
Generating Feasible Transition Paths for Testing from an Extended Finite State
Machine (EFSM) with the Counter Problem

Abdul Salam Kalaji, Robert Mark Hierons and Stephen Swift
School of Information Systems, Math and Computing, Brunel University, Uxbridge, UB83PH, UK

e-mail: {abdulsalam.kalaji,rob.hierons,stephen.swift}@brunel.ac.uk

Abstract— The extended finite state machine (EFSM) is a
powerful approach for modeling state-based systems. However,
testing from EFSMs is complicated by the existence of
infeasible paths. One important problem is the existence of a
transition with a guard that references a counter variable
whose value depends on previous transitions. The presence of
such transitions in paths often leads to infeasible paths. This
paper proposes a novel approach to bypass the counter
problem. The proposed approach is evaluated by being used in
a genetic algorithm to guide the search for feasible transition
paths (FTPs).

I. INTRODUCTION
Testing is an important part of the system development

process. However, conventional manual testing is known to
be expensive and imprecise and so there has been much
interest in developing methods that can automate testing [1].
In this paper, we focus on conformance testing which aims to
determine whether the implementation under test (IUT)
agrees with its specification.

In order to conduct conformance testing, it is desirable to
have a model from which test sequences can be derived. The
EFSM is a modeling approach that is commonly used for
representing state-based systems [2]. The EFSM consists of
a finite set of states, transitions and context variables. Any
transition can have guards and operations where the guards
must be satisfied so that the transition can be fired and thus
the associated operations are executed [2]. Although EFSMs
are a popular modeling approach, automatic testing from an
EFSM is complex due to the presence of data and guards
(preconditions) which can result in infeasible paths. Testing
from an EFSM can be based on coverage criteria such as
transition coverage. When attempting to satisfy a criterion it
is normal to produce a set of transition paths (TPs) through
the EFSM that satisfy the criterion and then produce test data
to trigger the paths. However, the problem of generating
feasible transition paths (FTPs) from an EFSM is generally
undecidable [3]. Furthermore, developing good methods to
derive FTPs from an EFSM is an open research problem [4].
One important problem that can result in a TP being
infeasible is the presence of a transition whose guard(s)
references a counter variable. For example, if an EFSM has a
counter variable c whose value is initially 0, a transition ti
that has a guard c > 2 cannot be exercised unless a transition
tj which updates the value of c has already occurred a
sufficient number of times.

Although optimization algorithms, such as genetic
algorithm (GA), have proven to be efficient in test

automation [1], there has been very little work on using them
in testing from an EFSM. Our previous work [5] proposed a
TP fitness metric based on analyzing the data dependencies
in a given TP in order to estimate its feasibility. The
proposed TP fitness metric can be utilized in a search to
generate a set of FTPs that are likely to be feasible.
However, for an EFSM that contains a counter variable (i.e.
a variable that counts how many times a transition is
repeated), a given TP may include a transition that has a
guard over the counter variable and so there is a need to
determine which other transitions are involved (those that
affect the counter variable value) and how many times they
must be called. The counter problem thus requires additional
analysis. Unfortunately, this is a substantial mathematical
problem [3] and counter variables are a significant problem
for search based testing (see for example [1, 6]).

In this paper we present a novel approach based on
control and data analysis that extends the TP fitness metric of
[5] to automatically determine whether a given TP includes a
transition whose guard references a counter variable, which
other transitions are involved (are required in this TP) and
how many times they must be called.

The approach presented in this paper aims to form part of
the solution to the following problem:
Given: a test adequacy criterion and an EFSM model that
includes counter variables
Problem: generate a set of TPs that are feasible and satisfy
the test criterion.

The primary contributions of this paper are the following:
1. It proposes a method to bypass the counter problem

by automatically determining whether a transition
guard references a counter, which other transitions are
involved and how many times they have to be called

2. It shows that the proposed approach is effective in
generating FTPs from EFSMs models with counter
variables to satisfy the test criterion.

