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A B S T R A C T   

Tillage practices alter soil surface structure that can be potentially captured by satellite images with both high 
spatial and temporal resolution. This study explored tillage practice mapping using the daily Planet Fusion 
surface reflectance (PF-SR) gap-free 3 m data generated by fusing PlanetScope with Landsat-8, Sentinel-2 and 
MODIS surface reflectance data. The study area is a 220 × 220 km2 agricultural area in South Dakota, USA, and 
the study used 3285 PF-SR images from September 1, 2020 to August 31, 2021. The PF-SR images for the sur-
veyed 433 fields were sliced into 10,747 training (70%) and evaluation (30%) non-overlapping time series 
patches. The training and evaluation patches were from different fields for evaluation data independence. The 
performance of four deep learning models (i.e., 2D convolutional neural networks (CNN), 3D CNN, CNN-Long 
short-term memory (LSTM), and attention CNN-LSTM) in tillage practice mapping, as well as their sensitivity 
to different spatial (i.e., 3 m, 24 m, and 96 m) and temporal resolutions (16-day, 8-day, 4-day, 2-day and 1-day) 
were examined. Classification accuracy continuously increased with increases in both temporal and spatial 
resolutions. The optimal models (3D CNN and attention CNN-LSTM) achieved ~77% accuracy using 2-day or 
daily 3 m resolution data as opposed to ~72% accuracy using 16-day 3 m resolution data or daily 24 m resolution 
data. This study also analyzed the feature importance of different acquisition dates for the two optimal models. 
The 3D CNN model feature importances were found to agree well with the tillage practice time. High feature 
importance was associated with observations during the fall and spring tillage period (i.e., fresh tillage signals) 
whereas the crop peak growing period (i.e., tillage signals weathered and confounded by dense canopy) was 
characterized by a relatively low feature importance. The work provides valuable insights into the utility of deep 
learning for tillage mapping and change event time identification based on high resolution imagery.   

1. Introduction 

Tillage, an agricultural activity to disturb soil and to reduce crop 
residue, has been used for thousands of years to facilitate seed bed 
preparation and reduce weeds and insects. However, tillage has also 
been found to accelerate water and nutrition loss in soil, and negatively 
affect carbon sequestration due to the increase surface runoff caused by 
tillage soil disturbance (Giglio et al., 2006; Mishra et al., 2010; Rog-
er-Estrade et al., 2010; Zheng et al., 2014). More sustainable conserva-
tion tillage practices have been instituted to reduce soil disturbance. 
Studies have shown that conservation tillage practice can benefit sus-
tainable agriculture by reducing carbon dioxide emission and soil 

erosion and increasing carbon sequestration (Alvarez and Alvarez, 2005; 
Busari et al., 2015; Melero et al., 2009; South et al., 2004). Conse-
quently, the conventional tillage has shifted to conservation tillage to 
preserve more crop residue for long-term soil health, e.g., to reduce 
water and nutrition loss and to sequestrate more carbon. Tillage can be 
categorized into different types based on the percentage of crop residue 
covered on the topsoil, i.e., conventional tillage (less than 15% crop 
residue cover), reduced tillage (between 15 and 30% crop residue 
cover), and conservation tillage (at least 30% of crop residue cover) and 
no tillage (100% of crop residue cover) (USEPA, 2018). 

Accurate mapping of different practices is needed for large scale 
assessment of erosion risk, agricultural carbon sequestration, and water 
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quality altered by runoff of agricultural inputs. Studies also shows tillage 
can impact the crop yield (De Vita et al., 2007; Deines et al., 2019). 
Currently, data from medium spatial resolution satellite sensors such as 
Landsat have been used to identify low intensity and high intensity 
tillage or conservation tillage (Azzari et al., 2019; Beeson et al., 2020; 
Gao et al., 2022; South et al., 2004; Watts et al., 2009, 2011; Wang et al., 
2022). However, one major drawback of medium spatial resolution (e. 
g., 30 m) remote sensing data is the inability to properly resolve texture 
information associated with different tillage practices. More recently, 
high or very high spatial resolution (i.e., less than 10 m) sensors (e.g., 
WorldView 2/3 and PlanetScope) have become a potential resource for 
tillage practice mapping (Quemada et al., 2018; M. Liu et al., 2022). For 
example, Hively et al. (2018) used WorldView 3 data with short-wave 
infrared (SWIR) band reflectance indices to analyze tillage systems, 
and their results showed promise in using WorldView data. Another 
study used an Unmanned Aerial Vehicle (UAV) system to detect con-
ventional tillage and no-tillage practices in a cotton crop at the begin-
ning of the growing season (Ashapure et al., 2019). These high spatial 
resolution datasets can effectively capture spatial texture information of 
different tillage practices. However, limited temporal resolution remains 
an issue because of frequent cloud contamination and difficulties asso-
ciated with identifying optimal data acquisition dates for tillage map-
ping, which is further complicated by spatial variations in tillage time 
and rapid weathering of crop residue (Pacheco and McNairn, 2010; 
Zheng et al., 2014). Some studies have suggested that images acquired 
immediately before and after tillage is critical for tillage classification 
(Watts et al., 2011), which suggests a value add in having access to 
frequent time series data. Notably, Azzari et al. (2019) and Beeson et al. 
(2020) used Landsat time series data to map low-intensity and 
high-intensity tillage practices in the north central US region by 
compositing Landsat 5, 7, and 8 images to overcome cloud contamina-
tion issues. In addition, identification of tillage date is important as 
tillage time is important for soil moisture preservation (Arvidsson and 
Bölenius 2006; Tarkalson et al., 2016), weed control (Teasdale and 
Mirsky 2015; Smith 2006), and crop yield (Mamkagh et al., 2009; Wang 
et al., 2018). While high temporal resolution images can potentially 
provide information for tillage mapping, there is no studies utilizing 
such information for tillage date identification. 

The PlanetScope constellation with 200+ CubeSats in low earth or-
bits delivers daily high spatial resolution images, which could prove 
valuable for tillage classification purposes. This data has the unique 
ability to track both high spatial and high temporal resolution surface 
changes, thus increasing the potential applications in the remote sensing 
community (Roy et al., 2021). However, due to sensor interoperability 
issues, cross-calibration challenges, and atmospheric contamination, 
deriving daily and temporally consistent analysis ready data from the 
PlanetScope constellation is associated with substantial challenges. 
Recently, Planet Labs PBC has implemented and improved the cubesat 
enabled spatio-temporal enhancement method (CESTEM) (Houborg and 
McCabe 2018) to cross-calibrate, harmonize, and fuse multi-sensor data 
streams leveraging publicly accessible satellites such as Sentinel-2, 
Landsat 8/9, Moderate Resolution Imaging Spectroradiometer 
(MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS) in 
concert with high resolution PlanetScope data (Planet Fusion Team, 
2022). The resulting Planet Fusion product (PF-SR) delivers daily, gap 
free, radiometrically accurate, and temporally consistent 4-band surface 
reflectance (SR) data. 

