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Leaf area index (LAI) and leaf chlorophyll content (Chll) represent key biophysical and biochemical controls on
water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and Chll provide
critical information on vegetation density, vitality and photosynthetic potentials. However, simultaneous retrieval
of LAI and Chll from space observations is extremely challenging. Regularization strategies are required to increase
the robustness and accuracy of retrieved properties and enable more reliable separation of soil, leaf and canopy
parameters. To address these challenges, the REGularized canopy reFLECtancemodel (REGFLEC) inversion system
was refined to incorporate enhanced techniques for exploiting ancillary LAI and temporal information derived
from multiple satellite scenes. In this current analysis, REGFLEC is applied to a time-series of Landsat data.
A novel aspect of the REGFLEC approach is the fact that no site-specific data are required to calibrate the model,
which may be run in a largely automated fashion using information extracted entirely from image-based and
other widely available datasets. Validation results, based upon in-situ LAI and Chll observations collected over
maize and soybean fields in central Nebraska for the period 2001–2005, demonstrate Chll retrieval with a relative
root-mean-square-deviation (RMSD) on the order of 19% (RMSD = 8.42 μg cm−2). While Chll retrievals were
clearly influenced by the version of the leaf optical properties model used (PROSPECT), the application of
spatio-temporal regularization constraints was shown to be critical for estimating Chll with sufficient accuracy.
REGFLEC also reproduced the dynamics of in-situ measured LAI well (r2 = 0.85), but estimates were biased
low, particularly over maize (LAI was underestimated by ~36 %). This disparity may be attributed to differences
between effective and true LAI causedby significant foliage clumping not being properly accounted for in the can-
opy reflectance model (SAIL). Additional advances in the retrieval of canopy biophysical and leaf biochemical
constituents will require innovative use of existing remote sensing data within physically realistic canopy reflec-
tancemodels alongwith the ability to exploit the enhanced spectral and spatial capabilities of upcoming satellite
systems.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The ability to accuratelymodel fluxes of carbon dioxide, water vapor
and heat in the terrestrial biosphere is important for improving water
resourcemanagement, agricultural productivity and our understanding
of ecosystem functioning. However, the capacity to do this depends on
1) the physical realism of the model employed (Kalma, McVicar &
McCabe, 2008), 2) the quality of meteorological model forcing fields
(Ershadi, McCabe, Evans, Mariethoz & Kavetski, 2013) and 3) the ability
to specify model inputs and parameters with adequate accuracy (Jung

et al., 2007; Zaehle, 2005). State of the art process-oriented terrestrial
biosphere models (TBMs) may be characterized by improved process
understanding, but many of the parameters controlling vegetation
structure and function can be challenging to define with acceptable
accuracy over spatial and temporal domains (Groenendijk et al., 2011;
Knorr & Heimann, 2001; Wang, Baldocchi, Leuning, Falge & Vesala,
2007). Remote sensing can support such modeling efforts by offering
spatially and temporally distributed information on important vegeta-
tion characteristics, which would be very difficult to obtain otherwise.
Likewise, the integration of observation based model constraints
(Dorigo et al., 2007; Houborg, Cescatti, Migliavacca & Kustas, 2013;
Kaminski et al., 2012) are key towards reducing uncertainties of
model predicted surface fluxes in space and time (Bonan et al., 2011;
McCabe, Kalma & Franks, 2005). To advance these issues, the work pre-
sented here focuses on the retrieval of canopy biophysical and leaf

Remote Sensing of Environment 159 (2015) 203–221

⁎ Corresponding author at: Environmental Sciences and Engineering Division, Water
Desalination and Reuse Center, King Abdullah University of Science and Technology,
Kingdom of Saudi Arabia. Tel.: +966 2 808 2237.

E-mail address: rasmus.houborg@kaust.edu.sa (R. Houborg).

http://dx.doi.org/10.1016/j.rse.2014.12.008
0034-4257/© 2014 Elsevier Inc. All rights reserved.

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse

http://dx.doi.org/10.1016/j.rse.2014.12.008
mailto:rasmus.houborg@kaust.edu.sa
http://dx.doi.org/10.1016/j.rse.2014.12.008
http://www.sciencedirect.com/science/journal/00344257
www.elsevier.com/locate/rse
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2014.12.008&domain=pdf


biochemical constituents and their use as potential constraints in spa-
tially and temporally distributed model simulations.

Leaf Area Index (LAI), defined as one-sided green leaf area per
unit of horizontal ground area, is a key biophysical parameter used
in most TBMs that often functions as the primary remote sensing
based descriptor of vegetation density, phenology and distribution
across a landscape (Bonan et al., 2011; Medvigy, Wofsy, Munger,
Hollinger & Moorcroft, 2009; Sellers et al., 1996). Mapping LAI
using remotely sensed data has been a major community objective
(e.g. Bacour, Baret, Béal, Weiss & Pavageau, 2006; Chen & Cihlar,
1996; Gray & Song, 2012; Knyazikhin, Martonchik, Myneni, Diner &
Running, 1998; Viña, Gitelson, Nguy-Robertson & Peng, 2011) and
a range of multi-year validated global and regional datasets of LAI
have been made available at resolutions of ~1 km based on medium
resolution optical sensors such as MODIS (Myneni et al., 2002; Yang
et al., 2006), SPOT/VEGETATION (Baret et al., 2007, 2013) and
MODIS/MISR (Pinty et al., 2011). Reported accuracies (direct validation
against in-situmeasurements) varywidely, but typically range between
0.5 and 1.0 LAI units root-mean-square-difference (RMSD) (Garrigues
et al., 2008; Yang et al., 2006; http://landval.gsfc.nasa.gov/), although
significantly higher errors may occur as a result of land cover misclassi-
fication and large uncertainties in surface reflectance due to aerosol and
cloud contamination. Finer spatial resolution LAI is required to effec-
tively resolve processes in heterogeneous landscapes at the scale of in-
dividual fields, and recent studies have investigated the prospect of
generating potentially global LAI from Landsat surface reflectance
data. These include a physically-based algorithm that uses canopy spec-
tral invariants theory (Ganguly et al., 2012), aswell as a reference-based
methodology that uses high-quality LAI retrievals from MODIS to pro-
duce MODIS consistent Landsat-resolution LAI (Gao, Anderson, Kustas
&Wang, 2012). For the latter amean absolute difference of 0.23was re-
ported based on a comparison against measurements aggregated to the
field scale (Gao, Anderson, Kustas & Wang, 2012).

While accurate LAI inputs are essential for modeling land surface
processes at different spatial scales, there is a need to implement
supplemental remote sensing based determinants of vegetation func-
tion in order to better diagnose spatiotemporal variations in overall
plant physiological condition and photosynthetic performance.
Leaf chlorophyll content (Chll), defined as total chlorophyll content
[chlorophyll a+ chlorophyll b] on a leaf area basis, may serve as an ad-
ditional and potentially important variable for land-surface remote
sensing because of its close relationship to leaf nitrogen (Evans, 1989;
Sage, Pearcy & Seeman, 1987) and thus leaf photosynthetic capacity
(Houborg, Cescatti, Migliavacca & Kustas, 2013; Kattge, Knorr, Raddatz
& Wirth, 2009). Chll level differs according to plant species and for a
given plant type there may be a significant evolution of Chl content
along the leaf cycle, as modulated by changes in nutrient and water
availability, environmental conditions and plant phenology (Evans,
1989; Schlemmer et al., 2013; Xu & Baldocchi, 2003). The use of Chll
as a proxy for plant physiological status and photosynthetic functioning
is convenient in a remote sensing context as it directly controls leaf ab-
sorption in the visible region. Chll may be retrieved from satellite ob-
served reflectances by inversion of leaf optics and canopy reflectance
models (Jacquemoud et al., 2009). However, retrieving Chll from space
observations is challenging as the influence of atmospheric effects, can-
opy characteristics and background reflectance may confound the de-
tection of relatively subtle differences in canopy reflectance resulting
from changes in Chll (Daughtry, Walthall, Kim & Colstoun, 2000).
Accordingly, remote estimation of Chll has been associated with fairly
large uncertainties, with reported accuracies typically ranging between
8 and 15 μg cm−2 RMSD based on a variety of empirical and physically-
based approaches and sensor data (e.g. Bacour et al., 2002; Botha,
Leblon, Zebarth & Watmough, 2007; Delegido, Vergara, Verrelst,
Gandía & Moreno, 2011; Houborg & Anderson, 2009; Jacquemoud,
Baret, Andrieu, Danson & Jaggard, 1995). The chlorophyll predictive
ability of the PROSPECT leaf optical properties model, that form the

basis of most radiative transfer model inversion studies (Jacquemoud
et al., 2009), is in itself on the order of 9–10 μg cm−2 RMSD (Feret
et al., 2008, 2011).

In physically based frameworks, the accuracy of LAI and Chll esti-
mates depend in part on the ability to regularize the ill-posed inverse
problem caused bymeasurement and model uncertainties and the lim-
ited information carried by the radiometric signal. Indeed, different
combinations ofmodel parameters can produce almost identical spectra
(Baret & Buis, 2008; Combal, Baret, Weiss & Trubuil, 2002;Weiss, Baret,
Myneni, Pragnère & Knyazikhin, 2000), resulting in non-unique solu-
tions. Regularization strategies are required to increase the robustness
and accuracy of retrieved properties and to improve the separation of
soil, leaf and canopy variables. Introducing prior information on the dis-
tribution of model variables, canopy characteristics and soil background
conditionsmay significantly improve the estimation accuracy of biophys-
ical variables (Combal, Baret, Weiss & Trubuil, 2002; Darvishzadeh,
Skidmore, Schlerf & Atzberger, 2008; Koetz, Baret, Poilvé & Hill, 2005).
However, this regularization technique typically relies on the existence
of experimental data collected at the site of interest and the calibrated
models may have limited applicability over other sites and land cover
types.

Ultimately, the goal is to develop versatile and automated image-
based methodologies that can be applied over a diversity of land cover
types, soil backgrounds and atmospheric conditions, while removing
the need for site-specific calibration. To do this, the amount of informa-
tion used in the inversion process needs to be increased by considering
either 1) image-based prior information on land cover and phenological
LAI dynamics (Dorigo, Richter, Baret, Bamler &Wagner, 2009; Houborg,
Soegaard & Boegh, 2007; Koetz, Baret, Poilvé & Hill, 2005), 2) additional
spectral bands with optimized sensitivity to the parameters of interest
(Clevers & Gitelson, 2013; Delegido, Alonso, González & Moreno,
2010), 3) multi-angular information (Bacour et al., 2002; Vuolo, Dini &
D’Urso, 2008), 4) the addition of noise and multiple solutions in the in-
version (Rivera, Verrelst, Leonenko & Moreno, 2013) or 4) spatial and
temporal constraints such as spectral signatures of adjacent pixels
(Atzberger, 2004; Atzberger & Richter, 2012) and multi-temporal-
patch inversion (Lauvernet, Baret, Hascoët, Buis & Le Dimet, 2008).