II. THE PROPOSED FTPS GENERATION APPROACH
The TP fitness metric proposed in our previous work [5]

penalizes the dependencies found among a TP’s transitions
in order to estimate the TP feasibility. Importantly, the
fitness metric can be computed quickly and so is suitable for
use in search-based testing. However, problems can occur
when a given TP includes a transition guard that references a
counter variable and in this case the search may not receive
the necessary guidance. Here, the problem is that in order to
execute a transition t′ whose guard references a counter
variable we must first execute another transition(s) t (that

Third International Conference on Software Testing, Verification, and Validation Workshops

978-0-7695-4050-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ICSTW.2010.25

232

Authorized licensed use limited to: Brunel University. Downloaded on May 27,2010 at 10:47:52 UTC from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/336295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

updates the counter variable value) and a certain number of
times so that the guard of t′ is satisfied.

To overcome this problem, the test criterion should
include the required extra transitions together with the
number of times they have to be called. Generally, this
problem is a challenging mathematical task [3]. However, in
some cases it can be approached with an abstraction to
generate acceptable solutions. This abstraction is related to
the counter definition in an EFSM. In our previous work [5],
we classified the assignment operations op to three types
opvp, opvv and opvc which denote a variable is assigned a
value based on a parameter, variable(s), and a constant
respectively. We further classify the operation opvv to four
subtypes to cover the counter situations: (1) opv+c: it
increments v by a constant value. (2) opv-c: it decrements v by
a constant value. (3) opv×c: it multiplies v by a constant value.
(4) opv/c: it divides v by a non-zero constant value.

Based on the classifications of counter situations, we can
provide the following definitions:
Definition 1: A context variable v in an EFSM is a counter
variable if there is a transition t with assignment op ∈ {
opv+c, opv-c, opv×c, opv/c} to v and v is referenced by a guard.
Definition 2: A transition t is affecting a counter variable v if
it assigns to v using an op ∈ {opvc, opv+c, opv-c, opv×c, opv/c},
however, t is affected-by a counter if it has a guard that
references v.
Definition 3: A transition t is an initialiser of a counter
variable v if it assigns to v a constant using an op ∈ {opvc},
however t is an updater of v if it assigns to v using an op
∈{opv+c, opv-c, opv×c, opv/c}.
Definition 4: Given a counter variable v, a TP: t1, t2, .., tn and
three transitions ti, tj and tk from this TP where i < j < k, the
triple (ti, tj, m) forms a sequence that can satisfy tk guard if ti
is an initialiser of v, tj is an updater of v, tk is an affected-by
v, the path ti,..,tk contains exactly m instances of transition tj
without other assignments to v and m ≥ 0 is an integer that
specifies the exact number of updater occurrences so that tk
guard is satisfied.

Based on the above definitions, if a given TP is required
to cover a transition tk which is affected-by a counter, the
problem can be approached by having a method to
automatically determine all the possible triples of (initialiser,
updater, updater times) that can satisfy the guard of tk.

A. Dependencies Representation
For each counter variable v, we determine its initialisers

and updaters. Also, we record the type of operation of each
updater and the guard type of each transition that is affected-
by a counter variable. Table 1 and Table 2 show the integer
representation of possible guard operators and operations.

Based on this representation, we can construct two matrices:
affecting a counter aff[] and affected by a counter aff-by[].
Each row in these matrices represents one transition and each
column represents one counter variable. Each cell comprises
a tuple with two fields: one to record the operation code in
case of an aff[] matrix or the guard code in case of aff-by[]
matrix. The other field of the tuple records the value of the
constant that appears in the operation or the guard.

B. Finding the Required Sequence of Transitions
The proposed approach is applied through an algorithm

which consists of three routines: FindSequence, Validate
and GuardCheck. The first procedure, FindSequence, is the
main one and it determines whether a target transition, tj, has
guard(s) referencing a counter variable(s). Also, it scans for
all possible (initialiser, updater) pairs that initially have the
potential to satisfy the given target guard(s) over a counter
variable(s). The second function, Validate, is called from the
main procedure to validate each given triple (initialiser,
updater, updater times) by: (1) checking whether calling only
the initialiser can satisfy the target transition guard and (2)
setting a given triple as either invalid or valid and thus
setting the number of times the updater must be called. The
last function, GuardCheck, is used by function Validate to
check if a given guard is satisfied. Fig. 1 shows a high level
description of the algorithm that finds a sequence of
transitions to bypass the counter problem.

Naturally, there can be more than one possible triple
(initialiser, updater, updater times) that may satisfy tj guard.
For such a case, a set of triples are linked by OR. If tj guard
references more than one counter variables, then triples that
belong to different counter variables are linked by AND.