Machine learning has been extensively used to classify time series 
remote sensing data (Townshend et al., 1991; Wulder et al., 2018). Deep 
learning as a branch of machine learning is emerging as an effective 
approach in the remote sensing community for land use and land cover 
change mapping and analysis, vegetation classification, and agricultural 
applications (Chen et al., 2020; Kamilaris and Prenafeta-Boldú, 2018; 
Ma et al., 2019, 2022; Xu et al., 2018; Yan et al., 2022; Yuan et al., 
2020). Compared to traditional machine learning, deep learning algo-
rithms can take an image patch (or image patch time series) as input and 

learn its spatial and/or temporal information content because of its 
ability to learn hierarchical representations of features. Convolutional 
Neural Networks (CNNs), for example, have been successfully used to 
extract features from imagery by considering the spatial correlation of 
pixels in the image (Kattenborn et al., 2021; Thorp and Drajat, 2021; 
Turkoglu et al., 2021; Wang et al., 2018). Recent studies have adapted 
CNNs (such as one-dimensional (1D), two-dimensional (2D) and 
three-dimensional (3D)) to process and interpret time series satellite 
images (Ben Hamida et al., 2018; Kattenborn et al., 2021; Xu et al., 
2018). At the same time, recurrent neural networks such as Long 
Short-Term Memory (LSTM) have been adapted to process time series 
information at various spatial scales (Ienco et al., 2019; Rußwurm and 
Körner, 2020; Xu et al., 2021). For instance, LSTM has been used to 
estimate paddy rice production stages (Thorp and Drajat, 2021), and for 
land cover mapping (Ienco et al., 2019) using time series of Sentinel-2 
images. Other studies have combined CNN and LSTM algorithms to 
classify time series remote sensing images (Masolele et al., 2021; J. J. 
Sun et al., 2019; Turkoglu et al., 2021). With the development of deep 
learning algorithms, the attention mechanism (Bahdanau et al., 2015; 
Luong et al., 2015) has emerged as an attempt to further improve the 
performance of the models (Li et al., 2020; Ofori-Ampofo et al., 2021). 
Various studies have applied the attention mechanism into deep 
learning models such as CNN and LSTM, demonstrating improved land 
cover classification accuracies (Masolele et al., 2021; Xu et al., 2021). 
Nevertheless, studies applying these deep learning algorithms to classify 
tillage practices do not currently exist to the best of our knowledge. 

The objectives of this study are to (i) examine the feasibility of the 
Planet Fusion daily 3 m time series data for tillage practice classification; 
(ii) investigate the performance of different deep learning models for 
tillage practices classification and sensitivity to changes in spatial and 
temporal resolutions; and (iii) examine the deep learning interpretation 
capability for tillage time information extraction. This study used 3285 
PF-SR daily images covering a 220 × 220 km2 area nearby Sioux Falls, 
South Dakota, USA from September 1, 2020 to August 31, 2021. The 433 
fields were surveyed to get ground truth tillage data and the PF-SR 
images for the surveyed fields were sliced into 10,747 non- 
overlapping time series patches each containing 365 × 32 × 32 3 m 
pixels. 70% and 30% patches were used for model training and evalu-
ation, respectively, and the training and evaluation patches were from 
different fields for evaluation data independence. The performance of 
four deep learning models (i.e., 2D convolutional neural networks 
(CNN), 3D CNN, CNN-Long short-term memory (LSTM), and attention 
CNN-LSTM) in tillage practice mapping, as well as their sensitivity to 
different spatial (i.e., 3 m, 24 m, and 96 m) and temporal resolutions 
(16-day, 8-day, 4-day, 2-day and 1-day) were examined. This study also 
analyzed the feature importance of different acquisition dates for the 
best models. 

2. Study area, field survey data, PlanetScope data and land 
cover data 

2.1. Study area and field survey data for training and evaluation 

The study area is located near Sioux Falls in Minnehaha County of 
South Dakota (Fig. 1), covering an area of 2110 km2 growing predom-
inantly corn and soybean. The area is characterized by hot and humid 
summers and cold and dry winters. The monthly mean temperature 
ranges from − 7.8 to 23.6 ◦C and the mean annual precipitation is ~707 
mm. Farmers have used four different tillage practices in the region, i.e., 
conventional tillage, reduced tillage, mulch tillage, and no tillage 
(USDA-NRCS, 2019). The ground truth tillage data was collected in June 
2021 for 460 fields along a route set up by the USDA Natural Resources 
Conservation Service (NRCS) for annual conservation farming survey 
(Fig. 1). The dates were selected by the NRCS field survey experts and 
corresponded to the crop seedling stage. Both crop type and crop residue 
can be identified at this stage and all the tillage activities have been 
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completed for the growing season. Specifically, tillage mapping re-
searchers and NRCS survey experts drove along the route and visited the 
460 selected fields to record the tillage and crop types and to take 
photos. The tillage type was identified by visually determining how 
much crop residue was left in the field. After all the field data were 
collected, the researchers re-examined the tillage type record and cor-
responding photos for all the fields and removed those with potentially 
erroneous and ambiguous tillage types. Consequently, 433 out of the 
460 fields were retained as training and evaluation samples. Each field 
was associated with a field boundary polygon using crop field bound-
aries generated by segmentation of 30 m Landsat annual time series and 
Crop Data Layer (CDL) data by Yan and Roy (2016) (https://lcluc.umd. 
edu/metadata/conterminous-united-states-conus-field-extraction). The 
field boundary polygons were then manually refined and edited using 
high spatial resolution images available in Google Earth Pro and Envi-
ronmental Systems Research Institute (ESRI) World Imagery layer 
(Fig. 1). Among the 433 fields (i.e., polygons), conventional tillage, 
reduced tillage, mulch tillage, and no tillage was conducted in 71, 150, 
107, and 105 fields, respectively. Fig. 2 shows example fieldwork photos 
and the corresponding Planet Fusion surface reflectance data for each 
type of tillage practice. 

2.2. Planet fusion daily surface reflectance data 

The Planet Fusion Surface Reflectance (PF-SR) product was used, 
which has 3 m spatial resolution and daily temporal resolution. Planet 
Fusion adopts an implementation of the CubeSat-Enabled Spatio-Tem-
poral Enhancement Method (CESTEM; Houborg and McCabe, 2018) to 
leverage rigorously calibrated publicly accessible multispectral satellites 
(i.e., Sentinel-2, Landsat 8/9, MODIS, VIIRS) to work in concert with the 
higher spatial and temporal resolution data provided by Planet’s me-
dium resolution constellation of 200+ CubeSats. CESTEM is used to 
rigorously harmonize multi-sensor spectral data into a consistent 
radiometric surface reflectance standard for full fleet interoperability. 
The Framework for Operational Radiometric Correction for Environ-
mental Monitoring (FORCE version 3.7.7; Frantz, 2019) generates a 
harmonized Sentinel-2 and Landsat 8/9 BRDF adjusted Surface Reflec-
tance (SR) product that is used as the cross-calibration reference target 
during the radiometric harmonization step. Planet Fusion processing 
also includes advanced temporally driven functionality related to geo-
metric harmonization, cloud and shadow masking, gap-filling, and 
temporal filtering (Planet Fusion Team, 2022). The product contains the 
Planet Fusion Surface Reflectance data (PF-SR) and associated Quality 

Assurance data (PF-QA). 
Planet Fusion delivers 4-band (blue: 0.45–0.51 μm, green: 0.53–0.59 

μm, red: 0.64–0.67 μm, and near infrared: 0.85–0.88 μm) Surface 
Reflectance data in regularly gridded Universal Transverse Mercator 
(UTM) tiles each 24 km × 24 km (i.e., 8000 × 8000 3 m pixels). The 
study area intersected a total of 9 tiles and data were acquired from 
September 1st, 2020 to August 31st, 2021 to cover the full tillage 
operation, which is undertaken between the harvest of the previous 
growing cycle crop and the following sowing/cultivation operation 
(USEPA, 2018). A total of 3285 images were acquired through an au-
thor’s affiliation to the Planet Labs PBC. The images are available to the 
public but there is a charge for accessing them. 