The regularized canopy reflectance model (REGFLEC) couples leaf,
canopy and atmospheric radiative transfer models and utilizes a
multi-step regularized inversion approach for retrieving LAI and Chll
from multi-spectral at-sensor radiance data (Houborg & Anderson,
2009). REGFLEC introduces various image-based constraints in an effort
to solve the inverse problem, such as separate retrieval of soil back-
ground reflectance and leaf/canopy characteristics, use of ancillary
image-based information, and utilization of the radiometric information
of associated pixels for estimating an optimal set of class-invariant veg-
etation parameters (Houborg & Anderson, 2009; Houborg, Cescatti,
Migliavacca & Kustas, 2013). The model then establishes a suite of pre-
dictive vegetation index (VI) relationships, specific to each scene and
dependent on land cover class, soil background and atmospheric condi-
tions, in order to map LAI and leaf Chl content over the modeling
domain.

The work presented here establishes important refinements to the
REGFLEC retrieval system and its application to multi-spectral Landsat
satellite time-series data for joint LAI and Chll retrieval. A key objective
of this study is to demonstrate the achievable accuracy of LAI and Chll
estimation using a few standard broad spectral bands available opera-
tionally (i.e. green, red and near-infrared) and to evaluate the impact
of various spatio-temporal constraints and REGFLEC configurations on
LAI and Chll retrieval accuracies. An extensive dataset of in-situ LAI
and Chll collected over maize and soybean sites in central Nebraska
over a 5-year period (2001–2005) is used for validation. The atmo-
spheric and canopy radiative transfer models that form the basis of
REGFLEC are briefly described in Sections 2.1 and 2.2, followed by a
detailed description of the REGFLEC retrieval system (Section 2.3).
Additional Sections outlining the study area are presented in Section
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2.4, along with biophysical field measurements (Section 2.5) and infor-
mation on the Landsat data and REGFLEC setup process in Section 2.6.
Results are presented and discussed in Section 3.

2. Approach and methodology

2.1. Atmospheric radiative transfer model

The vector version of the 6S (Second Simulation of the Satellite
Signal in the Solar Spectrum) atmospheric radiative transfer model
(Kotchenova, Vermote, Matarrese & Klemm, 2006; Vermote, Tanre,
Deuze, Herman &Morcette, 1997) is used for converting at-sensor radi-
ances to directional surface reflectances. As further detailed in Houborg
et al. (2009), 6S simulates the reflection of solar radiation by a coupled
atmosphere-surface system for a wide range of atmospheric, spectral
and geometrical conditions and it has demonstrated good performance
(Kotchenova, Vermote, Matarrese & Klemm, 2006; Proud et al., 2010;
Vermote, Tanre, Deuze, Herman & Morcette, 1997). Input parameters
include surface elevation, sun zenith (θsz), view zenith (θvz), sun
azimuth (θaz) and satellite azimuth (θsaz) angles, total column ozone
(O3), aerosol optical thickness at 550 nm (τ550), total precipitable
water (TPW), and aerosol volume and size distribution.

2.2. Canopy reflectance (CR) model

The Markov chain canopy reflectance model, ACRM (Kuusk, 2001)
and the Scattering by Arbitrary Inclined Leaves model, 4SAIL (Verhoef,
1984, 1985; Verhoef, Jia, Xiao & Su, 2007), both with a hot-spot correc-
tion implemented (Kuusk, 1991), consider the canopy as a turbidmedi-
um in which leaves are randomly distributed in space (canopy is
considered horizontally homogeneous). The models operate in the
spectral domain 400–2500 nm and calculate directional canopy reflec-
tance at a spectral resolution of 1 nm given the observation geometry,
canopy structure, leaf reflectance and transmittance and soil reflec-
tance. This study focuses exclusively on REGFLEC applications based
on the 4SAIL model, which is the most widely used CR model in the re-
mote sensing community (Jacquemoud et al., 2009). In 4SAIL, canopy
structure is characterized by LAI, leaf angle distribution (LAD), and
hot-spot parameter (SL). In the version used here, LAD is assumed ellip-
soidal and represented by the mean leaf inclination angle (θl)
(Campbell, 1986). Soil spectral reflectance is approximated as a function
of two soil parameters (s1 and s2) (Houborg & Boegh, 2008; Price, 1990)
and a parameter (fB), representing the canopy fraction of senescent leaf
material, is incorporated (Houborg & Anderson, 2009). The model
sensitivity to SL is generally low for near-nadir viewing directions and
is parameterized here as a function of LAI (Verhoef & Bach, 2003). The
wavelength dependent relative proportion of direct and diffuse flux in
incoming radiation is calculated as a function of τ550.

Leaf spectral reflectance and transmittance for green and senescent
leaves are simulated using the leaf optical PROperties SPECTra
(PROSPECT) model (Feret et al., 2008; Jacquemoud & Baret, 1990). The
input variables of PROSPECT are the leafmesophyll structure parameter
(N), which is related to leaf thickness and cellular arrangement, leaf
chlorophyll a and b content (Chll), leaf water content (Cw), dry matter
content (Cm), and leaf brown pigment (Cbp). Cw is not considered here
given that leaf water does not affect leaf reflectance in the visible to
near-infrared domain. The N, Chll and Cm of senescent leaf material is
fixed at 3, 5 μg cm−2 and 100 gm−2, respectively and green and senes-
cent leaf material is assumed to be completely dissociated (Verhoef &
Bach, 2003).

Canopy reflectance spectra representative of intermixed green and
senescent leaves are simulated by weighing the leaf reflectance and
transmittance spectra for green (Cbp = 0) and senescent (Cbp = 1)
leaves with fB (Houborg & Anderson, 2009). In PROSPECT, the specific
absorption coefficients and the refractive index of leaf material are
determined on the basis of experimental data. Feret et al. (2008)

reassessed the refractive index and absorption coefficients based on a
comprehensive dataset of leaf biochemical and optical properties, giving
rise to two new versions: PROSPECT-4 (P4) and PROSPECT-5 (P5), with
the latter version providing separate treatment of chlorophylls and ca-
rotenoids (Fig. 1a). REGFLEC implements both of these as well as the
original version (PROSPECT-3; Baret & Fourty, 1997). The three calibra-
tions are characterized by significant differences in the Chl specific ab-
sorption coefficients, with P5 and particularly P4 displaying higher
contrasts between non-absorption (550 nm) and absorption wave-
lengths (450 and 680 nm) compared to the flatness of P3 (Fig. 1a).
Although P5 is included as an option in REGFLEC, the carotenoids con-
tent (Car) is not yet specifically treated and set to zero, assuming that
absorption of light by photosynthetic pigments is entirely caused by
chlorophylls. In this form, light absorption in P5 is in closer agreement
with P3 over the blue to beginning of the green waveband region
(400–540 nm) (Fig. 1a). Accordingly, modeled canopy reflectances
using P5 and P3 agree closely in the blue band of Landsat 7 (Fig. 1b).
In contrast large divergences in simulated canopy reflectances occur in
the chlorophyll sensitive green band as a result of using P5, P4 or P3
(Fig. 1b). The effect of the adopted PROSPECT calibration on the LAI
and Chll retrieval results are evaluated in Section 3.3.1.

2.3. The REGularized canopy reFLECtance model (REGFLEC)

REGFLEC (see www.regflec.com) (Fig. 2) combines the atmospheric
radiative transfer (Section 2.1) and canopy reflectance (Section 2.2)
models for translating at-sensor radiance observations from a multi-
spectral sensor like Landsat into maps of Chll and LAI. REGFLEC adopts
a Look-Up-Table (LUT) based inversion scheme and implements spatial
and temporal regularization strategies in an effort to better control the
confounding influence of atmospheric effects, leaf and canopy charac-
teristics and soil background on retrieved biophysical properties,
based entirely on image-based methodologies.

As shown in Fig. 2, the REGFLEC (Version 2.5) retrieval approach
consists of 7 steps, including largely automated routines for (1) multi-
scene resizing, co-registration and cloud screening (Section A.1), (2) at-
mospheric correction (Section A.1), (3) land cover classification
(Section A.2), (4) forward runs with the CR model for computing LUTs
of spectral reflectances and VIs (Section A.3), (5) initial estimation of
the soil background signal (Section A.4), (6) retrieval of optimal class-
invariant vegetation parameters (Section A.5), and (7) pixel-wise map-
ping of LAI and Chll based on a suite of appropriate spectral reflectance
relationships (Section A.6). Retrieved values are informed by preceding
steps to reflect pixel-specific differences in view and illumination
geometry, land cover class, phenological stage, soil background and
atmospheric condition. In step 6,multi-scene spectral reflectance obser-
vations over dense vegetated pixels are exploited to constrain the re-
trieval of the class-specific parameters. The inversion process may also
make use of ancillary LAI, derived independently from satellite data
(Section A.7), as an additional constraint in an effort to improve the sep-
aration of LAI and Chll effects on observed reflectance spectra. The
REGFLEC multi-step retrieval and regularization methodology is
described in greater detail in Appendix A.

The overall idea of LUT approaches is to find the model parameter
combination that yield the best fit between measured and modeled
LUT spectra, which is typically achieved byminimizing a merit function
based on the RMSD or mean absolute error (MAE). In REGFLEC, the op-
timal parameter combination (i.e. LAI, Chll, N, θl, fB, Cm, s1, and s2) is not
determined in a single LUT inversion. Instead, soil parameters and class-
specific vegetation parameters are retrieved separately (step 5 and
6) before mapping LAI and Chll over the modeling domain (step 7). Op-
timal solutions are achieved by minimizing the MAE between modeled
andmeasured reflectances and assigning penalties (e.g. for out of range
conditions) as detailed in Houborg and Anderson (2009). In addition,
the LUT inversion is iterative in that the minimization function is evalu-
ated for a range of plausible parameter combinations, by using the LUTs
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in both forward and inverse mode for calculating LAI/Chll and reflec-
tances, as described further in Section A.3 to A.5. The advantage of this
alternative iterative LUT approach is that it is more flexible, less sensi-
tive to LUT parameter entry values (Section A.3) and facilitates integra-
tion of spatial and temporal constraints such as the ancillary LAI and
multi-scene constraint.

REGFLEC is planned to be made available for distribution primarily
to researchers interested in refining and further developing certain as-
pects of the retrieval system. An online submission system is being de-
veloped to facilitate streamlined web-based processing requests for
regions and time-periods of interest. The REGFLEC job requests will be
queued on a central in-house processing unit, automatically executed
and providing time-series imagery distributed via FTP.

2.4. Study area

LAI and Chll measurements from three sites (Ne1, Ne2, Ne3) located
at the University of Nebraska-Lincoln Agricultural Research and Devel-
opment Center near Mead, Nebraska (http://ameriflux.ornl.gov/
fullsiteinfo.php?sid=72) (Fig. 3), were used for validating REGFLEC re-
trievals. The three sites are all approximately 65-hafields locatedwithin
1.6 km of each other. Ne1 has been continuously under maize since
2001, whereas Ne2 and Ne3 are under a maize-soybean rotation. Ne1
and Ne2 are both irrigated with a center pivot system, whereas Ne3 is
rainfed. The region is characterized by a temperate continental climate
with the growing season beginning in May and ending in October.
Maize is characterized by a longer growing season than soybean and pe-
riod of peak green-up typically precedes soybean by approximately 2–3
weeks. This study focuses on data collected over a five-year period
(2001–2005) covering all phenological stages found in maize and soy-
bean (Gitelson et al., 2012). The annual precipitation totals ranged
from 475 mm (2001) to 670 mm (2004), and the precipitation totals
for the months of July and August were lowest in 2001 (96 mm) and
2003 (70 mm) (compared to 219 mm, 114 mm, and 142 mm in 2002,
2004 and 2005, respectively), resulting in water limited crop conditions
at the rainfed Ne3 site (Verma et al., 2005). Irrigation at Ne1 and Ne2
approximately doubles the amount of water available when compared
to precipitation alone (Kalfas, Xiao, Vanegas, Verma & Suyker, 2011). A
detailed description of the sites is given in (Verma et al., 2005).