Once the final set of triples is ready, it is fed to the TP
fitness metric [5] to check whether the transition to cover (tj)
exists, furthermore, the triple (initialiser, updater, updater
times) is present in this TP. This is accomplished by
checking that the initialiser comes first, then the updater
occurs certain number of times and finally the target tj. The
path from the initialiser to the first occurrence of the updater
must be definition clear for the related counter variable. The
occurrences of the updater need not be in successive
transitions in the path and it is sufficient that the sub-path
between each pair of occurrences of the updater is definition
clear for the counter variable. Finally, the path from the last
occurrence of the updater to the target tj must also be
definition clear for the same counter variable. If a given
generated TP does not meet the criterion, then a large penalty
value (10000) is assigned i.e. infeasible TP.

In order to verify whether a generated TP is feasible, a
method is required to trigger this TP. If a TP requires a set of
test data, then a suitable set of test data should be provided.
In this study, we use the test data generator technique
proposed in [8] to trigger the generated TPs.

III. EXPERIMENT AND APPROACH VALIDATION
In this paper, we use two EFSM case studies to validate

the proposed approach. The first EFSM is the Inres initiator
and the second is an ATM system. The specification details
of these EFSMs are given in [7].

TABLE 1 & 2. GUARDS AND OPERATIONS REPRESENTATION

 Guard Representation
no guard 0

= 1
> 2
< 3
≥ 4
≤ 5
≠ 6

Operation Representation
no operation 0

opv=c 1
opv+c

 2
opv-c 3
opv×c 4
opv/c 5

233

Authorized licensed use limited to: Brunel University. Downloaded on May 27,2010 at 10:47:52 UTC from IEEE Xplore. Restrictions apply.

 Since we study the counter problem, a TP length should
be adequate to allow a certain transition, an updater, to occur
a sufficient number of times. In this study, we consider TPs
with length n = 10 to be long enough to allow generating a
set of FTPs from both EFSMs. However, this TP length is
used for an illustration purpose and longer TP length can be
used. Also, we compare this approach with the previously
proposed TP fitness metric [5] to understand how the
proposed approach enhances the previous approach.

A GA search that implemented the previously defined TP
fitness metric together with the proposed approach was
applied to the two EFSM case studies to generate two sets of
TPs (16 TPs for Inres initiator and 30 TPs for the ATM) that
provide the transition coverage test suites (see Tables 3 and
4). During TP generation, each path was first checked for the
existence of a particular transition that this TP is intended to
cover, then if this TP included a guard that referenced a
counter variable, then the test criterion (transition coverage)
for this path was modified to require extra transitions
(triples) and the TP was rechecked against these additional
requirements. Any TP that violates these constraints was
given a large fitness value (10000).

For the purpose of comparison, two similar alternative
sets of TPs were also generated by using only the guide of
the previously defined TP fitness metric. Since the complete
set of results cannot fit in this paper, Table 5 reports only the
alternative generated TPs that reference counter variables.

The GA searches (FTPs and path test data generation)
were implemented using the publicly available Genetic and
Evolutionary Algorithm Toolbox [9]. A detailed description
of each of the tool parameters used is beyond the scope of
this paper. However, these parameters are fully explained at
the tool website [9] and we record the values used here for
the purpose of experiment replication.

An integer valued encoding was used. The population
size was 100 individuals where each individual consisted of
10 variables. The selection method was linear-ranking with a
selective pressure set to 1.8. Discrete recombination was
used whereas mutate integer mutation was applied. The
range of values allowed was [0..1000] for path test data
generation, [1..28] for Inres initiator FTPs generation and
[1..60] for the ATM FTPs generation. Searches were allowed
1000 generations before being terminated. Finally, for path
test data generation, we repeated the search 10 times for each
subject TP.

A. Experimental Results
Table 3 shows that the entire 16 subject TPs for the Inres

initiator were feasible. The TP fitness metric values
associated with the TPs that did not suffer a counter problem
were generally low. However, the TPs that include
transitions with guards that reference a counter variable were
associated with higher TP fitness values. This applies to TPs
I4, I9 and I11, however these paths are all feasible.

