206 837 0 10 0 231 - - 

Random 1000 0.75 - - - - - - - - - - - - - 

P3-1 
Proposed 70.7 0.05 884 683 578 689 85 954 0 66 76 - - - - 

Random 1000 0.78 - - - - - - - - - - - - - 

P3-2 
Proposed 208.7 0.16 629 102 199 133 0 72 0 4 125 485 300 - - 

Random 1000 0.76 - - - - - - - - - - - - - 

P3-3 
Proposed 1 0.01 953 545 251 945 835 956 170 386 - - - - - 

Random 1 0.01 210 469 176 369 652 83 556 67 - - - - - 

P3-4 
Proposed 145.4 0.09 551 994 71 551 924 2 392 39 90 142 0 916 - 

Random 1000 0.74 - - - - - - - - - - - - - 

P3-5 
Proposed 237.1 0.17 222 602 1000 438 294 480 0 0 8 1 - - - 

Random 1000 0.75 - - - - - - - - - - - - - 

P3-6 
Proposed 1 0.01 797 107 705 66 890 945 484 - - - - - - 

Random 1 0.01 108 418 599 24 763 213 286 - - - - - - 

P3-7 
Proposed 220.8 0.16 657 999 488 143 393 0 13 0 0 - - - - 

Random 1000 0.72 - - - - - - - - - - - - - 

P3-8 
Proposed 75.6 0.05 463 674 226 31 66 306 0 565 717 - - - - 

Random 1000 0.78 - - - - - - - - - - - - - 

P3-9 
Proposed 88.4 0.05 1000 537 513 0 438 68 0 223 902 696 879 - - 

Random 1000 0.72 - - - - - - - - - - - - - 

P3-10 
Proposed 278.2 0.18 869 690 307 1 0 7 0 474 349 273 - - - 

Random 1000 0.79 - - - - - - - - - - - - - 

P3-11 
Proposed 355.9 0.23 843 534 261 786 801 0 52 84 132 10 1 776 - 

Random 1000 0.76 - - - - - - - - - - - - - 

P3-12 
Proposed 33.2 0.02 879 573 38 0 60 451 489 163 92 440 - - - 

Random 175.4 0.08 692 150 353 0 174 824 546 220 834 909 - - - 

P3-13 
Proposed 191.9 0.08 296 490 0 105 35 2 134 551 26 103 - - - 

Random 1000 079 - - - - - - - - - - - - - 

P3-14 
Proposed 204.8 0.15 226 766 830 45 148 5 45 928 79 61 69 482 - 

Random 1000 0.76 - - - - - - - - - - - - - 

P3-15 
Proposed 290.2 0.18 786 347 353 38 0 123 29 1 4 133 1 764 312 

Random 1000 0.74 - - - - - - - - - - - - - 

P3-16 
Proposed 321 0.22 886 250 270 0 253 0 1 0 1000 832 470 298 - 

Random 1000 0.74 - - - - - - - - - - - - - 

P3-17 
Proposed 105 0.06 959 508 940 0 5 887 491 - - - - - - 

Random 1000 0.77 - - - - - - - - - - - - - 

P3-18 
Proposed 90 0.06 876 368 739 103 0 313 598 54 116 0 - - - 

Random 1000 0.75 - - - - - - - - - - - - - 

P3-19 
Proposed 211.6 0.15 999 704 74 0 308 0 561 143 0 89 112 289 - 

Random 1000 0.76 - - - - - - - - - - - - - 

P3-20 
Proposed 1000 0.80 - - - - - - - - - - - - - 

Random 1000 0.77 - - - - - - - - - - - - - 
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consists of more transitions than these included in the first and second sets, it was not surprising 

to observe that a random search performance was worse that that exhibited previously (only 3 

TPs were triggered randomly). Nevertheless, the proposed approach exhibited similar 

performance to that observed from previous results and this enhances the confidence about the 

validity of the proposed fitness calculation.   

For the third category of TPs reported in Table 11 where both techniques failed, there was only 

one such TP P3_20. This path is infeasible due to the transition t8 being called before transition t10. 

From Table 1, the transition t8 has the condition (R_credit  0), where t10 is the only transition 

that assigns a value, different from zero, to the context variable R_credit. Thus, if the occurrence 

of transition t8 is earlier than the occurrence of transition t10, the resultant path is infeasible. 

From Tables 7, 8, 9, 10, and 11, it is clear that the majority of the subject TPs were not easy to 

trigger. From Table 7, only 3 TPs were triggered by random search and this gives a success rate 

of 21.4 % with the infeasible path being excluded. However, this rate dropped to 13.3 % as 

observed in Table 8. Similarly from Table 9, there are 7 TPs that triggered successfully with 

random approach and so the success rate is 35%. The success rate of random approach dropped 

to 20% as observed in Table 10 and to 15.7 % in Table 11. If we exclude the infeasible TPs 

reported in Tables 7 and 11 all the 91 feasible subject TPs were successfully triggered by the 

proposed approach with a success rate 100 %, however, only 19 TPs were triggered by random 

approach with a success rate of 20.8 % as shown in Table 12. 