2.5. Field measurements of LAI and Chll

Within each of the three fields, six small (20x20 m) intensive mea-
surements zones (IMZ) have been carefully established to represent

the spatial variability in soil type, landscape features, and crop produc-
tion potential as a basis for accurate upscaling of groundmeasurements
to the whole-field level (Verma et al., 2005). Green LAI was determined
from destructive samples in each IMZ at approximately 10 to 14 day in-
tervals and data at the six IMZs were area-weighted averaged to obtain
field-wide representative values (Gitelson, Vina, et al., 2003). Fraction of
green leaves (fg) was derived from the destructive measurements of
green and total LAI. Chll was estimated non-destructively using reflec-
tance measurements of upper canopy leaves collected in-situ on
maize and soybean leaves using a spectroradiometer equipped with a
leaf clip as described in (Gitelson, Vina, Ciganda, Rundquist &
Arkebauer, 2005). Chll determined analytically in the lab was related
to the red edge chlorophyll index [CIred edge = (Rnir/Rrededge) − 1] for
the determination of linear regression coefficients (Ciganda, Gitelson
& Schepers, 2009). The linear model allowed Chll estimation in both
species, with a RMSD of less than 6 μg cm−2 in the Chll range from ~1
to 90 μg cm−2 (Gitelson, Vina, Ciganda, Rundquist & Arkebauer,
2005). Spectral reflectancemeasurements were collected approximate-
ly twice a week during the growing seasons of 2001 to 2005 and Chll of
each leaf was retrieved by applying the calibrated CIrededge vs. Chl
relationship. Predominantly green leaves were sampled, and esti-
mates of total (green + senescent) Chll (Chlt) was approximated
as Chll × fg. This may underestimate Chlt, particularly during signif-
icant degrees of senescence, where the “green” samples may already
be partly senescing (Section 3.2). The uncertainty of the resulting
in-situ Chll estimates is approximately 10%. The same uncertainty
level is assumed for the LAI measurements and accounts for
measurement errors and intra-field variability not captured by
the selected measurement sites. The field measurements of LAI
and Chll, which was found to be representative of the whole fields
(Gitelson, Gritz & Merzlyak, 2003; Gitelson, Vina, et al., 2003; Gitelson
et al., 2012), were interpolated to match the Landsat acquisition dates
(Section 2.4) and compared to Landsat retrievals extracted within
field-wide rectangles fitted to each site (540 m × 540 m for all sites)
and subsequently averaged to produce a single value of LAI and Chll
for each field.

2.6. Landsat data and REGFLEC setup

A total of 34 predominantly clear Landsat-5 TM and Landsat-7
ETM+ images (Fig. 4) were acquired over the 2001–2005 study period
from theUSGS EarthExplorer (http://earthexplorer.usgs.gov). All scenes
were processed to standard terrain correction (Level 1 T), which pro-
vides systematic and geometric accuracy by incorporating ground

Fig. 1. a) Spectral variability of the Chlorophyll a and b specific absorption coefficients used in PROSPECT-5 (P5), PROSPECT-4 (P4), and PROSPECT-3 (P3). For P5, the specific absorption
coefficients of the carotenoid content (Car) are also shown, although this component is not specifically treated (Car= 0) in the current REGFLEC implementation of P5. Spectral response
filters of the Landsat-7 blue, green and red bands are shown using the secondary y-axis. b) SAIL-PROSPECT simulated canopy reflectances using the three PROSPECT versions for two dif-
ferent values of Chl (30 and 60 μg cm−2). The symbols represent integrated reflectance values over the blue, green and redwavelength region using the Landsat-7 response filters (a). For
these simulations, LAI = 4, θl = 55, s1 = 0.2, N = 1.8, Cm = 30, fB = 0, θs = 30, θv = 0.
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control points and a digital elevation model. The geodetic accuracy is
typically within 30 m. The Mead sites are affected by striping in the
Landsat-7 scenes due to scan line corrector failure of the ETM+ sensor
in May 2003 (Maxwell, Schmidt & Storey, 2007), but the data in be-
tween the stripes, that are approximately 4 pixels wide at this location
within the Landsat swath, are still useful. The image digital counts
were input to REGFLEC for further processing. For each year, the total
number of scenes were first automatically co-registered and resized
(the Mead sites are located in the center of the selected scene subset

of 1136 × 523 pixels – Fig. 3) and corrected for cloud contamination.
At-sensor radiance data from each individual Landsat band (green, red
and near-infrared) were atmospherically corrected following the inter-
nal REGFLEC procedure described in Section A.1. Aerosol size distribu-
tion (τtype) was retrieved from the Konza EDC AERONET site, which is
located ~250 km south of Mead.

REGFLEC was run with different configurations (Table 1) in order to
evaluate the impact of PROSPECT model versions and regularization
constraints on retrieval accuracies. The nominal REGFLEC run (Rnom)

Fig. 2.Diagram of the REGularized canopy reFLECtance (REGFLEC) modeling system for translating at sensor radiance observations into leaf area index (LAI) and leaf chlorophyll content
(Chll). REGFLEC combines atmospheric (6S), canopy (SAIL) and leaf (PROSPECT)models and adopts an iterative LUT-based inversion approach. The retrieval system implements multiple
steps including automated processing streams based on readily available image-based sources, and incorporates ancillary information and spatio-temporal constraints for regularization
purposes. In the providedminimization function (used in both step 5, 6 and 7), pobs and ppre represent observed andmodeled spectral (green, red, near-infrared) reflectances, respectively
and pen is a penalty operator. See Sections 2.1, 2.2 and 2.3 for parameter definitions and detailed methodology.
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implements PROSPECT-4, soil background constraint (Section A.4),
multi-scene constraint (Section A.5) and ancillary LAI constraint
Section A.7). Five additional runs were configured on the basis of the
nominal run configuration by changing each of the settings one at a
time (Table 1). All runs used a year-specific land cover map generated
by REGFLEC based on seasonal differences in phenology from ancillary
LAI time-series data (Gao, Anderson, Kustas & Wang, 2012) and Crop-
land Data Layer products for Nebraska (Section A.2). Over the studied
years, the adopted classification approachwas found to facilitate proper
class separation of the maize and soybean study sites.

3. Results and discussions

3.1. In-situ Chll and LAI variability

Fig. 5 displays averaged growing season time-series ofmeasured Chll
and LAI for maize and soybean fields at Mead. The time-series were

constructed by crop-specific averaging of all available data points over
the five-year study period (2001–2005) for the three sites (Ne1, Ne2,
Ne3). As a result, the maize and soybean time-series were based on a
total of 11 (Ne1: 2001–2005; Ne2 and Ne3: 2001, 2003, 2005) and 4
(Ne2 andNe3: 2002, 2004) site-years, respectively. Fig. 5a shows overall
dynamics of green LAI and fraction of senescent vegetation (fB) inmaize
and soybean over the course of the growing season. Green-up starts ear-
lier for maize (precedes soybean green-up by 20–30 days), the growth
period is typically longer for maize than for soybean, and themaximum
LAI ofmaize (~5) is higher than for soybean (~4). The large standard de-
viations (SD) and wide ranges are the result of significant interannual
and inter-field variability caused by differences in environmental condi-
tions and agricultural management practices (e.g. irrigated versus
rainfed). This is also reflected in the time-series of Chll, particularly for
maize, which is characterized by SD on the order of ±10 μg cm−2

throughout the growing season.
Maize is characterized by average Chll values on the order of

60 μg cm−2 during peak LAI, whereas values between 30 and
40 μg cm−2 are more characteristic for soybean (Fig. 5b). Similar differ-
ences in Chll between maize and soybean cultivars for healthy green
vegetation have been reported in other studies (e.g. Daughtry,
Walthall, Kim & Colstoun, 2000; Singh, Hoyos-Villegas, Ray, Smith &

Fig. 3. Study area nearMead, Nebraska together with the location of the three field sites under continuousmaize (Ne1) andmaize-soybean rotation (Ne2, Ne3). The Landsat scene subset
(shown) used as input to REGFLEC encompasses 1136 × 523 pixels, with the Mead sites located approximately in the center.

Fig. 4. Timing and frequency of acquired Landsat 5 and 7 scenes over the 2001–2005 study
period used as input to REGFLEC.

Table 1
Overview of the different REGFLEC runs performed in this study, indicating the specific
configurations (regularization constraints) and model choices of each run. P5, P4 and P3
represent different PROSPECT versions (Section 2.2).

Runs P5 P4 P3 SCa MC b LCc

Rnom X X X X
RP5 X X X X
RP3 X X X X
RnoSC X X X
RnoMC X X X
RnoLC X X X

a Soil background constraint (section A.4).
b Multi-scene constraint (section A.5).
c Ancillary LAI constraint (section A.7).
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Fritschi, 2013) and are a result of contrasting leaf structures and func-
tionally different species types (i.e. C3 versus C4) with characteristic
levels of peak Chll. Chll typically increases during the green-up stage,
reaching peak values in the reproductive stage, before declining again
during late reproductive and senescence stages when green LAI also
declines. The onset and magnitude of the late growing season decline
in Chll varies markedly from year to year, as evidenced by the large SD
(Fig. 5b).

The availability of between 6 and 8 Landsat acquisitions each year
that are distributed over the full growing season (Fig. 4) together with
a wide range in measured LAI and Chll responding to differences in
plant species, plant development stage (green-up, reproductive, senes-
cence), climate and management practices, allow for a thorough evalu-
ation of the REGFLEC retrieval capacity.

3.2. Evaluation of LAI and Chll retrievals (nominal run)

Fig. 6a compares REGFLEC retrieved Chll against field-wide in-situ
observations over a five-year period (2001–2005) that encompass dif-
ferent development stages (green-up, reproductive, senescence) of
maize and soybean. These REGFLEC results are based on the nominal
run configuration (Rnom), which embeds PROSPECT-4 and all three reg-
ularization constraints (SC, MC, LC) (Table 1). The impact of alternative
REGFLEC configurations is discussed in Section 3.4.