From Table 5, the alternative Inres TPs which reference a
counter variable were associated with lower TP fitness

Procedure find sequences of transitions
1. input: tj, affecting matrix aff[], affected-by matrix affby[]
2. output: a list LT of triples (initialiser, updater, updater_times)
3. goal: determine a sequence of transitions to satisfy tj guard
4. initialize variable: empty(LT)
5. for vi = 1 to number_of_counter_varaibles
6. if gurad of tj references a counter_var_vi then
7. build a list LI of transitions that initialise vi
8. build a list LU of transitions that update vi
9. for every initialiser from LI
10. for every updater from LU
11. if validate (initialiser, updater, updater_times) then
12. insert in LT the triple (initialiser, updater, updaterTimes);
13. endIf
14. endFor
15. endFor
16. endIf
17.endFor

Function guardCheck
 a1. input: guard_code, guard_const, counter_var
 a2. output: Boolean result
 a3. goal: check whether a guard is satisfied
 a4. Initialize variable: result = false;
 a5. case guardCode of
 a6. 0 : result = true; // no guard
 a7. 1 : if counter_var = = guard_const then result = true;
 a8. 2 : if counter_var > guard_const then result = true;
a9. 3 : if counter_var < guard_const then result = true;
a10. 4 : if counter_var ≥ guard_const then result = true;
a11. 5 : if counter_var ≤ guard_const then result = true;
a12. 6 : if counter_var ≠ guard_const then result = true;
a13.endCase

Figure 1. High level description of the algorithm that find a sequence(s) of transitions to cover a target transition with the counter problem

Function validate
b1. input: tj, vi, aff[], affby[], a triple (initialiser, updater, updater_times)
b2. output: Boolean result
b3. goal: determine how many times an updater should be called in order to
 satisfy the guard of tj over the counter variable vi
b4. initialize variable: result = false; // currently set the triple to be invalid
b5. counter_var_vi = initialiser_const; // apply the initialiser operation
b6. if guardCheck(tj_guard_code, counter_var_vi, tj_guard_const) then
b7. updater_times := 0; // calling the initialiser alone can satisfy tj_guard
b8. result = true; // and so the triple is valid; exit the routine
b9. exit;
b10.endIf
b11. repeat
b12. first_branch_distance_of_tj_guard = | counter_var_vi - tj_guard_const |;
b13. if guardCheck(updater_guard_code, counter_var_vi, updater_guard_const) then
 // check if the updater guard is true and so the updater can be called
b14. case updater_operation_code of
b15. 2 : counter_var_vi = counter_var_vi + updater_operation_const;
b16. 3 : counter_var_vi = counter_var_vi - updater_operation_const;
b17. 4 : counter_var_vi = counter_var_vi * updater_operation_const;
b18. 5 : counter_var_vi = counter_var_vi / updater_operation_const;
b19. endCase
b20. updater_times = updater_times + 1;
b21. else result = false; // cannot call the updater and thus the triple is invalid
b22. break;
b23. endIf
b24. if guardCheck(tj_guard_code, counter_var_vi, tj_guard_const) then
b25. result = true; // triple is valid; no more calls to the updater is required
b26. break; // break and exit
b27. else // so far tj guard is not satisfied, check if a loop can reoccure
b28. next_branch_distance_of_tj_guard = | counter_var_vi - tj_guard_const |;
b29. endIf
b30. until (next_branch_distance_of_tj_guard ≥ first_branch_distance_of_tj_guard)
 // the value that can satisfy tj guard has been surpassed and the triple is invalid

234

Authorized licensed use limited to: Brunel University. Downloaded on May 27,2010 at 10:47:52 UTC from IEEE Xplore. Restrictions apply.

metric values than that observed in Table 3, however, these
were not successfully triggered. This relates to paths Ii4, Ii9
and Ii11 which are infeasible due to insufficient occurrence of
a specific transition (the updater).

From Table 4, we also find that the subject TPs derived
from the ATM were all feasible. In addition, the path A3 is
associated with the highest TP fitness metric value due to
this path referencing a counter variable. Compared to the
alternative ATM set of TPs which reference a counter
variable (see Table 5), the path Aa3 is associated with lower
TP fitness metric but this path is infeasible due to the
insufficient occurrences of the updater.

The results show that for these EFSMs the proposed
approach was successful in generating FTPs to provide

100% transition coverage even though the EFSMs suffered
from the counter problem. These results clearly show that the
proposed FTP generation approach has enhanced the TP
fitness metric to successfully bypass the counter problem.

