
A Search-Based Approach for Automatic Test Generation from Extended Finite 
State Machine (EFSM) 

 

AbdulSalam Kalaji, Robert M Hierons and Stephen Swift 
School of Information Systems, Math and Computing 

Brunel University 
Uxbridge, UB83PH, UK 

e-mail: {abdulsalam.kalaji,rob.hierons,stephen.swift}@brunel.ac.uk 
 

 
Abstract— The extended finite state machine is a powerful 

model that can capture almost all the aspects of a system. 
However, testing from an EFSM is yet a challenging task due 
to two main problems: path feasibility and path test data 
generation. Although optimization algorithms are efficient, 
their applications to EFSM testing have received very little 
attention. The aim of this paper is to develop a novel approach 
that utilizes optimization algorithms to test from EFSM 
models. 

I. INTRODUCTION AND PROBLEM AREA  
Errors in a system, if not eliminated, can lead to 

unexpected outcomes and testing is therefore an important 
process. However, manual testing is slow, expensive and 
error-prone, thus automation is desirable.  

Model based testing represents the system specification 
in a form of a model which is then used to derive tests that 
can be applied to the system implementation. Finite state 
machine (FSM) and Extended-FSM are commonly used for 
the purpose of model based-testing. An FSM can represent 
the control part of a system such as a traffic light system. 
However, an EFSM is needed to represent more complex 
systems usually with control and data parts such as 
communication protocols. An EFSM essentially comprises 
states, variables and transitions among states. Generally, a 
transition has guards (g) and actions (op) over the machine 
variables where guards must be satisfied in order for this 
transition to be taken and so for the associated actions to be 
executed. For example, Fig. 1 shows an EFSM for a simple 
flight safety system. 

The EFSM is a powerful approach for modeling and has 
been widely applied to many areas in order to derive test 
sequences from systems of interest. Despite its popularity, 
testing from this model is still a challenging task due to two 
main problems: the path feasibility and path test data 
generation.  

Due to the presence of guards and actions, a conflict may 
occur among two or more transitions in a given transition 
path (TP). For example, a transition’s action may set a 
variable x = 0 and the next transition guard checks if x>0.  
Such a path is infeasible and so it is impossible to find test 
data that can trigger it. However, determining if a given path 
is feasible in advance is undecidable. In addition, the 
development of good methods for this problem is an open 

research problem [1]. If the path is feasible, then a set of 
input values is required to trigger (exercise) this path. 
Nevertheless, finding such a set is a difficult task since the 
input domain is usually quite large but the required values 
are just a small subset of this domain [2] e.g., in Fig. 1, the 
parameter Temperature is of Integer type, however, the 
required value to test transition T1 must be in [Tmin..Tmax]. 

There are many approaches that study these two 
problems (path feasibility and path test data generation) by 
converting EFSM to FSM for which many test techniques 
are available. The conversion is conducted by either 
abstracting the data away from an EFSM so it is FSM or 
expanding the EFSM to become FSM [3]. While the first 
approach does not guarantee that the paths taken from the 
FSM will be feasible in the corresponding EFSM, the other 
approach can easily lead to the number of the states in the 
resultant FSM being prohibitively large. 

Although optimization algorithms are recognized to be 
efficient for testing purposes [4], very little attention has 
been paid towards investigating their application for testing 
from EFSM. Therefore, the aim of this paper is to tackle 
these two problems and develop a novel approach to test 
from EFSM models by employing optimization algorithms.  

II. THE PROPOSED APPROACH 

A. The Problem of Selecting Feasible Paths 
Since the path feasibility problem is undecidable, we 

propose a fitness metric to estimate the likelihood of a given 
path being feasible. The fitness metric is based on analyzing 
all the relations among the transitions of a path in order to 
estimate its feasibility. This requires categorizing the 
machine transitions to two types: affecting and affected-by. 
A transition is an affecting within a TP if it has an operation 
which can affect the guards of a later transition, the affected-
by. For example, a transition that assigns a value to a 
variable x can affect later transitions that have guards over x 
in a given TP. Then, each pair of (affecting, affected-by) is 

Safe 
T1 

Warning

Critical

T2 T3
T5

T6 

T1 guards: 
Temperature in [Tmin..Tmax] 
Altitude in [Amin..Amax] 
Oxygen>Omin 
Actions: 
Warning lights and sounds are off  

T4

T7

T8

T9

Figure 1.  An EFSM example of a simple flight safety system 

2009 Testing: Academic and Industrial Conference - Practice and Research Techniques

978-0-7695-3820-4/09 $26.00 © 2009 IEEE

DOI 10.1109/TAICPART.2009.19

131

Authorized licensed use limited to: Brunel University. Downloaded on January 21, 2010 at 11:57 from IEEE Xplore.  Restrictions apply. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/336539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


assigned a numeric value depending on the type of the 
assignments and guards found in this pair respectively. For 
example, consider a pair of (affecting, affected-by) with (op: 
x = 10) and (g: x != 0) respectively. The fitness metric value 
assigned to such a pair represents how easy it is to satisfy 
this guard. The latter value is certainly much less than a 
value given to a pair with (op: x = 10) and (g: x <= 0) since 
this corresponds to infeasible case. Similarly, a pair with (op: 
x = p) and (g: x != 0), where p is a parameter, is better than a 
pair with (op: x =p) and (g: x== 0) since in the first case 
many values of p can achieve the guard, however only one 
value of p (zero) in the second case satisfies the guard. In 
this way, a given TP can be examined for all existed pairs of 
(affecting, affected-by) and assigned an integer value which 
estimates its feasibility. The lower the fitness metric value 
the more likely it is a feasible path. The fitness metric and 
the algorithm that calculates it are described in [5]. 