REGFLEC predicts higher values of Chll for maize (55 ± 5 μg cm−2)
than for soybean (30 ± 5 μg cm−2) during green-up and reproduction
(fB b 0.1), which is consistent with the in-situ measurements (55 ±
9 μg cm−2 and 32± 6 μg cm−2, respectively) (Fig. 5b). The overall per-
formance of REGFLEC in reproducing the dynamics of in-situ measured
Chll is characterized by a coefficient of determination (r2) of 0.69, a
mean bias error (MBE) of 0.04 μg cm−2, and a root-mean-square-
deviation (RMSD) of 8.42 μg cm−2, which amounts to a relative RMSD
of 19.1 % (Table 2, Fig. 6a). Several factors may affect the comparability

between satellite retrievals and in-situ measurements. For instance, in
maize canopies, the vertical distribution of leaf Chl can bewell described
by a bell-shaped curve (Ciganda, Gitelson & Schepers, 2008), withmax-
imal Chll in leaves around the ear leaf located approximately 1–1.5 m
from the top of the canopy (Ciganda, Gitelson & Schepers, 2012). The
Landsat bands in the visible spectrum are characterized by relatively
poor canopy penetration ability (due to high absorption) so that only
a few leaf layers contribute to the canopy reflectance observed by the
Landsat sensor. Consequently, the Landsat-based Chll retrievals are like-
ly to be lower than the in-situ measurements that represent maximal
Chll (Section 2.5), which is corroborated by a ~6% underestimation of
maize Chll (for fB b 0.1).

Discrepancies tend to be more pronounced during senescence
(Fig. 6a), which for maize may partly be explained by enhanced com-
plexity of the vertical Chll distribution (Ciganda, Gitelson & Schepers,
2008; Gitelson, Peng, Arkebauer & Schepers, 2014) making direct com-
parisons between in-situ measurements and top of canopy satellite
retrievals less viable. Another factor of uncertainty is the adopted mul-
tiplication of in-situmeasured Chll with the fraction of green vegetation
to produce a total (green + senescent) Chll (Chlt) estimate comparable
to that being retrieved by REGFLEC. This implicitly assumes that entirely
green leaves were sampled and could result in underestimation of the
actual Chlt, particularly during advanced stages of leaf senescence.
With these issues in mind, the Chll retrievals appear reasonable and
demonstrate the ability of REGFLEC in reproducing significant crop-
specific seasonal and interannual Chll variability in irrigated and rainfed
maize and soybean fields (Fig. 5). The Chll retrieval accuracies compare
favorably to most results reported in other comparable studies on agri-
cultural crops and grasses (e.g. Botha et al., 2007, 2010; Delegido,
Vergara, Verrelst, Gandía & Moreno, 2011; Jacquemoud, Bacour, Poilve
& Frangi, 2000), especially when considering the wide range in ob-
served Chll and crop conditions occurring over the five-year study
period.

Fig. 5. Site (Ne1, Ne2, Ne3) and year (2001–2005) averaged time-series ofmeasured (a) green LAI and (b) Chll formaize and soybean fields atMead,Nebraska. The bars represent standard
deviations and degree of intra and inter-field variability over the five year period (2001–2005). Note that themaize and soybean time-series were based on a total of 11 (Ne1: 2001–2005;
Ne2 and Ne3: 2001, 2003, 2005) and 4 (Ne2 and Ne3: 2002, 2004) site-years, respectively. The maximum and minimum observed LAI and Chll values over the studied period are also
indicated. In (a) the averaged measured canopy fraction of senescent leaf material (fB) is plotted on the secondary y-axis.
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Degradation inmodel performances has often been observed during
the leaf senescence stage (Bacour et al., 2002; Houborg & Boegh, 2008;
Wang et al., 2005). Except for a few outliers, REGFLEC captures observed
reductions in chlorophyll during the beginning to advanced stages of
leaf senescence (fB = 0.1–0.6) (Fig. 6a). REGFLEC calculates Chlt by
multiplication of green Chll with pixel-specific values of (1 − fB)
(Section A.6). The onset of senescence is determined automatically for
each class based on ancillary LAI (or EVI2) time-series data. During se-
nescence, Chll and LAI predictions are constrained by penalizing solu-
tions that result in Chll or LAI increases relative to retrievals from the
preceding Landsat scene at corresponding pixel locations. This imple-
mentation proved effective at reproducing Chlt over the studied sites.

The overall performance of REGFLEC in reproducing the dynamics
and magnitudes of in-situ measured LAI is characterized by a high cor-
relation (r2 = 0.85), whereas the RMSD (1.25 m2 m−2), relative
RMSD (41 %) and MBE (–0.88 m2 m−2) indicate significant discrepan-
cies (Table 2 and Fig. 6a). As ancillary LAI retrievals (Section A.7) were
used to constrain the retrievals, the REGFLEC-based LAI will reflect the
characteristics of that dataset to a large extent. Accordingly, the ancillary
LAI estimates are also biased low (MBE = −0.86) and represented by
similar levels of accuracy (RMSD = 1.26) (Table 2 and supplementary
Fig. 1). The impact of the ancillary LAI constraint on the vegetation
retrievals will be discussed in more detail in Section 3.4.

Independent linear regressions to the maize and soybean LAI data
result in an excellent fit for soybean (r2 = 0.95) with a 13% underesti-
mation (slope = 0.87) (Fig. 6a). The destructively measured maize LAI
on the other hand is being underestimated by 36 % (slope = 0.64)
(Fig. 6a). Significant clumping has been observed in maize canopies
(Demarez, Duthoit, Baret, Weiss & Dedieu, 2008), with the degree of
clumpiness dependent on a complex interaction of leaf size, plant devel-
opment stage, row spacing and view observation angle (Duthoit,
Demarez, Gastellu-Etchegorry, Martin & Roujean, 2008; España, Baret,
Chelle, Aries & Andrieu, 1998; López-Lozano, Baret, Chelle, Rochdi &
España, 2007). According to España, Baret, Chelle, Aries and Andrieu
(1998) for all phenological stages, clumpiness is more important for

near-nadir viewing directions (because of row effect; e.g. Landsat) and
for fully-developed plants (high LAI), potentially yielding clumping fac-
tors as low as 0.6 (corresponding to a 40 % underestimation of effective
LAI). Demarez, Duthoit, Baret, Weiss and Dedieu (2008) compared sev-
eral methods of LAI estimation and found that effective LAI
underestimated destructive LAI measurements in maize by 32 %,
which corresponds closely to the skew reported in this study (y =
0.64x; Fig. 6a). The 4SAIL canopy reflectancemodel used in REGFLEC as-
sumes homogeneous canopies with randomly distributed leaves and
predicts an effective LAI (i.e. LAI × clumping) that will be lower than
the true LAI in more heterogeneous and clumped canopies. A recent
study also found that SAIL was not representing the spectral behavior
of row crops such as maize, potatoes and sunflower well (Atzberger &
Richter, 2012) and the large LAI underestimation over the Mead maize
sites may indeed be partly attributable to differences between effective
and true LAI caused by significant canopy clumping not properly
accounted for in REGFLEC (i.e. SAIL) or in the ancillary LAI used as regu-
larization constraint.

3.3. Class-specific vegetation retrievals

The LAI and Chll predictive spectral relationships are strongly
affected by model parameterizations, especially the values used for
leaf structure (N), leaf inclination angle (θl) and dry matter content
(Cm) (Fig. A1). A common approach is to fix these parameters using a
priori information, typically taken from in-situ observations or from lit-
erature values. However, these vegetation parameters are not easily
measured and approaches that rely on intensive field work for model
calibration and parameterization are impractical from an operational
stand point. REGFLEC adopts an approach independent of local calibra-
tion data that exploits the temporal and spatial radiometric information
content of multiple satellite scenes (see Section A.5). In order for this
approach to be meaningful, it is critical that the land cover map used
as input to REGFLEC accurately separates individual crop types (such
as maize and soybean), as any inter-class contamination may limit the
utility of the inversion system for retrieving a unique set of optimized
class-invariant vegetation parameters.

Table 3 lists the year-specific optimized parameter combinations for
the study sites produced by the REGFLEC inversion system using the
nominal configuration (Rnom). There are notable crop-specific differ-
ences in derived N and θl, ranging between 3.3–3.9 and 65–69° for
maize and 1.3 and 46–56° for soybean, respectively. Note that the inver-
sion considers modest spatio-temporal variability in θl (Section A.5) as
indicated by differences in the site-derived values (Table 3). The predic-
tive green reflectance relationships are strongly influenced by N
(Fig. A1a) and the high N values are the main cause for the high Chll

Table 2
Quantitative statistic measures of the performance of REGFLEC in estimating Chl [μg
cm−2] and LAI [m2 m−2] over maize and soybean using different setup configurations
(Table 1). The REGFLEC retrievals were evaluated against in-situ measurements (n =
68 and 97 for Chll and LAI, respectively) collected over 5 growing seasons (2001–
2005) encompassing different development stages (green-up, reproductive, senes-
cence). The last row shows the performance of the ancillary LAI dataset. The best
performing statistic metrics are indicated in bold.
O is the mean of the in-situ measurements, S is the mean of REGFLEC retrievals, RMSD
is the root-mean-square difference between model estimates and measurements,
RRMSD is the relative RMSD (RMSD/O*100), MBE is the mean bias error (if positive
REGFLEC overestimates measurements), and r2 is the coefficient of determination.
O, S, RMSD and MBE have units of μg cm−2.

Runs O S RMSD RRMSD [%] MBE r2

Rnom Chl 44.1 43.9 8.42 19.1 0.04 0.69
LAI 3.06 2.19 1.25 41.0 −0.88 0.85

RP5 Chl 44.1 48.5 11.6 26.3 4.48 0.56
LAI 3.06 1.90 1.46 47.6 −1.09 0.85

RP3 Chl 44.1 49.8 12.7 28.8 4.79 0.38
LAI 3.06 2.06 1.37 44.8 −1.00 0.85

RnoSC Chl 44.1 46.3 9.31 21.1 1.93 0.67
LAI 3.06 2.15 1.29 42.1 −0.91 0.83

RnoMC Chl 44.1 42.5 12.3 27.8 −3.13 0.35
LAI 3.06 2.21 1.22 39.9 −0.86 0.85

RnoLC Chl 44.1 43.3 11.2 25.4 −0.66 0.41
LAI 3.06 2.45 1.01 32.8 −0.62 0.85

Ancillary LAI 3.06 2.14 1.25 41.1 −0.86 0.83

Table 3
Optimized year-specific class-invariant vegetation parameters for the study sites (Ne1,
Ne2, Ne3) based on REGFLEC runs using the nominal configuration (Table 1). θl is given
for each sitewith an associated standard deviation to indicate the degree of spatio-tempo-
ral variability considered by the retrieval system (section A.5). In year 2001, 2003 and
2005 all three sites were under maize rotation.