2.3. Cropland data layer (CDL) data 

The USDA cropland data layer (CDL) data was used to identify what 
crops have been planted in the year 2020. The year 2020 planted crops 
determine the crop residue spatial pattern, coverage amount in fall 2020 
to spring 2021 and can potentially impact the tillage classification for 
our study period (September 1st, 2020 to August 31st, 2021). The year 
2020 CDL crop types were thus used to evaluate the tillage classification 
accuracy for residue of each crop type. Note that CDL is not used as input 
for tillage classification as this study aims to examine how the Planet-
Scope images alone can classify tillage practices. The CDL product is an 
ongoing project sponsored by the USDA National Agricultural Statistics 
Service (NASS) (Boryan et al., 2011), and the product is based on 
training data derived from annual farmers’ survey. The producer’s and 
user’s accuracies of CDL are higher than 96% for major crop types. Based 
on the CDL 2020 data, the study area field polygons were characterized 
by a mix of corn, sorghum, soybean, rye, oats, millet, alfalfa, and 
grassland with the majority being corn (231 fields) and soybean (193 
fields) (Fig. 1). 

3. Method 

3.1. Overview 

In this study, the four tillage practices (i.e., conventional tillage, 
reduced tillage, mulch tillage, and no tillage) were aggregated into two 
tillage categories (conventional and conservation) for classification. The 
two tillage categories classification conforms well with previous tillage 
classification studies in the literature (Ashapure et al., 2019; Azzari 
et al., 2019) and is consistent with the conventional and conservation 

Fig. 1. The geographic location of the study area and surveying fields (red dots), and different crop type polygons used in the study. The background image is the 
Planet Fusion Surface Reflectance red band image acquired on September 15, 2020. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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tillage definition in sustainable agriculture. Specifically, the conven-
tional tillage category is defined as <30% crop residue left on the surface 
after tillage such as mold board, disk, or chisel plow methods and thus 
includes conventional and reduced tillage practices. The conservation 
tillage category is defined as ≥30% crop residue left and includes mulch 
tillage and no tillage practices. All available bands (i.e., blue, green, red, 
and NIR) from the daily Planet Fusion Surface Reflectance product were 
used for classification. 

Fig. 3 shows the flowchart of the proposed method that includes 
three major steps. (i) The first step is the extraction of training and 
evaluation time series PF-SR patches each with 32 × 32 × 365 × 4 
reflectance values, i.e., 32 × 32 3 m pixels, 365 dates and 4 spectral 
bands. (ii) The second step is to use deep learning methods with capa-
bility to classify the four dimensional PF-SR time series patches (32 × 32 
× 365 × 4) into a class label. We explored four deep learning models, i. 
e., 2D convolutional neural network (CNN), 3D CNN, CNN long short- 
term memory networks (LSTM), and attention CNN-LSTM with such 
capability. In addition, the sensitivity of the models to different spatial 
and temporal resolutions was analyzed by simulating a series of datasets 

with reduced spatial and temporal resolutions relative to the native PF- 
SR data. (iii) Finally, temporal feature importances were calculated from 
the trained deep learning models to estimate the timing of tillage 
practices. The principle behind this is that the important features (dates) 
should be those right after the tillage practice when the tillage signal is 
fresh and has not been weathering. 

3.2. Training and evaluation data 

The convolutional neural network (CNN) based deep learning 
models usually take as training input an image patch or image patch 
time series with multispectral bands and multiple dates (n × n × t × s) 
(with n being the spatial patch window size, s = 4 spectral bands and t =
365 dates in this study). The trained model will then produce output in 
the form of class labels (e.g., tillage type) for the image patch. In this 
study, the field polygons with the samples have various irregular shapes 
and areas ranging from 32,540 m2 to 1,495,390 m2. Fixed-size patches 
were extracted from each individual field polygon (Fig. 1) by slicing a 
32 × 32 (n = 32) window across each polygon with step size 32 (i.e., no 

Fig. 2. Examples of Planet Fusion Surface Reflectance (RGB) imagery (left) and roadside photos (right) for conventional tillage practice (a), reduced tillage practice 
(b), mulch tillage practice (c) and no tillage practice (d). 
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overlap between patches). Patches at the polygon edges were kept if at 
least 95% of the pixels were inside the field polygon. A total of 10,747 
patches were generated in this way and subdivided into conventional 
(5722) and conservation (5025) tillage patches. There were 5821 and 
4842 patches planted in 2020 as corn and soybean, respectively. 

About 70% (7429 patches) and 30% (3008 patches) of the patches 
were used for training and evaluation of deep learning models, respec-
tively. It is well established that evaluation patches coming from the 
same field with the training patches may boost the evaluation accuracy 
due to the training and evaluation data correlation. In this study, the 
training and evaluation patches were selected from different field 
polygons to avoid boosting the evaluation data accuracy. The 433 field 
polygons were first randomly split into training and evaluation poly-
gons. All patches in the training and evaluation field polygons were used 
for training and evaluation, respectively (i.e., a field polygon was never 
used for both training and evaluation). 4% (310 patches) of training 
patches (sometimes termed as validation data) were randomly selected 
and used to tune the hyper-parameters of the deep learning models. 

3.3. Deep learning models 

Fig. 4 shows the four deep learning models used in this study that are 
two-dimensional (2D) CNN (Krizhevsky et al., 2012), three-dimensional 
(3D) CNN (Ji et al., 2013), 2D CNN-long short-term memory (LSTM) and 
attention 2D CNN-LSTM (Ma and Hovy, 2016; Interdonato et al., 2019; 
Masolele et al., 2021; Thorp and Drajat, 2021; Turkoglu et al., 2021; 
Wang et al., 2022). All the models take each time series patch with 32 ×
32 × 365 × 4 reflectance values as input and classify it into a tillage type 
(either conventional or conservation). However, they are slightly 
different in how the input data are organized. The 2D CNN reshaped the 
4D input time series image patch into a 3D image 32 × 32 × 1460. The 
3D CNN directly took the 32 × 32 × 365 × 4 time series patch. The 

CNN-LSTM and attention CNN-LSTM need the input patch reshaped to 
be 365 × 32 × 32 × 4 to align with the structure requirement. The 
conventional CNN method classifying each patch to a single label is used 
rather than the fully convolutional networks (FCN) that can classify each 
pixel in the patch (Long et al., 2015; Ronneberger et al., 2015). This is 
because all pixels within a patch usually use the same tillage practice 
considering that the patch size (96 m × 96 m = 0.009 km2) is much 
smaller than the typical US field size with mean value of 0.193 km2 (Yan 
and Roy 2016). 