Finally, the cost introduced by the proposed approach in terms of time required to perform was 

relatively small. In the worst case, the time required by the proposed approach did not exceed 1 

minute, however, if we consider the experiment environment (Matlab  and GEATbx) it is very 

likely that the observed cost can be further reduced with a stand alone evolutionary testing tool.    

4.3. Threats to validity 

In this subsection we discuss the potential threats to the validity of our study. 

Threats to internal validity are the factors that can affect our results without our interference or 

our knowledge. To reflect this on our study, this can be related to the way that the subject paths 

have been constructed. That is, since a path is randomly generated, we do not control the way in 

which transitions have appeared in the path. This results in the guards associated with each 

transition have been sequenced in a particular order. To limit the problems related to this, we 

generated five sets of subject paths derived from two EFSM case studies in order to cover a 

wider range of paths. Furthermore, we applied our technique ten times for each subject path to 

      Table 12. The success rate of the two applied techniques on the subject EFSM models 

Subject 

EFSM 
Subject TPs Num of TPs Method 

Success 

(TPs) 

Fail 

(TPs) 

Success rate 

% 

INRES 

protocol 

First set 14* 
Proposed 14 0 100 % 

Random 3 11 21.4 % 

Second set 15 
Proposed 15 0 100 % 

Random 2 13 13.3 % 

class 2 

transport 

protocol 

First set 21 
Proposed 21 0 100 % 

Random 7 14 33.3 % 

Second set 21 
Proposed 21 0 100 % 

Random 4 17 19 % 

Third set 20* 
Proposed 20 0 100 % 

Random 3 17 15 % 

Both  

protocols 
All sets 91* 

Proposed 91 0 100 % 

Random 19 72 20.8 % 

   * Infeasible paths are excluded 
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make it less likely that what we observed is an extraordinary phenomenon.       

Threats to external validity are the conditions that restrict our ability to generalize our results. 

The significant threats to external validity of this study are related to: First, the subject EFSM 

models, though nontrivial, they have a relatively small number of states and transitions, and 

larger EFSM model might be helpful to derive more general conclusion about the validity of the 

proposed approach. Nevertheless, this threat has been limited by using the same EFSM models 

used to evaluate other EFSM testing techniques. Second, the lengths of subject paths covered in 

this study are selected to cover three different path lengths. Longer path length may be subject to 

a different cost e.g., more generations are needed in order to traverse a path. Additional 

experiments could investigate the impact of using longer paths. 

 

5. Conclusion 

Due to the complexity of EFSM model, automating the process of input test data generation 

for a set of feasible paths is a challenging task. In order to address this problem, we present an 

effective and easy to implement approach based on ET technique that enables the automatic 

generation of input test data to trigger a given feasible path through an EFSM model. 

The approach treats transitions in an EFSM model as a set of functions and the problem of 

path test data generation is a search for a suitable set of input parameters to be applied to a set of 

functions that are called sequentially. Since the conventional ET approach is mainly effective in 

structural testing where a test target is represented as a single node, a new fitness calculation 

method was introduced to accommodate the problem of path test data generation where there is a 

set of subtargets (each transition in a path) to be achieved. The new fitness method can be seen 

as applying the method of Wegener et al. [32] two times. The first time is to each transition in 

order to achieve a subtarget and the second time is to the whole path where each guarded 

transition is considered as a conditional node. We successfully utilized our approach to generate 

transition coverage test suites for the INRES and class 2 transport protocols. 

In our experiment, we randomly generated five sets of paths with different lengths through the 

considered EFSM models and then we applied the proposed approach together with the random 

technique. For all the feasible paths, the proposed approach was superior and located test data 

that trigger the path and so had a success rate of 100%. However, the random search failed in 

most of the cases and had a success rate of 20.8%. The empirical results provided strong 

evidence that the proposed approach provides a fitness feedback which can progress ET search 

successfully. 

The method presented in this paper is complementary to other available EFSM testing 

techniques that function by generating a set of paths through a given EFSM model since it can be 

incorporated in the input test data generation phase.  

Further research will focus on employing evolutionary testing to estimate the feasibility of 

transition paths in order to automate the process of feasible transition paths generation. This 

includes constructing a fitness metric that depends on analysing the dependencies among 

transitions’ actions and conditions to estimate the likelihood that a given transition path is 

feasible. Such an approach together with the one proposed in this paper can form an integrated 

method to automate testing from EFSM models.  
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