Year N θl Cm

Maize Soybean Ne1 Ne2 Ne3 Maize Soybean

2001 3.5 - 67 ± 0.4 66 ± 0.8 68 ± 0.5 20 -
2002 3.9 1.3 66 ± 1.9 46 ± 5.8 52 ± 2.4 20 60
2003 3.6 - 66 ± 1.5 66 ± 1.1 68 ± 1.1 20 -
2004 3.3 1.3 65 ± 1.2 54 ± 1.9 56 ± 2.2 20 20
2005 3.8 - 69 ± 1.1 68 ± 1.3 70 ± 0.7 20 -

Fig. 6.Validation of REGFLEC total (green+ senescent) Chll and LAI retrievals against in-situmeasured data from irrigated and rainfed agriculturalfields over a 5 year period, demonstrating the
impact of regularization constraints and model choices (Table 1). a) Nominal run configuration (Rnom), b) PROSPECT-5 run (RP5), c) PROSPECT-3 run (RP3), d) without soil background con-
straint (RnoSC), e) without multi-scene constraint (RnoMC), f) without ancillary LAI constraint (RnoLC). The error bars represent the assumed uncertainty (±10%) of the in-situ measurements
(Section 2.3).
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levels characteristic of the maize retrievals (Fig. 6a). θl works in the op-
posite direction and increases in θl will significantly decrease estimated
Chll for the same green reflectance value (Fig. A1a). Therefore, a low N
(e.g. 1.5) along with a near-horizontal mean leaf inclination angle (e.g.
θl = 20) could result in similar levels of Chll as a high N (e.g. 3.5) and
near-vertical leaf angle inclination (e.g. θl = 75) (Fig. A1a). Variations
in θl strongly affect spectral relationships used for LAI prediction (e.g.
EVI2) (Fig. A1b), which limits the number of feasible N and θl combina-
tions, as only a few will minimize the overall difference between
modeled and observed spectral reflectances (green, red and near-
infrared), while assuring that Chll and LAI remain within a realistic
range.

Maize and soybean have contrasting leaf structures and canopy
architectures, with soybean tending towards a more horizontal leaf
angle distribution (LAD) whereas the LAD for maize is more spherical
(Gitelson, Vina, Ciganda, Rundquist & Arkebauer, 2005). These tenden-
cies are supported by the contrasting N retrievals and lower values of
θl retrieved over Ne2 and Ne3 during soybean rotation years (2002
and 2004) (Table 3). N represents the leaf anatomy and cannot be di-
rectly measured. It has been determined by inverting the PROSPECT
model using databases of measured leaf reflectance and transmittance
spectra (e.g. Hosgood et al., 1995) and the typically accepted range of
N is on the order of 1–3 (Feret et al., 2011; Jacquemoud & Baret,
1990), although a verifiable set of species-specific values does not
exist. Clearly, the derived N values for maize are outside the ‘realistic’
range of values reported in the literature, but expanding the allowed
N range (1–4) was deemed necessary in order to achieve realistic Chll
values for maize and properly match observed spectral signatures. In
Richter, Atzberger, Vuolo, Weihs and D’Urso (2009) PROSPECT-SAIL
(PROSAIL) failed to invert over maize and Atzberger and Richter
(2012) demonstrated that forward simulations with PROSAIL using
fieldmeasured biophysical parameters as input did not match observed
spectral signatures of maize, as the 1D turbid medium SAIL model does
not take into account row effects, shading and heterogeneous canopy
architectures. Issues with the PROSPECT calibration may also impair
the capability of PROSAIL to properly simulate observed canopy spectra
(Section 3.4.1). Another potential source of uncertainty comes from
light scattered at the surface of leaves; this partly polarized portion of
the reflected light does not enter the leaf and thus conveys no direct in-
formation about its interior (e.g. leaf biochemistry). Polarization mea-
surements may be needed to effectively correct for this confounding
factor (Vanderbilt, Grant & Daughtry, 1985).

Model uncertainties and limitations of this sort may severely reduce
LAI and Chll retrieval accuracies and caution should be exercised when
using field measured data or ‘realistic’ ranges reported in the literature
for model parameterization. This is particularly true for N, as it strongly
affects Chll and cannot be measured directly. As such, it may function
more conveniently as a model calibrator that is being optimized to
better match observed and modeled reflectance spectra (Houborg &
Anderson, 2009). By doing this, SAIL and/or PROSPECT model limita-
tions are being compensated for by N adjustments, which could result
in erroneous leaf reflectance and transmittance spectra. At least for
the studied area, these adjustments do result in realistic LAI and Chl
values being simulated by SAIL-PROSPECT (Rnom) for both soybean
and maize. Ideally, a more physically realistic canopy reflectance
model with consideration of 3D effects (e.g. DART; Gastellu-
Etchegorry, 1996) should be adopted, but the enhanced complexity is
an obvious limitation for satellite-based applications, particularly
given the limited radiometric and spatial information content of the
Landsat sensors. Multi-sensor approaches and future satellite systems
may offer opportunities for investigating this further.

3.4. Impact of configuration and regularization constraints

In physically-based frameworks, the accuracy of vegetation
retrievals depend on the quality and radiometric information content

of the input radiance data, the quality of the atmospheric correction,
the physical realism and parameterization of themodels used, and tech-
niques applied for regularizing the inversion process. The impact of
PROSPECT model version and three different regularization constraints
(Table 1) on LAI and Chll retrieval accuracies are evaluated below. The
output from each REGFLEC configuration is compared to in-situ
measurements in Fig. 6b–f, with statistic measures of performance
listed in Table 2. Fig. 7 provides time-series and difference maps of
Chll and LAI over the studied fields during 2002 to showcase the impact
of REGFLEC configurations in a spatial context.

3.4.1. Influence of PROSPECT version
REGFLEC was run with 3 different versions of PROSPECT (P3, P4 and

P5) characterized by different chlorophyll absorption coefficients
(Fig. 1) and refractive indices. P4 and P5 are based on the same experi-
mental dataset of leaf biochemical and optical properties, but P5 allows
separate treatment of chlorophylls and carotenoids. However as the ca-
rotenoids content was unrealistically set to zero for these analyses, the
results cannot be used to assess the actual validity of PROSPECT-5, albeit
providing useful insights into the impact of PROSPECT calibration.
The choice of PROSPECT model version has a significant impact on
the Chll retrieval performance with P4 (Rnom) performing best
(RMSD = 8.42 μg cm−2, r2 = 0.69), followed by P5 (RP5) (RMSD =
11.6 μg cm−2, r2 = 0.56) and then P3 (RP3) (RMSD = 12.7 μg cm−2,
r2= 0.38) (Table 2, Fig. 5a–c). P4 is characterized by greater chlorophyll
absorption than P3 and P5 in the 400–550nmregion (Fig. 1a), which re-
sults in lower canopy reflectance in the blue and green bands of the
Landsat sensor for a given Chll (Fig. 1b). This implies that for the same
model parameterization, the inversion of the same canopy reflectance
spectra will yield an increasingly higher Chll value when changing
from P4 to P5 to P3. Accordingly, the use of both P5 and P3 caused
REGFLEC to overestimate Chll (MBE = 4.48 and 4.79 μg cm−2, respec-
tively) (Table 2).

The generally higher Chll levels simulated with RP5 and particularly
RP3 are clearly evident in the time-series maps for the 2002 growing
season (Fig. 7a). When looking at crop specifics, RP3 does reasonably
at reproducing the magnitudes and variability of maize Chll (Fig. 6c)
and interestingly does so based on a more ‘realistic’ class-specific pa-
rameter combination (N ~ 1.0, θl ~ 50, Cm = 80 g m−2) (Table 3). How-
ever, RP3 has difficulty reproducing the lower Chll values characteristic
of soybean, which are being overestimated by ~50% on average
(Fig. 6c). In the RP3 simulation N hits the lower bound (=1.0) for soy-
bean and still predicts relatively high Chll (~50 μg cm−2 on average),
suggesting chlorophyll absorption is too lowwhen produced by this cal-
ibration. Rnom (using P4) on the other hand, provides a much better ap-
proximation of low Chll (e.g. those characteristic of soybean). However,
P4 needs a wider N range to reproduce the high Chll characteristic of
maize, as discussed in Section 3.3. The Chll simulated with P5 can be
modulated by changing the carotenoid content and it is likely that a
real test with P5 (Car N 0) could result in improved estimation of Chll,
particularly if hyperspectral information is available for properly dis-
criminating chlorophyll and carotenoid pigments (Blackburn, 2007;
Gitelson, Keydan & Merzlyak, 2006; Sims & Gamon, 2002). The LAI re-
trieval accuracy also decreases when using P3 or P5 in place of P4
(MBE increases from −0.88 to ~−1.0), although the impact is modest
as the ancillary LAI constraint was active in all three simulation runs
(Fig. 6a–c).

These results highlight the strong sensitivity of vegetation retrievals
(particularly Chll) to the adopted refractive index spectrum and specific
absorption coefficients for pigments in PROSPECT and there is a need for
continued research to improve the modeling of leaf reflectivity for
application to both monocots (maize) and dicots (soybean) (Comar
et al., 2014). While the blue spectrum holds information valuable for
LAI and Chll detection (Huete et al., 2002; Hunt, Daughtry, Eitel &
Long, 2011), the large differences in calibrated absorption coefficients
in the blue spectrum (Fig. 1) adds to the significant uncertainties with

212 R. Houborg et al. / Remote Sensing of Environment 159 (2015) 203–221



Fig. 7.Maps of total (green + senescent) (a) Chll and (b) LAI over the studied fields in 2002, demonstrating the impact of REGFLEC configuration (Table 1).
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using this wavelength region in remote sensing applications (Fensholt,
Sandholt & Stisen, 2006). The predictive ability of PROSPECT-4 and 5
chlorophyll retrievals are reportedly on the order of 10 μg cm−2,
while failing completely for the widely used LOPEX experimental
dataset (RMSD ~ 30 μg cm−2, attributed to a bias) (Feret et al., 2008),
highlighting the significant challenges and uncertainties associated
with applying physically-based approaches. Clearly, a high degree
of realism in process description and robust knowledge of the refrac-
tive index and specific absorption coefficients is fundamental for re-
liable quantification of foliar pigments when inverting a canopy
reflectance model (Feret et al., 2008, 2011; Le Maire, François &
Dufrêne, 2004).

3.4.2. Impact of spatio-temporal constraints
Low Chll and LAI estimation accuracies have been attributed to soil

background interference in a number of studies (Botha, Leblon,
Zebarth & Watmough, 2010; Gobron, Pinty & Verstraete, 1997).
REGFLEC separates the estimation of the background signal from the re-
trieval of class-specific canopy parameters to reduce the number of free
parameters and minimize potentially confounding influences of the
background reflectance signal (Section A.4). The accuracy of the
established soil parameter maps (s1 and s2) depend on the number
and distribution of soil pixels (LAI b 0.5) in the image and the ability
to reliably fill any spatial gaps usingmaps of s1 and s2 generated during
sparse vegetation cover conditions. If previously generated soil param-
eter maps are not used as a constraint (RnoSC), spatial gaps (LAI N 0.5)
will be filled based on the extrapolation of s1 and s2 values from existing
soil pixels in the given scene. The mean of RnoSC Chll retrievals
(46.3 μg cm−2) is higher than for Rnom (43.9 μg cm−2), and the impact
of the soil background constraint on Chll is clearly visible in the scatter
plots (Fig. 6a and d) and maps (Fig. 7a), particularly over intermediate
vegetation coverage (Fig. 7b). It is also reflected in the Chll retrieval ca-
pacity (RMSD decreases from 8.42 to 9.31 μg cm−2, Table 2). Establish-
ing the soil background signal below a vegetation canopy based on
signals from neighboring or pre-growing season sparsely vegetated
pixels is associated with large uncertainties, as the background reflec-
tance signal responds to changes in soil texture, soil moisture and
ground cover conditions, which may vary significantly in space and
time. Irrigation effects constitute an additional complication. While
physically-based implementations of the soil moisture effect on the
soil reflectance spectra exist (Verhoef & Bach, 2007), the required de-
tailed spatial information is not readily available. Further detailed inves-
tigations are needed to develop improved image-based approaches to
take these issues into account.