3.3.1. 2D CNN 
2D CNN can learn spatial correlation among pixels and normally 

takes three-dimensional image patches as input (e.g., 32 × 32 × s with s 
being the third dimension, normally the spectral bands in remote 
sensing image). The 4-dimensional input patch time series (32 × 32 × t 
× 4) was flattened into 3-dimensions by collapsing the spectral (s: 4 in 
this study) and temporal (t) dimensions into one dimension with length t 
× s, i.e., by stacking all the images acquired at t different dates into a 
single image with t × 4 bands. The 2D CNN usually contains 2 to hun-
dreds of convolutional layers and followed by 2–3 fully connected 
layers. Each convolutional layer is usually associated with several (e.g., 
64) convolutional filters/kernels (i.e., three-dimensional matrix with 
learnable weight and bias) to convolute with the 3D images. The con-
volutional layer generates the same number of 2D feature maps as the 
number of filters and these 2D feature maps can be considered as one 
single 3D feature map used as input for the next convolutional layer. The 
last CNN layer feature maps are flattened into a 1D feature vector for the 
fully connected layers. Each fully connected layer has a 2D weight 
matrix and 1D bias vector coefficients to linearly transform the input 1D- 
feature vector to generate another 1D feature vector. The last fully 
connected layer is used to predict class labels. 

In this study, each of the four convolutional blocks in the 2D CNN 
model consisted of one convolutional layer, one batch normalization 
layer and one max pooling layer (Table 1). Batch normalization of 
feature map using mean and standard deviation has proven effective 
towards avoiding gradient issue and potentially improve model perfor-
mance (Ioffe and Szegedy, 2015). The max pooling layer applies a 
sliding window across the feature maps and derives a single max value in 
each window to suppress irrelevant information. The filters in each 2D 
convolutional layer were set as: 64, 128, 256, 512; and filter size in each 
convolutional layer was 3 × 3. The first fully connected layer has 512 
neutrons and the second fully connected layer has 2 so that the output 
has 2 values to represent class confidence for each class. To avoid 
overfitting, one dropout layer with 0.5 drop rate was added to the first 
fully connected layer (Fig. 4 and Table 1). This structure was built by 
testing a range of convolutional layer numbers (3,4,5,6) and the first 
convolution layer filter numbers (32, 64 and 128) and is consistent with 
the optimal used by Masolele et al. (2021) in the classification of tropical 
deforestation using Landsat 5 and 7 time series imagery over six years. 
The number of convolutional layer filters is doubled after each con-
volutional block following the conventional deep CNN models. 

3.3.2. 3D CNN 
The 3D CNN (Ji et al., 2013) is different from the 2D CNN as each 

convolutional layer contains 4D filters that are directly applied to the 
input 4D image (32 × 32 × t × 4) and derives a 4D feature map. Simi-
larly, the 3D CNN has batch normalization, pooling, and fully connected 
layers. Due to the feature map dimensions, the 3D pooling layer replaces 
the 2D pooling and uses a 3D window to slide across the feature maps 
and derives a max value in each window. Then the 4D feature maps of 
the last convolutional layer were flattened to a 1D vector and fed to the 
fully connected layers. The structure of the 3D CNN model used in the 
study consisted of four 3D convolutional blocks. Each block was 
composed of one 3D convolutional, one batch normalization, and one 
3D max pooling layer. The number of filters in each 3D convolutional 
layer was the same as the 2D CNN model (i.e., 64, 128, 256, 512) and the 

Fig. 3. Flowchart of the proposed method. The CNN and LSTM represent 
convolutional neural network and long short-term memory, respectively. 
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filter size was 3 × 3 × 3. Similar to the 2D CNN model, the flattened 
feature map also had two fully connected layers (i.e., 512 and 2 neurons, 
respectively) and one batch normalization layer and one dropout layer 
with 0.5 drop rate were added to the first fully connected layer to avoid 
overfitting (Fig. 4 and Table 1). 

3.3.3. CNN-LSTM 
The CNN-LSTM model is a combination of the 2D CNN and recurrent 

neural network (RNN) that can directly take the t × 32 × 32 × 4 image 
patch time series as input. The 2D CNN is used to transform each image 
(32 × 32 × 4) into a feature vector (e.g., with length l’) and the time 

series feature vectors (l’ × t) will then be fed into RNN that was devel-
oped to handle sequential data (Bengio Y, et al., 1994). The hidden layer 
features at time t are derived as a function of both the previous layer 
feature values and the current layer feature values at previous time step. 
The hidden layer features at time t bear all the information from all the 
past steps and the hidden layer features at the last time step were used 
for classification. Due to the structure, the calculated gradient values in 
RNN training can be extremely small (gradient vanishing) or large 
(gradient exploding), which will stop meaningful model coefficient 
updates/training. 

To avoid gradient vanishing and exploding issues, Long Short-Term 

Fig. 4. The input, structure and output of the four deep learning models: the two-dimensional (2D) CNN (first row), three-dimensional (3D) CNN (second row), 2D 
CNN- long short-term memory (LSTM, third row) and attention 2D CNN-LSTM (the last row). Note despite all models take the same input data, the data organizations 
are different. BN represents batch normalization. 
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Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated 
Recurrent Unit (GRU) (Chung et al., 2014) algorithms have been 
developed and used for land use and land cover classification (Paoletti 
et al., 2018; Z. Z. Sun et al., 2019; Yuan et al., 2020). We used LSTM 
based deep learning algorithms (CNN-LSTM and Attention CNN-LSTM) 
in this study as we experimentally found little difference between the 
LSTM and GRU. The CNN-LSTM model in this study had four 2D con-
volutional layers and 2D max pooling layers (Fig. 4 and Table 1), i.e., 
similar to the plain 2D CNN model (Section 3.3.1), and followed by two 
LSTMs with 2048 and 1024 units, respectively. This structure is deter-
mined after testing different number of LSTM layers (1, 2, and 3) and 
different hidden units (512, 1024, and 2048). Then three fully connected 
layers with 512, 128 and 2 feature vectors were added to the output of 
the last LSTM layer to predict class labels as described for the plain 2D 
CNN model (Section 3.3.1). 

3.3.4. Attention CNN-LSTM 
The attention CNN-LSTM model was also used to examine the recent 

development of the attention models in handling time series data 
(Bahdanau et al., 2015; Luong et al., 2015). Attention mechanism has 
been used in the remote sensing community (Ienco et al., 2019) and 
have achieved a higher accuracy compared with non-attention RNN 
models (Masolele et al., 2021; Xu et al., 2021). Attention mechanism 
takes the time series hidden layer feature vectors as input to derive a 
context vector (or a weighting vector) that captures the relevant 

importance of the hidden state at each time step. The structure of the 
attention CNN-LSTM model was similar to the CNN-LSTM model but a 
multi-head attention mechanism was added to the second LSTM layer. In 
this study, a multi-head self-attention was adapted to combine the 
feature vectors returned by the second LSTM at each time step, which is 
a key component of the popular Transformer model (Vaswani et al., 
2017). The hidden unit and head numbers of the attention layer were set 
as 1024 (same as the last LSTM unit) and 8 (after testing 4 and 8), 
respectively. The output of the multi-head self-attention layer also fol-
lowed three fully connected layers as done for the CNN-LSTM model to 
predict class labels (Fig. 4 and Table 1). 