IV. CONCLUSION
In this paper, we present a novel approach to generate

FTPs from EFSMs that suffer from the counter problem. The
proposed approach extends our previous FTPs generation
approach. The proposed approach was utilized to guide a GA
search to find two sets of TPs that provide the transition
coverage test suites for two EFSM case studies which suffer
from the counter problem. The experimental results show
that the proposed approach effectively guided the GA search
towards TPs that were feasible and the counter problem was
successfully bypassed. Future research will investigate other
cases of the counter problem that might exist, though in
practice, the counter problem is likely to appear in the ways
described in this study.

REFERENCES
[1] P. McMinn, "Search-based software test data generation: a
survey," Software Testing, Verification & Reliability, vol. 14, pp.
105-156, 2004
[2] A. Petrenko, S. Boroday, and R. Groz, "Confirming
configurations in EFSM testing," Software Engineering, IEEE
Transactions on, vol. 30, pp. 29-42, 2004.
[3] S. T. Chanson and J. Zhu, "A unified approach to protocol test
sequence generation," Proceedings of 12th Annual Joint
Conference of the IEEE Computer and Communications Societies.
Networking: Foundation for the Future. IEEE, vol. 1, 1993, pp.
106-114.
[4] A. Y. Duale and M. U. Uyar, "A method enabling feasible
conformance test sequence generation for EFSM models,"
Computers, IEEE Transactions on, vol. 53, pp. 614-627, 2004.
[5] A. S. Kalaji, R. M. Hierons, and S. Swift, "Generating Feasible
Transition Paths for Testing from an Extended Finite State
Machine (EFSM)," in Software Testing, Verification, and
Validation (ICST), 2nd IEEE International Conference on, IEEE,
2009, pp. 230-239.
[6] M. Harman, "Open Problems in Testability Transformation," in
Software Testing Verification and Validation Workshop. IEEE
International Conference on, IEEE, 2008, pp. 196-209.
[7] A. S. Kalaji, R. M. Hierons, and S. Swift, "A search-based
technique for testing from extended finite state machine model,"
Brunel University, Technical report, 2009, pp. 1-36. Available
from: http://bura.brunel.ac.uk/handle/2438/3624.
[8] A. S. Kalaji, R. M. Hierons, and S. Swift, "A Search-Based
Approach for Automatic Test Generation from Extended Finite
State Machine (EFSM)," in Testing: Academic and Industrial
Conference - Practice and Research Techniques (TAIC-PART),
IEEE, 2009, pp. 131-132.
[9] H. Pohlheim, "GEATbx - Genetic and Evolutionary Algorithm
Toolbox for Matlab," 1994-2010. http://www.geatbx.com.

TABLE 5. ALTERNATIVE SUBJECT TPS

 ID EFSM Subject TPs Params Fitness Avg.Gen Taken
 Aa3 ATM t1,t2,t3,t1,t4,t5,t7,t9,t7,t9 4 208 1000 No
 Ii4 Inres t0,t1,t13,t1,t3,t4,t12,t1,t13,t12 0 136 1000 No
 Ii9 Inres t0,t1,t2,t5,t10,t9,t1,t13,t12,t1 1 142 1000 No
 Ii11 Inres t0,t1,t13,t12,t12,t1,t2,t5,t10,t11 0 136 1000 No