The multi-scene constraint (Section A.5) simultaneously incorpo-
rates spectral reflectance observations over intermediate to dense veg-
etation from multiple Landsat scene acquisitions over the growing
season to derive an optimal set of class-specific (and seasonally fixed)
vegetation parameters. When this constraint is not invoked (RnoMC),
the retrieval of class-specific vegetation parameters (N, θl and Cm) is un-
dertaken independently for each scene (if a sufficient amount of inter-
mediate to dense vegetation pixels exist) allowing for unconstrained
fluctuations in N, θl and Cm over the course of the growing season for
a given land cover class. The importance of the multi-scene constraint
is clearly illustrated by the RnoMC validation statistics (Table 2, Fig. 6e),
with r2 decreasing to 0.35 and the RMSD increasing to 12.3 μg cm−2

for Chll. The reduced retrieval accuracy is partly the result of occasional
temporal jumps in N, such as in 2003 when retrieved N changed from
1.5 on DOY 191 to 3.75 on DOY 207, which results in unrealistic tempo-
ral Chll behavior. The temporal Chll dynamics are also affected over the
2002 growing season and the Chll of themaize (Ne1) and soybean (Ne2,
Ne3) sites is notwell discriminated (e.g. approximately similar levels on
DOY 220) (Fig. 7a). The multi-scene constraint is needed to arrive at
well-constrained class-specific vegetation parameters and avoid tem-
poral variations in N and Cm over the growing season for a specific
land cover class.

The plot of measured Chll against retrievals without the ancillary LAI
constraint (RnoLC) (see Section A.7) shown in Fig. 6f is characterized by
significantly more scatter (r2 = 0.41 and RMSD = 11.2 μg cm–2) com-
pared to retrievals constrained by ancillary LAI (r2 = 0.71 and
RMSD = 8.42 μg cm–2) (Fig. 6a). This is not unexpected, as LAI and
Chll have a mutually compensating effect on canopy spectra making ac-
curate separation difficult. Large differences in retrieved Chll are espe-
cially evident over sparsely vegetated pixels (Fig. 7a and b). Chll
retrievals based on Landsat data are characterized by large uncertainties
for low LAI (LAI b 1) due to decreasing spectral sensitivity and increas-
ing influence of confounding factors, especially LAI and soil background
(Houborg, Anderson &Daughtry, 2009). Thus, minor changes in derived
LAI and soil reflectance may result in markedly different Chll retrievals
and this issue becomes especially evident when LAI is not being
constrained, as illustrated by the enhanced intra-field Chll variability
in the RnoLC output for DOY 180 over low LAI pixels (Fig. 7a and b).

Surprisingly, unconstrained (RnoLC) LAI retrievals are characterized
by the highest estimation accuracies (RMSD = 1.01) and reduced un-
derestimation of destructively measured LAI (MBE = −0.66) (Table 2,
Fig. 6f). On average, the simulations underestimate soybean and maize
LAI by 9% and 26%, respectively (Fig. 6f), which is a considerable im-
provement over the constrained LAI validation results (Fig. 6a–e,
Table 2). The ancillary LAI dataset used in this study (Gao, Anderson,
Kustas & Wang, 2012) produces MODIS consistent LAI at the Landsat
spatial scale by relating LAI retrievals at the MODIS 1 km scale to co-
incident Landsat surface reflectances based on a regression tree ap-
proach. Given the coarse resolution of theMODIS sensor, high LAI values
in sub-pixel agriculturalfields are likely to be under-sampled by this ap-
proach, causing under-estimationof actual LAI (Gao, Anderson, Kustas&
Wang, 2012; Guindin-Garcia, Gitelson, Arkebauer, Shanahan & Weiss,
2012). While in-situ LAI observations may be incorporated into the
training process to effectively reduce under-sampling of high LAI values
(Gao, Anderson, Kustas & Houborg, 2014) or used for developing accu-
rate empirical LAI prediction algorithms (Gitelson, Wardlow, Keydan
& Leavitt, 2007; Viña, Gitelson, Nguy-Robertson & Peng, 2011), these
implementations have limited utility for more operationally oriented
applications. In addition, SAIL outputs an effective LAI that may diverge
considerably from the true LAI due to foliage clumping effects and it is
important that the ancillary LAI used as a constraint complies with
this definition.

The REGFLEC unconstrained LAI retrievals produce spatial and tem-
poral patterns that are similar to those recorded in the ancillary LAI
dataset (Fig. 7b), with generally modest differences in LAI magnitudes
(see also supplementary Fig. 1). Nevertheless, the impact on retrieved
Chll is visibly significant over the 2002 growing season, notably for the
soybean fields (Ne2 and Ne3), where Chll typically increases by 10–
25 μg cm−2 compared to Rnom simulations (Fig. 7a). Variations in re-
trieved Chll may partly be the result of spatio-temporal dynamics in θl
considered by Rnom but not RnoLC (Section A.5). This highlights the
strong sensitivity of the Chll retrievals to even small changes in con-
founding factors.

4. Summary

The achievable accuracy of joint LAI and Chll retrieval was examined
within a regularized model inversion system, using standard broad
spectral bands (green, red and near-infrared) available from an opera-
tional remote sensing system. A fundamental property of the REGFLEC
model is the ability to retrieve both LAI and Chll directly from at-
sensor radiances using a fully integrated system of radiative transfer
models that can be applied over most regions without the need for
site-specific calibration, using information extracted entirely from
image-based and readily available datasets. As part of a iterative LUT-
based inversion approach, REGFLEC diagnoses a suite of predictive LAI
and Chll spectral reflectance relationships, which are specific to each
scene acquisition (view and illumination geometry) and dependent on
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land cover class, leaf structure, canopy architecture and soil background
conditions. Validation against in-situ data collected overmaize and soy-
bean sites in central Nebraska over a 5-year period demonstrated that it
is feasible to retrieve LAI and Chll from Landsat data with good accuracy
when the inversion process has been properly regularized.

The shape of canopy spectra depend on many internal and external
factors thatmay easily confound the detection of the signal attributed to
a single biophysical property such as LAI or leaf Chl. A physical model is
required to properly account for these confounding factors and derive
meaningful spectral relationships. However, physically-based systems
are sensitive to uncertainties inmodel parameterization and limitations
in the description of physical processes. In this study, the Chll predict-
ability strongly depended on the adopted refractive index spectrum
and specific absorption coefficients for pigments in PROSPECT, and it
was necessary to significantly expand the allowed range of the leaf
structure parameter (N) in order to properly match observed spectral
signatures and achieve realistic Chll for maizewith PROSPECT-4. Impor-
tantly, applications of SAIL-PROSPECT using field measured data or ‘re-
alistic’ parameter distributions as input can lead to biased Chll results
due to calibration issues like this.

The ill-posed nature of model inversion, which results in different
combinations of model parameters corresponding to almost identical
spectra, constitutes an additional complication. The limited information
carried by the radiometric signal of space based platforms calls for the
application of novel spatio-temporal regularization techniques to intro-
duce additional information useful for guiding the inversion process in
the right direction. The use of ancillary LAI, based on downscaled
MODIS LAI, was shown to be effective at regularizing the ill-posed in-
verse problem, with improved separation of LAI and Chll effects on ob-
served reflectance spectra. Likewise, establishing the soil background
signal for vegetated pixels based on a pre-growing season satellite
scene and imposing a multi-scene constraint for the retrieval of class-
specific vegetation parameters, lead to improved robustness of the re-
trievals. Although the applied temporal and spatial constraints proved
effective, reliable extraction of Chll magnitudes from satellite observed
top of canopy reflectances remains extremely challenging. Variations
in atmospheric conditions, vegetation structure and soil background,
in addition to model uncertainties, all complicate the detection of rela-
tively subtle differences in canopy reflectance resulting from changes
in Chll. Accurate detection of absolute Chll is essential for meaningful
utilization within process-based land surface models for parameteriza-
tion of photosynthetic capacity (Houborg, Cescatti, Migliavacca &
Kustas, 2013) and for precision farming applications requiring consis-
tent information on leaf nitrogen status. In order to ensure the retrieval
of consistent and realistic Chll levels on a crop-specific basis, a set of land
cover based nominal Chll values (representative of optimal unstressed
conditions) could potentially be incorporated to guide the inverse re-
trieval of class-specific vegetation parameters (favoring best fit solu-
tions that provide the closest approximation to the nominal Chll). This
would require information on crop type and associated nominal Chll
from an extensive literature review and existing databases (e.g. TRY;
Kattge et al., 2011).

Accurate retrieval of vegetation biophysical properties is complicat-
ed by the competing balance between the physical realism of models
that describe the transfer and interaction of radiation inside the canopy
and the need of simplified descriptions for effective parameterization in
a remote sensing context. The homogeneous canopy assumption of a
turbid medium canopy reflectance model like 4SAIL may not be appro-
priate for heterogeneous canopies with more complex structures and
significant shadowing effects (Schlerf & Atzberger, 2006) and will lead
to LAI underestimation in case of canopy clumpiness (as shown for
maize in this study). However, the simplification is often required to re-
duce the dimensionality of the inversion process (Goel, 1988). Recog-
nizing that effective LAI is being retrieved, improved approximations
of true LAI may be achieved by division with vegetation clumping
index values derived from multi-angular data (Pisek et al., 2013). A

key objective for future research is to investigate how the type, com-
plexity and physical realism of canopy reflectance models may affect
the retrieval accuracies within the framework of REGFLEC. Additional
model choices such as NADIM (Gobron, Pinty, Verstraete & Govaerts,
1997), 4SAIL2 (Verhoef & Bach, 2007), and DART (Gastellu-
Etchegorry, 1996) are in the process of being implemented for this
purpose.

Future applications of REGFLEC will focus on implementing addi-
tional spectral bands in order to increase the amount of information
used in the inversion process. Indices based on bands in the red-edge re-
gion (Dash & Curran, 2007; Gitelson, Gritz & Merzlyak, 2003) are char-
acterized by improved sensitivity over the full range of chlorophyll
values and reduced sensitivity to confounding factors. Additional
bands on the near-infrared plateau would be helpful for improved de-
tection of leaf senescence. Hyperspectral data streams have the poten-
tial to enhance Chl retrieval capabilities even further (e.g. Malenovský
et al., 2013), although careful attention to confounding factors remains
a necessity (Baret, 1991). Unfortunately, super- or hyperspetral infor-
mation is not available or being freely distributed on a routine basis by
the existing suite of space satellites. The pair of Sentinel-2 satellites
from the European Space Agency, with the first satellite scheduled to
launch in 2015, will be delivering super-spectral data at resolutions
down to 10 m with an exceptional revisit capability of 2–5 days once
both satellites are in orbit, which is likely to be highly beneficial for
joint LAI and Chll detection within the framework of REGFLEC, signifi-
cantly advancing the ability to monitor plant physiological conditions
(Clevers & Gitelson, 2013; Clevers & Kooistra, 2012; Schlemmer et al.,
2013). In the meantime, continuation with Landsat data has been se-
cured with the successful launch of Landsat-8. Nevertheless, with
Landsat alone, given a 16-day revisit time that can be significantly
lengthened due to cloud contamination, the temporal sampling fre-
quency is rarely sufficient to properly resolve time-varying dynamics
in vegetation functioning. In the present study, even with two Landsat
satellites available, temporal gaps of up to 30 days occurred (Fig. 4). In
order to improve temporal sampling frequency, data from multiple in-
strumentsmay be used synergistically (e.g. Landsat, SPOT) or the spatial
detail from high spatial resolution sensors such as Landsatmay be fused
with high frequency observations from spatially coarse resolution sen-
sors such as MODIS (Gao, Masek, Schwaller & Hall, 2006).