B. Path Test Data Generation 
Any EFSM transition can be considered as a function 

where the function name and input parameters are derived 
from the corresponding transition name and input 
parameters. Therefore, a path test data is a set of inputs to be 
applied to a set of functions which are called sequentially. 
Given this description, a fitness function is required to guide 
the search for a suitable set of inputs. Wegener et al. [6] 
described a fitness function (Equation 1) in the presence of 
nested IF statements that comprises two components: a 
branch distance [7] and the approach level (Equation 2) to 
measure how close a particular input was to executing the 
target branch that is missed and how many critical nodes are 
away from the target respectively. The critical node is a 
branching node (see Fig. 2) at which the path control flow 
may divert. Since it is necessary to contrast how many 
conditions were achieved by a specific input, the branch 
distance of each IF statement is normalized, using norm 
function, to a value in the range of [0..1] (Equation 3). 

fitness = approach level + norm (branch_distance)          (1) 
approach_level=1- NumCriticalNodeFromTarget            (2) 
norm (branch_distance)  = 1 – 1.05-branch_distance                (3) 

The latter fitness calculation can be applied to one 
function at a time. The work of Wegener et al. [6] was found 
to be more efficient when compared to Tracey et al. work [7] 
since considering only the branch distance to calculate the 
fitness can lead to plateaux in the fitness function landscape 
and these can cause the search to be stuck in local minima 
[4]. However, for a set of functions, a new fitness function is 
required. We propose a fitness function which consists of 
two components: function distance and function approach 
level: a function distance is calculated by using the approach 
of Wegener et al. [6] and thus a function distance is zero 

when the corresponding transition is triggered otherwise a 
function distance reflects how close a given input was to 
executing the subject function. Then each guarded function 
in a path is considered as a critical node and so we compute 
the function approach level which reflects how many critical 
functions (transitions) are away from the target (Equation 4).  

fitness = fun_approach_level + norm(fun_distance)          (4) 

A similar notion of calculating a path fitness is 
introduced in [8] however they calculate the fitness for each 
function in a path by using Tracey et al. [7] approach. Since, 
as argued in [4], the Tracey et al. approach can experience 
problems in the presence of nesting; therefore, we propose 
using the approach of Wegener et al. [6] to calculate the 
function distance which is more efficient.  
     Fig. 3 shows the proposed framework for testing from 
EFSMs which comprises two phases: firstly, the fitness 
metric is used by an evolutionary approach to generate a 
transition path that is likely to be feasible. Then, another 
evolutionary approach is used to try to trigger the path using 
the proposed path fitness calculation. If the second phase is 
not successful, we iterate. 

REFERENCES 
[1] A. Y. Duale and M. U. Uyar, "A method enabling feasible 

conformance test sequence generation for EFSM models," 
Computers, IEEE Transactions on, vol. 53, pp. 614-627, 2004. 

[2] H. Ural and B. Yang, "A test sequence selection method for 
protocol testing," Communications, IEEE Transactions on, vol. 
39, pp. 514-523, 1991. 

[3] R. M. Hierons and M. Harman, "Testing conformance of a 
deterministic implementation against a non-deterministic 
stream X-machine," Theoretical Computer Science, vol. 323, 
pp. 191-233, 2004. 

[4] P. McMinn, "Search-based software test data generation: a 
survey: Research Articles," Software Testing, Verification & 
Reliability, vol. 14, pp. 105-156, 2004. 

[5] A. S. Kalaji, R. M. Hierons, and S. Swift, "Generating Feasible 
Transition Paths for Testing from an Extended Finite State 
Machine (EFSM)," in Proceeding of the 2nd IEEE 
International Conference on Software Testing, Verification, 
and Validation, pp. 230-239, 2009. 

[6] J. Wegener, A. Baresel, and H. Sthamer, "Evolutionary test 
environment for automatic structural testing," Information and 
Software Technology, vol. 43, pp. 841-854, 2001. 

[7] N. Tracey, J. Clark, K. Mander, and J. McDermid, "An 
automated framework for structural test-data generation," in 
Proceeding 13th IEEE International Conference on Automated 
Software Engineering, pp.285-288, 1998. 

[8] R. Lefticaru and F. Ipate, "Functional Search-based Testing 
from State Machines," in Proceedings of the 1st IEEE 
International Conference on Software Testing, Verification and 
Validation, pp. 525-528, 2008. 

1- if (x > y) 
2-  if (x == 0) 
3-    // Target 
 

Nodes 1 and 2 are 
critical nodes 

1 

2 

Approach level =1
Branch distance = 

norm(abs (x-y)) 

Figure 2.  A fitness calculation example  

T 

T 

Target 

F 

F 
Approach level = 0

Branch distance = norm(abs (x))
Figure 3.  The proposed framework to test from EFSM 

Regenerate the path if test data was not found

Generate a path using 
the fitness metric 

Represent the path 
as set of functions 

Test criteria e.g., transition coverage 

Try to generate test 
data to trigger the path

132

Authorized licensed use limited to: Brunel University. Downloaded on January 21, 2010 at 11:57 from IEEE Xplore.  Restrictions apply. 