3.3.5. Training parameters and evaluation metrics 
All the deep learning models were implemented using Keras and 

TensorFlow. The rectified Linear Unit (ReLU) activation function (Glorot 
et al. 2011) was used in all the convolutional and fully connected layers 
(Table 1). The sparse categorical cross entropy was used as the loss 
function. The RMSprop optimizer was chosen over the Adam optimizer 
based on experimental results. A dynamic learning rate exponential 
decay schedule (Gotmare et al., 2019) was used in this study as studies 
have proved that learning rate schedule is better than a fixed learning 
rate (Li and Arora, 2019; Rußwurm and Körner, 2020). The initial 
learning rate was set as 0.0001 after testing three different rates (i.e., 
0.00001, 0.0001, and 0.001) and all other optimizer parameters were set 
as default following the convention. The batch size was set as 32 (16, 24, 
and 32 tested) and the epoch was set as 50 (50, 100 and 150 tested). The 
experiments were undertaken on a server with 4 NVIDIA Tesla V100 
PCIe GPUs each with 32 GB memory. 

A confusion matrix was derived to compare ground observed and 
model predicted tillage practice data. The producer’s accuracy, user’s 
accuracy, and F1-score for each tillage practice were computed to 
quantitatively analyze classification results. In addition, the optimal 
model was used to classify all crop field polygons within the study area 
(i.e., 9 Planet image tiles each with 8000 × 8000 3 m pixels). Specif-
ically, 62,500 time series image patches each with 32 × 32 × t × 4 
reflectance values were exacted from 9 tile images. Then the optimal 
deep learning model was applied to each time series patch to classify it 
as conventional or conservation tillage practice. The class label for each 
CDL field polygon was derived as the majority of the classified labels of 
all the 32 × 32 patches intersected with the polygon. 

3.4. Classification sensitivity to spatial and temporal resolution analysis 

The PF-SR time series data were degraded to lower spatial and 
temporal resolution images to analyze the impact of the different reso-
lutions on the tillage classification results. For the spatial resolution 
impact analysis the input 3 m pixel image patch time series (32 × 32 × t 
× 4) was degraded to 24 m by 24 m (4 × 4 × t × 4) and 96 m by 96 m (1 
× 1 × t × 4) using average pixel aggregation. A more advanced pixel 
degradation using a sensor specific point spread function (PSF) (Huang 
et al., 2002; Che et al., 2021) was not considered here as there is no 
sensor PSF specifications. The purpose of this study was to examine the 
spatial resolution effect rather than some lower spatial resolution data 
acquired by any specific sensor. The 3D CNN model was used to evaluate 
the spatial resolution sensitivity, and we have experientially confirmed 
that other models followed a similar pattern. For the 24 m image patch 
time series the same 3D CNN model (Table 1) was used by removing the 
max pooling layer from the first and second 3D convolutional blocks to 
adapt to the smaller input patch size. For the 96 m image patch time 
series, the spatial filter size was down-adjusted from 3 × 3 × 3 to 1 × 1 
× 1 to equal a 1D CNN. This can be referred to as a 1D CNN model 
associated with a 1D convolutional layer and 1D max pooling layer. 

For the temporal resolution analyses, the input time series data (i.e., 
a total of 365 days) were reduced into 6 temporal resolutions corre-
sponding to data acquired on 16 (16-day temporal resolution), 32 (8- 
day), 64 (4-day), 128 (2-day), 256 (1-day), and 365 (1-day) days, 

Table 1 
The structures of the deep learning models used in the study. The two numbers 
following the model name are the total number of model parameters for the 365- 
day and 16-day classification, respectively. The other numbers indicate the 
convolutional filters and filter size for the convolutional layers, the number of 
hidden units for the fully connected and LSTM layers, the drop rate for the 
dropout layer, the number of hidden units and heads for the multi-head attention 
layer. A max pooling and a batch normalization layer follow each convolutional 
layer.  

Layers 2D CNN 3D CNN CNN-LSTM Attention CNN- 
LSTM 

(3.4 
million) 

(27.7 
million) 

(48.3 million) (55.1 million) 

(2.6 
million) 

(5.7 
million) 

(48.3 million) (55.1 million) 

1st convolutional 
layer 

2D (64, 
3) 

3D (64, 
3) 

2D (64, 3) 2D (64, 3) 

2nd 
convolutional 
layer 

2D (128, 
3) 

3D (128, 
3) 

2D (128, 3) 2D (128, 3) 

3rd 
convolutional 
layer 

2D (256, 
3) 

3D (256, 
3) 

2D (256, 3) 2D (256, 3) 

4th 
convolutional 
layer 

2D (512, 
3) 

3D (512, 
3) 

2D (512, 3) 2D (512, 3) 

Flatten layer Flatten Flatten Time 
Distributed 
Flatten 

Time Distributed 
Flatten 

1st LSTM layer NA NA 2048 2048 
2nd LSTM layer NA NA 1024 1024 
Multi-head 

attention 
NA NA NA Multi-head 

attention (1024, 
8) 

1st fully 
connected 
layer 

512 with batch 
normalization 

512 

Dropout 0.5 NA 
2nd fully 

connected 
layer 

NA 128 

Last fully 
connected 
layer 

2 with SoftMax activation  
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respectively. These days are simply selected from all the 365 days to 
ensure the selected dates are evenly distributed. Images acquired on the 
50 earliest (from September 1, 2020 to October 20, 2020) and 59 latest 
(from July 4, 2021 to August 31, 2021) days were removed to ensure an 
even distribution of the selected days. As a result, a total of 6 datasets 
were created for each spatial resolution (Table 2). The sensitivity to 
temporal resolution was examined using all the four deep learning 
models introduced in Section 3.3. This is because the LSTM and 3D CNN 
use different techniques to handle time series and may respond differ-
ently to the length of the time series. For example, the LSTM model has 
been associated with performance degradation when translating sen-
tences with >35 words by examining a series of word lengths from 4 to 
80 (Sutskever et al., 2014). This is a limitation of the LSTM in processing 
long time series that is not an issue for the 3D CNN model. 

3.5. Temporal feature importance analysis for tillage time identification 

Tillage time plays an important role in soil thermal and moisture 
status and crop growth conditions (Mamkagh et al., 2009; Wang et al., 
2018). There is no literature on how to detect tillage time using remote 
sensing time series data. One objective of this study was to identify 
tillage time via a temporal feature importance analysis given the dense 
time series of the Planet Fusion data and the fact that remote sensing 
images close to the tillage dates are more important for tillage classifi-
cation (Watts et al., 2011). The feature importance analysis represents a 
core deep learning interpretation technique (Montavon et al., 2018; 
Voosen, 2017; Ge et al., 2022). In this study, the importance of the 
different dates were ranked to highlight critical dates for tillage classi-
fication via gradient backpropagation (Rußwurm and Körner, 2020; Xu 
et al., 2021). The gradients of deep learning models can be back-
propagated to calculate partial derivatives of each input variable. The 
trained deep learning models were used to calculate feature importance 
based on class-specific Jacobian derivatives. The derivatives for each 
patch time series were a 32 × 32 × 256 × 4 array for each tillage class. 
The absolute derivative values were averaged over the spatial (32 × 32) 
and spectral (4) dimensions to use only the derivative values as a 
function of time as metrics of the temporal feature importance. 