To conclude, physically-based joint retrieval of LAI and Chll from
Landsat observed reflectances, independent of local calibration data, re-
mains a challenging task due to the ill-posed nature of model inversion
and the limited information carried by the radiometric signal. Contin-
ued development of image-based regularization techniques is needed
to mitigate this ill-posed inverse problem (i.e. properly discriminate
contributions from the atmosphere, canopy and soil) and achieve
higher estimation accuracies. Clearly, additional advances in the retriev-
al of canopy biophysical and leaf biochemical constituents for reliable
detection of rapid changes in vegetation health and photosynthetic
functioning will require innovative (and potentially synergistic) use of
existing remote sensing data within physically realistic canopy reflec-
tance models as well as the ability to exploit the enhanced spectral
and spatial capabilities of upcoming satellite systems. Relating
satellite-retrieved leaf-level biochemical constituents to key carbon-
related parameters (e.g. photosynthetic capacity, light-use-efficiency)
in a consistentmanner for integration into land surfacemodels is anoth-
er important but challenging objective for future research.
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Appendix A. REGFLEC description

The REGFLEC multi-step retrieval and regularization methodology
(Fig. 2) is described in detail below.

A.1. Data preprocessing and atmospheric correction (step 1 and 2)

The current version of REGFLEC requires growing season time-series
of Landsat terrain corrected (Level 1 T) products as input. Built in pro-
cessing routines handle scene sub-setting, co-registration and cloud
masking. Clouds and cloud shadows are automatically detected using
the Fmask object-based approach (Zhu & Woodcock, 2012), which has
proven highly effective, with overall detection accuracies on the order
of 96 %. The preprocessed Landsat images of at-sensor radiances are at-
mospherically corrected using 6S (Section 2.1). For Landsat imagery, the
sensor view zenith angle (θvz) may vary between −7.5° and 7.5°, and
the important spatial variation in θvz is extracted automatically from
the imagery using information on the scene orientation angle and the
distance to the scene center meridian. A REGFLEC Graphical User Inter-
face (GUI) includes routines for download and on the fly processing of
atmospheric state and ancillary data from various satellite and
ground-based sources (Fig. 2). Surface elevation may be retrieved
from the GTOPO30 global digital elevation model at approximately
1 km resolution. Point-specific τ550, total precipitable water (TPW)
and aerosol size distribution can be retrieved from AERONET data
(Holben et al., 1998). In this case, REGFLEC will search for nearby
AERONET sites and handle all data access and processing needs. Spa-
tially distributed τ550 data at 10 km resolution can be acquired from
theMODIS aerosol product (MOD/MYD04) and TPW at 1 or 5 km res-
olution can be retrieved from the MODIS water vapor products
(MOD/MYD05) or at 45 km resolution from the Atmospheric Infra-
red Sounder (AIRS) standard retrieval product by interfacing directly
with the respective data distribution servers. O3 is also retrievable
from AIRS data. Alternative O3 sources embedded within REGFLEC
include the Total Ozone Mapping Spectrometer (TOMS) (1.25×1°
resolution) and the Aura Ozone Monitoring Instrument (OMI)
(0.25° resolution). The REGFLEC GUI conveys quality and uncertainty
information, and it is possible to combine the various products for
gap-filling purposes.

A.2. Land cover classification (step 3)

A land cover map that accurately separates individual crop classes
represents a critical component of the REGFLEC retrieval technique, al-
though knowledge of the actual cover types is not currently a require-
ment. An embedded and automated land cover classification scheme
performs class separation based in part on an unsupervised ISODATA
classification technique (Tou & Gonzalez, 1974) and Normalized
Difference Vegetation Index (NDVI) time-series data, thereby using
differences in phenology to distinguish functionally different cover
types. An ISODATA classification with input of cloud-screened atmo-
spherically corrected NDVI images is first run to generate a large
number (~100) of initial classes. Time-series correlation coefficients
(r2) and root-mean-square-deviations (RMSD) are computed be-
tween class-averaged NDVI time-series, with these metrics then
used to combine classes with similar phenology (r2 N 0.92) and
NDVI magnitudes (low RMSD). If ancillary LAI is used to constrain
the vegetation parameter retrievals (Section A.7), it is possible to
use the independent LAI time-series data in place of NDVI as a
proxy for phenology. Additionally, within the conterminous USA,
the classification may make use of Cropland Data Layer (CDL) prod-
ucts from the U.S. Department of Agriculture National Agricultural
Statistics Service (http://www.nass.usda.gov/research/Cropland/
SARS1a.htm) to guide the grouping of iso-classes. The CDL classifies
U.S. crop cover types using satellite imagery from the Advanced
Wide Field Sensor (AWIFS) and Landsat, together with a variety of

ancillary datasets and ground truth data (Han, Yang, Di & Mueller,
2012). The spatial resolution of most CDL data is 30 m and covers
all 48 adjoining states starting from 2009, although many states
have yearly CDL data back to 1997. The full CDL dataset can be auto-
matically accessed within REGFLEC and used either as a stand-alone
land cover classification or as ancillary input to the embedded land
cover classification routine.

A.3. LUT generation (step 4) and access

LUTs of spectral reflectances and VIs (Table A1) are generated by
running SAIL-PROSPECT (Section 2.2) in forward mode for a given
view and illumination geometry (θsz, θvz, θaz, θsaz) over a wide parame-
ter distribution space (Table A2). The ranges adopted for LAI and Chll
(0–8 and 10–90 μg cm−2, respectively) are expected to cover the vari-
ability observed in most ecosystems. The LUTs consist of 8 dimensions,
as a reflectance value must be stored for all possible combinations of
each LAI, Chll, N, θl, fB, Cm, s1, and s2 entry. For some parameters, the
LUTs are only computed for a few entries to reduce the computational
demand of the LUT generation (total number of parameter combina-
tions = 636480/LUT). The parameter range for N and θl have been set
particularly wide (1–4 and 5–80°, respectively) to make the system ap-
plicable to a wide range of leaf structures and canopy architectures. A
previous study using REGFLEC (Houborg & Anderson, 2009) indicated
that these model parameters may function more as internal calibrators
of the model system, compensating for input reflectance errors and
model deficiencies, causing deviations from a ‘realistic’ set of cover
specific parameter values while still maintaining reliable LAI and
Chll estimations. This tendency is discussed in greater detail in
Section 3.3.

The LUTs are used in forward mode for LAI/Chll estimation (as a
function of observed reflectances) and in inverse mode for spectral re-
flectance estimation (as a function of LAI/Chll). Chll and LAI spectral re-
lationships are established for given parameter entries (N, θl, fB, Cm, s1,
and s2) by fitting a polynomial or exponential equation to the modeled
reflectance or VI value at each Chll and LAI entry, respectively. Parame-
ter entry values that fall in between the respective LUT entries
(Table A2) are considered by linearly interpolating between bounding
parameter values when accessing the LUTs (Houborg, Anderson &
Daughtry, 2009), whichmakes the results less sensitive to the specified
parameter entries.

When using Landsat data, green band reflectance (Rgreen) relation-
ship are used for Chll prediction. Clearly,modeled Rgreen responds signif-
icantly to changes in Chll (Fig. A1a) and for dense cover conditions
(LAI N 2.5), Chll–Rgreen relationships are largely unaffected by further in-
creases in LAI and changes in soil background conditions due to a very
low leaf transmittance in the green spectrum (Houborg, Anderson &
Daughtry, 2009). However, at high vegetation densities, Chll–Rgreen rela-
tionships are highly sensitive to changes in bothN and θl (Fig. A1a), with
an increase in N leading to an increase in Chll (for the same Rgreen),
whereas Chll will decrease if θl increases. The two-band enhanced veg-
etation index (EVI2, Jiang, Huete, Didan & Miura, 2008) is used as the
primary LAI predictor, given its improved sensitivity over dense vegeta-
tion. In this study, EVI2 (Table A1) is used in place of the three-band EVI
(Huete et al., 2002) due to difficulties matching observed and modeled
reflectance values in the blue band. While the index normalization
causes changes in N to have a relatively minor influence on simulated
EVI2–LAI relationships, they remain strongly affected by variations in
θl (Fig. A1b). At high vegetation densities, Cm also becomes a controlling
factor (Fig. A1b). While normalized vegetation indices typically reduce
the effect of confounding factors, single band reflectance relationships
like LAI– Rnir and Chll– Rgreen (Table A1) maintain improved sensitivity
over a wider range in LAI and Chll, respectively (Houborg, Anderson &
Daughtry, 2009). In any case, proper determination of N, θl and Cm is
critical for reliable estimation of Chll and LAI when using Landsat-
based spectral relationships as predictors.
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A.4. Initial soil background estimation (step 5)

The estimation of soil parameters (s1 and s2) is separated from the
estimation of class-specific vegetation parameters (Section A.5) to min-
imize potentially confounding influences of the background reflectance

signal on the Chll and LAI retrievals. The basics behind the s1 and s2 re-
trieval and spatial extrapolation technique for sparsely vegetated pixels
are described in detail in Houborg and Boegh (2008). To summarize,
REGFLEC identifies bare soil or lowvegetation pixels in the scene and es-
timates s1 for each of these by iteratively changing s1 and s2 until the

Table A1
List of spectral bands and indices dedicated for Chll and LAI retrieval as part of the REGFLEC iterative LUT approach (section A.3–A.6). LUTs are generated for
each of these given the parameter ranges listed in Table A2. Rnir is near-infrared reflectance, Rgreen is the green band reflectance, NDVI is the normalized dif-
ference vegetation index, EVI2 is the two-band enhanced vegetation index, andMTVI2 is the secondmodified triangular vegetation index. The normalized dif-
ference vegetation index using red and green band reflectances (RGVI) is adopted here for predicting spatial variations in fB (section A.7).

Index Formula Reference

LAI = f(Rnir) Rnir
LAI = f(NDVI) (Rnir − Rred)/(Rnir + Rred) Rouse, Haas, Schell, & Deering (1974)
LAI = f(EVI2) 2.5(Rnir − Rred)/(Rnir + 2.4Rred − 1) Jiang, Huete, Didan and Miura (2008)
LAI = f(MTVI2) 1:5 1:2 Rnir−Rgreenð Þ−2:5 Rred−Rgreenð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Rnirþ1ð Þ2− 6Rnir−5
ffiffiffiffiffiffi
Rred

p� �
−0:5

q Haboudane, Miller, Pattey, Zarco-Tejada, & Strachan (2004)

Chl = f(Rgreen) Rgreen
fB = f(RGVI) (Rred − Rgreen)/(Rred + Rgreen)

Table A2
Specific values and ranges for 8 input parameters used for building multi-dimensional LUTs of the spectral bands and indices listed in Table A1. For some parameters, the LUTs are only
computed for a few entries but REGFLEC considers parameter values that fall in between the respective LUT entries by linearly interpolating between bounding parameter values
(Houborg, Anderson & Daughtry, 2009).