TABLE 4. SUBJECT TPS FOR THE ATM

ID Subject TPs Params Fitness Avg.Gen Taken
A1 t1,t4,t6,t25,t26,t25,t26,t8,t10,t25 2 36 31 Yes
A2 t1,t4,t5,t8,t10,t7,t9,t23,t1,t2 4 54 85 Yes
A3 t1,t2,t4,t6,t23,t1,t2,t2,t2,t3 8 802 141 Yes
A4 t1,t4,t5,t25,t26,t25,t26,t25,t26,t7 2 36 26 Yes
A5 t1,t4,t5,t8,t10,t25,t26,t7,t9,t7 2 36 23 Yes
A6 t1,t4,t6,t25,t26,t25,t26,t25,t26,t8 2 36 26 Yes
A7 t1,t4,t5,t25,t26,t8,t10,t25,t26,t7 2 36 23 Yes
A8 t1,t4,t6,t7,t9,t8,t10,t8,t10,t8 2 36 34 Yes
A9 t1,t4,t5,t7,t9,t25,t26,t25,t26,t7 2 36 25 Yes
A10 t1,t4,t5,t25,t26,t7,t9,t8,t10,t8 2 36 27 Yes
A11 t1,t4,t5,t7,t9,t25,t26,t7,t11,t16 4 60 101 Yes
A12 t1,t4,t6,t8,t10,t7,t12,t15,t9,t8 4 60 128 Yes
A13 t1,t4,t6,t7,t9,t7,t13,t16,t9,t8 4 56 60 Yes
A14 t1,t4,t6,t7,t14,t15,t9,t8,t10,t25 4 76 82 Yes
A15 t1,t4,t6,t25,t26,t7,t13,t15,t9,t25 4 56 64 Yes
A16 t1,t4,t6,t7,t13,t16,t9,t25,t26,t25 4 56 81 Yes
A17 t1,t4,t6,t8,t17,t22,t10,t25,t26,t7 4 72 75 Yes
A18 t1,t4,t5,t8,t18,t21,t10,t25,t26,t8 4 56 60 Yes
A19 t1,t4,t5,t25,t26,t8,t19,t22,t10,t7 4 60 382 Yes
A20 t1,t4,t6,t7,t9,t8,t20,t22,t10,t25 4 60 222 Yes
A21 t1,t4,t5,t8,t10,t8,t18,t21,t10,t7 4 56 57 Yes
A22 t1,t4,t5,t25,t26,t25,t26,t8,t18,t22 4 56 64 Yes
A23 t1,t4,t5,t25,t26,t8,t10,t7,t9,t23 3 48 60 Yes
A24 t1,t4,t24,t1,t4,t6,t25,t26,t8,t10 4 72 164 Yes
A25 t1,t4,t5,t7,t9,t25,t26,t8,t10,t25 2 36 41 Yes
A26 t1,t4,t6,t25,t26,t7,t9,t25,t26,t7 2 36 30 Yes
A27 t1,t4,t6,t8,t10,t25,t27,t30,t26,t8 6 98 300 Yes
A28 t1,t4,t5,t25,t28,t30,t26,t7,t9,t25 6 98 175 Yes
A29 t1,t4,t6,t25,t26,t25,t26,t25,t27,t29 6 98 464 Yes
A30 t1,t4,t5,t25,t27,t30,t26,t25,t26,t7 6 98 317 Yes

TABLE 3. SUBJECT TPS FOR THE INRES INITIATOR

ID Subject TPs Params Fitness Avg.Gen Taken
I0 t0,t12,t12,t1,t13,t12,t1,t3,t13,t12 0 0 1 Yes
I1 t0,t12,t12,t1,t13,t12,t1,t13,t1,t13 0 0 1 Yes
I2 t0,t1,t2,t14,t12,t1,t2,t14,t1,t3 0 0 1 Yes
I3 t0,t12,t12,t1,t3,t2,t14,t12,t1,t13 0 0 1 Yes
I4 t0,t12,t12,t12,t1,t3,t3,t3,t3,t4 0 820 1 Yes
I5 t0,t12,t12,t12,t12,t12,t1,t2,t5,t10 0 0 1 Yes
I6 t0,t12,t1,t2,t5,t7,t5,t6,t5,t10 2 48 1 Yes
I7 t0,t1,t13,t1,t2,t5,t7,t5,t15,t12 1 24 25 Yes
I8 t0,t1,t3,t2,t14,t12,t1,t2,t5,t8 1 6 9 Yes
I9 t0,t1,t3,t2,t5,t8,t8,t8,t8,t9 5 850 1 Yes
I10 t0,t12,t12,t1,t13,t1,t2,t5,t10,t15 0 0 1 Yes
I11 t0,t1,t2,t5,t8,t8,t8,t8,t11,t1 4 844 1 Yes
I12 t0,t1,t13,t1,t3,t13,t12,t12,t1,t13 0 0 1 Yes
I13 t0,t1,t2,t14,t1,t13,t1,t2,t14,t12 0 0 1 Yes
I14 t0,t12,t1,t13,t1,t2,t14,t12,t1,t3 0 0 1 Yes
I15 t0,t12,t12,t12,t12,t1,t2,t5,t10,t15 0 0 1 Yes

235

Authorized licensed use limited to: Brunel University. Downloaded on May 27,2010 at 10:47:52 UTC from IEEE Xplore. Restrictions apply.