4. Results 

4.1. Planet fusion reflectance time series for different tillage practices 

Fig. 5 shows spatially averaged (solid line) surface reflectance time 
series representing conventional tillage (blue lines) and conservation 
tillage (red lines) practice samples for each of the four spectral bands (i. 
e., blue, green, red, and NIR). The associated standard deviations are 
indicated by the dashed lines. The smoothness of the seasonal band- 
specific reflectance dynamics demonstrates the high quality and tem-
poral consistency of the PF-SR product with no rapid reflectance fluc-
tuations due to cloud or snow contamination. As expected, the visible 
bands have much lower reflectance magnitudes compared to the NIR 
band in the growing season months (September 2020 and June, July and 
August 2021), which reflects the typical spectral signature of a healthy 
crop. The reflectance increased with wavelength from the blue to the 
NIR domain during the pre-growing season (March to April 2021), 
which corresponds with the typical spectral signature of soil (Jacque-
moud et al., 1992). 

Conservation tillage generally shows higher reflectance than con-
ventional tillage during non-growing season months (i.e., from 
November 2020 to May 2021). This is expected as fields with conser-
vation tillage have more crop residue relative to fields with conservation 
tillage (Fig. 2) combined with crop residue generally being more 
reflective than bare soil surfaces (Gao et al., 2022; Pacheco and 
McNairn, 2010). The reflectance time series during the growing season 
months (September 2020 and June, July, and August 2021) were very 
similar between conventional tillage and conservation tillage practices, 
as the reflectance were dominated by the dense crop canopy rather than 
the soil surface. Noteworthy is the large and partly overlapping reflec-
tance standard deviations between the two tillage practices outside of 
the growing season (Fig. 5), which suggests that using simple reflectance 
magnitudes (i.e., spectral information) may not always be enough to 
accurately classify/separate conventional and conservation tillage 
practices. 

4.2. Model accuracy and sensitivity to spatial and temporal resolutions 

Fig. 6 shows the overall accuracy of the tillage classification as a 
function of the number of the temporal resolution for the four deep 
learning models. The 3D CNN, CNN-LSTM, and attention CNN-LSTM 
models performed better than the 2D CNN model, which is expected 
as the 2D CNN is not designed to process data with a third dimension. 
The flattening of the time series images into a single band for 2D CNN is 
evidently not an effective method for time series classification, which is 
also consistent with findings from Chen et al. (2020). The CNN-LSTM 
model and attention CNN-LSTM model performed better than the 3D 
CNN model for the lower temporal resolution cases (i.e., 16–128) with 
the attention CNN-LSTM slightly outperforming CNN-LSTM (Fig. 6). 
This is expected as the attention mechanism can assign day-specific 
importance scores to the different images and prioritize specific images. 

The accuracies continuously increased with increasing number of 
images for classification up to 256, which reflect the critical importance 
of high temporal resolution for discriminating the two different tillage 
practices. However, beyond 256 images a drop in accuracy was observed 
for all the models (Fig. 6). A plausible explanation for the decreased 
accuracy may be that the 256-day period from October 21, 2020 to July 
4, 2021 is simply more suitable for tillage classification relative to using 
the full year as the growing season period will provide limited additional 
information. Significant crop growth (green up started early June) will 
negatively affect tillage identification. The observed accuracy drop 
(from 256 to 365 days) was more pronounced for the LSTM based 
models relative to the CNN based models (Fig. 6). This may be because 
the LSTM can’t handle long time series (>100 time steps) very well as it 
was originally developed in machine translation to process sentences 
with <100 words (Cho et al., 2014; Sutskever et al., 2014). 

Table 3 shows the confusion matrix (i.e., overall model accuracies) 
from the attention CNN-LSTM model using 256 PF-SR images. The user’s 
and producer’s accuracies were all greater than 68%. Accuracies were 
higher for conventional relative to conservation tillage practice for the 
producer’s accuracy, user’s accuracy, and F1-socre (Table 3). This may 
be because of a more pronounced soil disturbance during tillage oper-
ation (Fig. 2). Table 3 also breaks down the confusion matrix for corn 
and soybean crop residue. For corn, the producer’s accuracies for both 
conventional and conservation tillage were similar (i.e., ranging from 
70% to 74%). However, user’s accuracies were significantly higher 

Table 2 
The input data dimensions of the reduced spatial and temporal resolution (n × n × t × s).  

Number of acquisition days 
(Temporal resolution) 

16 days (16-day 
temporal resolution) 

32 days (8- day 
temporal resolution) 

64 days (4- day 
temporal resolution) 

128 days (2- day 
temporal resolution) 

256 days (daily 
temporal resolution) 

365 days (daily 
temporal resolution)) 

3 m 32 × 32 × 16 × 4 32 × 32 × 32 × 4 32 × 32 × 64 × 4 32 × 32 × 128 × 4 32 × 32 × 256 × 4 32 × 32 × 365 × 4 
24 m 4 × 4 × 16 × 4 4 × 4 × 32 × 4 4 × 4 × 64 × 4 4 × 4 × 128 × 4 4 × 4 × 256 × 4 4 × 4 × 365 × 4 
96 m 1 × 1 × 16 × 4 1 × 1 × 32 × 4 1 × 1 × 64 × 4 1 × 1 × 128 × 4 1 × 1 × 256 × 4 1 × 1 × 365 × 4  
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(>20%) for conservation tillage. A similar tendency is observed for the 
F1-score value (Table 3). A reasonable explanation is that corn has more 
residue than soybean after harvest, which can lead to enhanced reflec-
tance disturbances. For soybean, the producer’s accuracy, user’s accu-
racy, and F1-score were highest for the conventional tillage class. 
Compared to corn residue, soybean residue can be more difficult to 
identify and this could be the reason for the lower performances for 
conservation tillage. This is consistent with the previous findings by 
Pacheco and McNairn (2010). 

Fig. 7 shows the model (3D CNN) overall accuracies of the tillage 

practice classification as a function of different spatial resolutions. The 
3D CNN models using the original 3 m spatial resolution and degraded 
24 m spatial resolution performed much better than the degraded 96 m 
spatial resolution dataset. It’s a clear indication that a high spatial res-
olution is important for tillage classification with deep learning models. 
The 3D CNN model with the original 3 m spatial resolution imagery (32 
× 32) consistently produced the highest overall accuracy, which is ex-
pected given the enhanced spatial information content relative to the 
coarser resolution experiments. 