Parameter Abbr Unit LUT entries

Leaf area index LAI m2 m−2 0.2,0.7,1.2,1.7,2.2,2.7,3.2,3.7,4.2,4.7,5.2,5.7,6.2,6.7,7.2,7.7
Leaf chlorophyll content Chl μg cm−2 14,20,26,32,38,44,50,56,62,68,74,80,86
Mean leaf inclination angle θl Deg 5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85
Leaf structure parameter N 1.0,2.0,4.0
Dry matter content Cm g m−2 10,200
Canopy fraction of senescent material fB 0.0,0.2,0.4,0.6,0.8
Soil parameter s1 0.1,0.25,0.6
Soil parameter s2 −0.1,0.0,0.1

Fig. A1. Suite of predictive Chll–Rgreen (a) and LAI–EVI2 (b) relationships established by running SAIL-PROSPECT with varying N, θl and Cm and LAI and Chll fixed as indicated. In all runs,
θs = 27, θv = 1.5, s1 = 0.2 and s2 = 0.
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MAE between satellite observed and modeled reflectances (Rgreen, Rred

and Rnir) is minimized. The modeled reflectances are derived from
LUTs accessed in inverse mode (Section A.3), assuming default vegeta-
tion parameter and Chll entry values (Houborg, Anderson & Daughtry,
2009) and using spatialized LAI estimates. The latter is calculated from
a weighted combination of LUT-based LAI–NDVI relationships
(Section A.3) with input of Landsat reflectance data. As the technique
is only meaningful for low vegetation cover, derived LAI must be
below0.5 for s1 and s2 to be retrieved reliably. This condition is often dif-
ficult to meet, leading to large spatial gaps in the soil parameter maps.
As a result, REGFLECmay initially be run for a scenewith predominantly
sparse vegetation coverage (preferably just before the growing season)
in order to more effectively establish the spatial variability in the soil
signal. The resulting s1 and s2 maps are then used to fill gaps in subse-
quent scenes with more vegetation coverage.

REGFLEC attempts to incorporate changes in soil brightness between
the pre-growing season image and subsequent scenes. Since the second
soil parameter, s2, only accounts for approximately 20% of the spectral
variability in the soil reflectance (Price, 1990), s2 is assumed conserva-
tive in time and all brightness changes attributed to s1 variations. Amul-
tivariate linear regression is established in order to relate s1 in the active
scene to the a priori (i.e. pre-growing season) s1 and s2 values. The re-
gression is based on retrievals over pixels identified as soil (or sparsely
vegetated) in both scenes and subsequently used to fill gaps at vegetat-
ed pixels with input of the bare soil (pre-growing season) s1 and s2
values. If available, an ancillary soil texture mapmay be used to extrap-
olate s1 to unfilled vegetated pixels (LAI N 0.5) as described in Houborg
and Anderson (2009). Otherwise, the extrapolation to unfilled pixels is
based on land cover class and proximity to valid soil pixels. The resulting
s1 map provides a first estimate of the soil background signal. The reli-
ability of the retrievals depends in part on the availability of sufficient
a priori s1 estimates andmatching s1 pairs to generatemeaningful trans-
fer functions and properly adjust for soil brightness changes between
the two scenes. A pixel-wise refinement of s1 is implemented in
Section A.6 in an attempt to adjust for surface roughness and moisture
variability not captured by the initial estimates.

A.5. Class-specific parameter retrievals (step 6)

In an attempt to constrain the inverse retrieval of LAI and Chll from
the spectral reflectance signal, N, Cm and to some extent θl (see
below), are assumed to remain constant within a given land cover
class over the course of a growing season (Houborg & Anderson,
2009). A key new attribute of REGFLEC is the option to simultaneously
exploit spectral observations (over intermediate to dense vegetation)
from multiple satellite scenes over a growing season, which is typically
available in the case of Landsat. The retrieval of optimal sets of class-
invariant vegetation parameters relies on the availability of intermedi-
ate to dense vegetation pixels, where the contribution of the back-
ground signal to the overall scene reflectance is reduced and the total
amount of radiation scatter by plants is increased (Daughtry, Walthall,
Kim & Colstoun, 2000), which maximizes the sensitivity of the reflec-
tance signal to variations in N, Cm and θl.

Initial class-specific pixel selection is based on a default NDVI thresh-
old of 0.7. Further screening is performed toonly include themost dense
vegetation pixels at each acquisition time. At the same time, pixels on
the boundary of land cover classes are omitted to avoid mixed pixels.
Using an iterative LUT approach, REGFLEC then loops through all plausi-
ble parameter combinations of N (1.0, 1.2…4.0), θl (15, 20…80),
and Cm (20, 40, 60, 80) and for each combination calculates initial LAI
(as a function of observed Rnir) and Chll (as a function of observed
Rgreen) for all selected class-specific pixels. With Chll calculated, LAI is
updated as a function of EVI2. The relevant Chl and LAI relationships
are established by accessing the appropriate scene-specific LUTs
(Section A.3), using the initial estimates of soil parameters (Section A.4).
These spatio-temporal Chl and LAI estimates are then input to the LUTs

for retrieving modeled spectral reflectances (Rgreen, Rred, Rnir) for each
high NDVI pixel. The optimal class-specific parameter combination
(i.e. N, θl, Cm) is the one that results in the smallest relative MAE be-
tween the multi-scene modeled and observed spectral reflectances,
while assuring that Chll and LAI of associated pixels remain within a re-
alistic range (Table A2).

Due to the ill-posed nature ofmodel inversion (Combal, Baret,Weiss
& Trubuil, 2002), different parameter settingsmay yield identical reflec-
tance spectra. As such, it can be very difficult to separate relative contri-
butions of LAI and Chll from the total reflectance signal (Wu, Niu, Tang &
Huang, 2008). While the use of multi-scene spectral observations, as
described above, represents a temporal regularization technique that
can be helpful in guiding the inverse retrieval process, REGFLEC may
also embed ancillary LAI, derived independently from satellite data
(Section A.7), as a constraint on the parameter retrievals. The ancillary
LAI is integrated into the routines described above to 1) select class-
specific pixels suited for the inversion (LAI N 2), 2) estimate initial LAI
(instead of LAI–Rnir relationships), and 3) calculatemodeled spectral re-
flectances (a weighted average of REGFLEC and ancillary LAI is used).

Imposing temporal constraints onN and Cm ismeaningful as they are
typically fairly constant over the growing season for a given species type
(Hosgood et al., 1995). θl may exhibit greater intra-class variability
dependent on phenological stage (Huemmrich, 2013; Ross, 1981) and
information on θl in space and time should ideally come from indepen-
dent sources such as multi-angular satellite imagery. However, such in-
formation is currently not available. In REGFLEC, when ancillary LAI is
used, spatio-temporal patterns in θl is deduced from LUT-based θl–Rnir

relationships using input of ancillary LAI and iterated parameter combi-
nations (N and Cm). This is a reasonable approximation as, for a given
LAI, the near-infrared reflectance plateau is primarily modulated by θl
(Asner, 1998). Following the class-specific parameter estimations, addi-
tional fine-tuning of θl is done independently for each scene by itera-
tively varying θl (class averaged value ± 15) over high vegetation
density pixels to optimize the match between observed and modeled
spectral reflectances. The resulting θl output is smoothed (to minimize
intra-field variability) and extrapolated to all class-specific pixels
based on proximity in space and time to a valid pixel retrieval.

A.6. LAI and Chll retrieval (step 7)

Following the class-specific multi-scene determination of N, θl, and
Cm, each satellite scene is processed individually for estimating optimal
Chll and LAI for all pixels within each land cover class, by iteratively
adjusting s1 and fB (if applicable), as outlined in Houborg and
Anderson (2009). Chll is mapped over the modeling domain using
model-diagnosed Chl–Rgreen relationships, reflecting differences in LAI,
land cover (N, θl, Cm), view-sun geometry, soil background (s1, s2) and
degree of senescence (fB, if applicable). A combination of LAI–MTVI2,
LAI–EVI2 and LAI–Rnir relationships (Table A1) are used to derive the
final LAI product. Ancillary LAI may be used as an additional constraint
on the pixel-wise retrievals using the approach described in Section A.5.
Note that adopted VI relationships are exclusively model derived and
that no site-specific (in-situ) data are used for calibration purposes.

When REGFLEC is applied to multiple scenes, the activation of the
fB module (for considering leaf senescence) will be determined auto-
matically for each class based on ancillary LAI or EVI2 time-series data
(significant continuous declines in LAI/EVI2 are assumed indicative of
senescence onset). During senescence, further increases in Chll and
total LAI are assumedunlikely and predictions are constrained by penal-
izing combinations (s1, fB) that result in an increase in Chll or total LAI, or
a decrease in fB relative to the retrievals from the preceding Landsat
scene at corresponding pixel locations. There is a strong link between
fB and the differences between red and green reflectances, as increasing
the amount of senescent leaf material causes an increase in red relative
to green reflectance (Houborg, Anderson & Daughtry, 2009). As a result,
REGFLEC adopts fB–RGVI relationships (Table A1) for the delineation of
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horizontal fB gradients. For any iterated fB value, appropriate fB–RGVI
relationships (LUTs) are accessed and applied for disaggregating fB
onto each pixel. These are then used to update the green LAI and total
(green + senescent) Chll values.

A.7. Ancillary LAI constraint

Some studies have shown increased robustness when integrating
leaf level biochemical variables to the canopy level (e.g. leaf Chl × LAI)
(Baret et al., 2007; Gitelson, Vina, Ciganda, Rundquist & Arkebauer,
2005; Weiss, Baret, Myneni, Pragnère & Knyazikhin, 2000) as leaf and
canopy scale variables can have a mutually compensating effect on can-
opy reflectance (Lewis & Disney, 2007). Ancillary LAImay be usedwith-
in the REGFLEC retrieval scheme (Section A.5 and A.6) in order to better
separate LAI and Chll effects on observed reflectance spectra. Since other
model parameters (N, θl, Cm) are kept free with wide ranges (Table A2),
this LAI constraint could prove to be particularly important for regular-
ization purposes. REGFLEC embeds an automated routine for retrieving
ancillary LAI from Landsat using MODIS LAI products as reference (Gao,
Anderson, Kustas & Wang, 2012). In this approach, homogeneous and
high-quality LAI retrievals from MODIS (1 km) are used as references
to develop a regression tree relating these MODIS LAI samples to atmo-
spherically corrected Landsat surface reflectances derived using the
Landsat ecosystem disturbance adaptive processing system (LEDAPS)
(Masek et al., 2006). Landsat bands 2–5 and 7 are used to build the re-
gression tree and multiple MODIS and Landsat image pairs are used in
the process to include a wider range of sampled LAI. The same regres-
sion tree is then applied to all Landsat scenes for producing LAI values
at 30 m resolution that are consistent with the MODIS LAI product.
Evaluations against field measurements have shown that this approach
can produce accurate estimates of LAI from Landsat (Gao, Anderson,
Kustas & Wang, 2012).

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2014.12.008.
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