Table 4 shows the training and evaluation computation time (sec-
ond) for each deep learning model. It is expected that with increasing 
number of images used for classification, the deep learning model 
training and evaluation time increased. Notably, although the 3D CNN 
model and attention CNN-LSTM model had similar overall accuracy, the 
3D CNN model computation time for training (855.30–8102.50s) and 
evaluation (13.78–69.04s) is much less than the attention CNN-LSTM 
model (1512.26–12191.85s for training and 16.51–109.33s for evalua-
tion). In general, CNN based deep learning models (2D CNN and 3D 
CNN) need much less computation time than LSTM based deep learning 
models (CNN-LSTM and attention CNN-LSTM). This is reasonable as 
noted in Section 3.3, in the CNN based models the features for all the 
image dates can be calculated in parallel. However, for the LSTM based 
models, the features at one date is the input of the features for another 
date and can only be calculated in sequence rather than in parallel. 

Fig. 8 shows the tillage practice map in the study area (i.e., all the 9 
PF-SR image tiles in Fig. 1). The result was generated by the 3D CNN 
model trained with 256 days of PF-SR images as the model performed 
the best. There were 36.81% and 63.19% cropland patches classified as 
conventional and conservation tillage, respectively. The results are in 
line with Beeson et al. (2020) and reflected that the USDA Environ-
mental Quality Incentives Program (EQIP) has encouraged farmers to 

Fig. 5. Time series of band-specific surface reflectance mean (solid lines) and standard deviation (dashed lines) derived from all of the conventional (blue lines) and 
conservation (red lines) tillage practice samples. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 6. Overall accuracy (%) of the evaluation dataset for different deep 
learning models as a function of the number of images (temporal resolution) 
used for classification. 
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adopt conservation practices in recent years. The conservation tillage 
practices (red color) is dominated the north and southwest of the Sioux 
Fall city. Conventional tillage practices occurred more often in the east 
part of the study area. 

4.3. Temporal feature importance analysis for tillage time identification 

The temporal feature importance of the best model in the LSTM 
family (i.e., attention CNN-LSTM model) and the best model in the CNN 
family (i.e., 3D CNN model) are shown in Figs. 9 and 10, respectively. 
The feature importance was very low at the beginning and end of the 
study period, which coincided with the growing season with the crop 
canopy covering the soil surface making it impossible to identify tillage 
practices. Peak feature importance is observed during November 2020 
and May 2021 when the soil surface was fully exposed and tillage is 
usually undertaken. The two different tillage practices (i.e., conven-
tional and conservation) showed similar temporal feature importance 
patterns. However, the temporal dynamics were smoother for the 

conservation tillage practice, which may be the result of reduced soil 
disturbance from this type of tillage practice. 

Fig. 9 shows the date-specific feature importance of the attention 
CNN-LSTM model using 256 Planet Fusion images. Unlike the 3D CNN 
model, the attention CNN-LSTM exhibited very high feature importance 
towards the end of the study period. This may be because only the last 
time step hidden layer features is used for classification and the last time 
step features tend to ‘forget’ information of the beginning time steps. 
The feature importance was higher during the fall period (i.e., October 
and November 2020) compared to the winter fallow period (i.e., 
December 2020 to February 2021). This may indicate the 2020 fall 
tillage practices. Furthermore, the CNN-LSTM feature importance 
associated with conservation tillage practice was lower and less fluctu-
ating compared to the conventional tillage practice (Fig. 9). This 
observation corresponds to the lower degree of soil disturbance associ-
ated with conservation tillage. 

The 3D CNN model-based feature importances were more physically 
realistic compared to the attention CNN-LSTM model-based results 
(Fig. 10). The 3D CNN model creates a 3D filter to learn information 
from all temporal resolutions (i.e., 256 days) and uses 3D max pooling 
recursively to remove irrelevant information and retain the essential 
features from all temporal dimensions. In contrast, the LSTM model is 
developed from natural language processing (e.g., language translation) 
to handle sequential-to-sequential prediction (Devlin et al., 2019). 
Adapting the LSTM model to tillage classification of sequential-to-one 
prediction could result in unrealistically high feature importances at 
the end of a time series as only the hidden units of the last time step were 
used for classification. Furthermore, the feature importance results from 
the 3D CNN model were in good agreement with the tillage times re-
ported by the USDA (USEPA, 2018). 

Fig. 11 shows the 3D CNN model-based date feature importances for 
a specific field with corn residue and under conventional tillage. The 
feature importances show trends similar to those of the patch-averaged 
values (Fig. 10) with peaks occurring in November 2020 and May 2021. 
To further investigate these two peaks, Fig. 12 shows temporal se-
quences of true color (RGB) PF images of the specific field polygon 
around the first (November 1 to November 30, 2020) and second (May 1 
to May 31, 2021) peak. Only images with >80% observed pixels (i.e., 
not gap-filled) were selected for visual display. The spring tillage likely 
occurred between the first (May 6, 2021) and second image (May 8, 

Table 3 
The classification confusion matrices (including producer’s and user’s accuracies and F1-score) for the attention CNN-LSTM model using 256 PF-SR images.   

Classification 

Conventional Conservation Producer (%) F1-score 

All crops Conventional 1400 311 81.82 0.7946 
Conservation 413 884 68.16 0.7095 
User (%) 77.22 73.97   

Corn Conventional 446 163 73.23 0.6622 
Conservation 292 711 70.89 0.7576 
User (%) 60.43 81.35   

Soybean Conventional 935 141 86.90 0.8842 
Conservation 104 172 62.32 0.5840 
User (%) 89.99 54.95    

Fig. 7. Overall model accuracy (%) for the 3D CNN model for different spatial 
resolutions (3 m, 24 m and 96 m) as a function of the number of the PF-SR 
images used for classification. Note that the 96 m 3D CNN model can be 
regarded as 1D CNN model as a single pixel (1 × 1) was used as input. 

Table 4 
Training and evaluation computation time (second) for each deep learning model.  

Temporal resolution (days)  365 256 128 64 32 16 

3D CNN Train 8102.50 5792.80 3151.93 1857.59 1193.45 855.30 
Evaluation 69.04 52.74 33.52 22.03 15.67 13.78 

2D CNN Train 2803.31 2195.26 1272.00 877.60 692.23 597.55 
Evaluation 51.78 41.01 24.19 19.14 14.75 12.94 

CNN-LSTM Train 11894.34 8669.75 4842.28 2898.42 1915.14 1451.38 
Evaluation 107.39 74.24 46.57 28.45 19.45 16.20 

Attention CNN-LSTM Train 12191.85 8934.47 4950.18 2996.85 2003.46 1512.26 
Evaluation 109.33 75.94 45.81 29.55 19.60 16.51  
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2021) dates of the six spring images shown in Fig. 12b as evidenced by 
the soil textures changes and reflectance drops from the first to the 
second images. Similarly, the fall tillage likely occurred between the first 
(November 2, 2020) and fourth image (November 6, 2020) dates of the 
six fall images shown in Fig. 12a as evidenced by soil textures changes 
and reflectance drops. However, it is not clear whether tillage has been 
undertaken in the second and third images (November 3, 2020 and 
November 4, 2020) as they did exhibit subtle texture changes compared 
to the first image. It should be noted that in fall season right after harvest 
and before tillage there could be other crop residue management ac-
tivities such as bailing and grazing (personal communication with local 
farmers). The images in Fig. 12 are associated with the highest feature 
importances, which supports the utility of a feature importance analysis 

Fig. 8. The tillage practice map after 2020 harvest classified using the 3D CNN 
model using 256 days of PF-SR images. 

Fig. 9. The attention CNN-LSTM date feature importance averaged over all patches for conventional (left) and conservation (right) tillage practice. The model was 
trained using 256 PF-SR images and buffer area represents the associated confidence interval. 

Fig. 10. The 3D CNN date-specific feature importance averaged over all patches for conventional (left) and conservation (right) tillage practice. The model was 
trained using 256 PF-SR images and buffer area represents the associated confidence interval. 

Fig. 11. 3D CNN model feature importances for a specific field with corn res-
idue and conventional tillage practice. 

D. Luo et al.                                                                                                                                                                                                                                      



Science of Remote Sensing 7 (2023) 100085

12

for identifying potential tillage date. 

5. Discussion 

The model classification sensitivity to spatial and temporal resolu-
tions was analyzed by simulating data with a series of different spatial 
and temporal resolutions from the original 3 m patch time series data. As 
expected, the overall classification accuracies with the original 3 m 
spatial resolution (32 × 32 pixel patch) data were better compared to 
degraded 24 m and 96 m spatial resolution data. Notably, the overall 
accuracy with 3 m spatial resolution data was around 8% higher than 
the overall accuracy with 96 m spatial resolution data using the 3D CNN 
model regardless of the temporal resolution (Figs. 6 and 7). This 

suggests, not surprisingly, that high (e.g., 3 m) spatial resolution infor-
mation is important for tillage identification with deep learning models. 
The deep learning models were also sensitive to temporal resolution 
(Figs. 6 and 7), but the sensitivities were not consistent between the 
various models. The overall classification accuracies were seen to first 
increase with increasing temporal resolution before leveling off at 2-day 
(for LSTM models) or 1-day (CNN models) resolution. This is related to 
fundamental model differences between CNN and LSTM, which uses 
local convolution and global time series information accumulation, 
respectively to handle time series data (Cho et al., 2014; Ienco et al., 
2019). Based on these results, the recommendation would be to use a 3D 
CNN with 1-day temporal resolution or attention CNN-SLTM model with 
2-day temporal resolution for remote sensing-based tillage 

Fig. 12. PF daily images (RGB) of a corn field with conventional tillage practice showing tillage-driven soil disturbances over time. The derivate values (feature 
importances), acquisition dates and timing (before/after) relative to the tillage event are listed below the images. (a) PF image sequence from November 1 to 
November 30, 2020, (b) PF image sequence from May 1 to May 31, 2021. 
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identification. The significant value of high frequency observations (i.e., 
daily or every second day) is likely related to typically very short time 
periods between harvest and tillage practices (e.g., ~within 10 days in 
South Dakota, personal communication with local farmers). 

The study used 3285 PF-SR daily images covering a 220 × 220 km2 

area in the US Great Plains. Generalization studies to different areas are 
limited by the training data availability. The farming practices are 
considered privacy and protected by laws in the US and the authors 
conducted field survey with the company of the USDA experts not only 
on tillage practice identification but also on data sharing policy. This 
combined with limited resources prohibited large area field survey. 
However, since we used the training and evaluation patches coming 
from different fields to achieve the evaluation data independence, we 
expect similar accuracy can be achieved at other areas as long as the area 
specific training data are available. The overall classification accuracies 
achieved in this study are similar to existing studies using medium 
spatial resolution satellite data (such as Landsat or Sentinel-2 data) to 
classify tillage practice (Azzari et al., 2019; Beeson et al., 2020; Watts 
et al., 2011). Even though the spatial and temporal resolution from 
PlanetScope data is significantly higher than what is currently achiev-
able from public medium resolution satellite sensors (10–30 m and 5–16 
day revisit cycle), the accuracy from PlanetScope data may be impacted 
by the lack of shortwave infrared bands as tillage practice is related to 
soil moisture that influences bands in the shortwave infrared domain. At 
the same time, the spectral signatures of crop residue typically show a 
decreasing trend between 1600 nm and 2300 nm (Hively et al., 2018; 
Quemada et al., 2018). In addition, there is another unique feature of 
this study that could negatively affect the classification accuracy. This 
study considers residues for all the crop types for tillage classification 
which is different from previous studies focusing on only one or two crop 
type residue. 

The current study did not evaluate recently developed fully 
attention-based models (e.g., Transformer) as they were developed for 
three-dimensional single image classification and have not been directly 
applied to four dimensional patch time series classification. Future work 
is encouraged to adapt the Transformer-like models, e.g., Visual Trans-
former (Li et al., 2020; Y Liu et al., 2022; Ofori-Ampofo et al., 2021; 
Sainte Fare Garnot et al., 2020; Yan et al., 2022), or self-supervised 
models (Ayush et al., 2021; Manas et al., 2021; Yuan and Lin, 2021) 
for tillage classification. 

6. Conclusion 

In this study, daily 3 m Planet Fusion Surface Reflectance (PF-SR) 
time series were used for the first time to classify conventional and 
conservation tillage practice. The benefit of using time series surface 
reflectance images for identifying tillage practices have been previously 
demonstrated using a random forest classifier (Azzari et al., 2019; Watts 
et al., 2011). Deep learning models (e.g., CNNs) were explored in this 
study given their successful application for land cover classification 
(Ienco et al., 2019; Interdonato et al., 2019; Masolele et al., 2021; Yan 
et al., 2022; Zheng et al., 2022). In this study a total of 10,747 time series 
patches (each with 32 × 32 × 365 × 4 reflectance values) were derived 
from 433 polygons with field collected tillage data. These patches were 
classified into conventional and conservation tillage and 30% of these 
patches from the fields that are never used for training were used for 
model evaluation. Four deep learning models (i.e., 3D CNN, 2D CNN, 
CNN-LSTM, and attention CNN-LSTM) were tested in this study with the 
overall accuracies ranging from 68% to 77% as a function of differences 
in spatial and temporal resolution. The highest accuracy (77%) was 
achieved using 3D CNN and attention CNN-LSTM models applied to the 
3 m spatial resolution data with daily or two-day temporal resolutions. 
The attention CNN-LSTM model consistently outperformed the 
CNN-LSTM model, which highlights the importance of the attention 
mechanism to re-weight the input time series features. The 3D CNN 
performed better than the 2D CNN model indicating that the use of a 

multiple-layer convolution network (in 3D CNN) is more effective than 
using a fully connected layer (in 2D CNN) to handle time series data. The 
spatial and temporal information from the PF-SR time series images 
were shown to play an important role on tillage classification. 

This study for the first time tried to identify the tillage date using 
deep learning based interpretation capability through date-specific 
feature importance. Knowing the timing of tillage practices is impor-
tant since tillage practices from agricultural activities can affect 
ecosystem services such as soil organic matter, soil erosion, and water 
quality. The logic behind the tillage date identification using classifi-
cation model is that the images acquired right after the tillage should 
contribute more to tillage classification when the tillage signal is strong 
and has not been weathering. Consequently, date-specific feature 
importance provide a promising mechanism towards estimating the 
timing of tillage practices. This study lacks in-field collected tillage 
timing information for evaluation purposes and thus the results were 
only evaluated using visually image time series over selected fields. 
Collecting the tillage time data should be prioritized for future work on 
the topic. 
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