150 research outputs found

    Un espacio de culto rural romano en Montesa, comarca de La Costera, Valencia

    Get PDF
    Este estudio se centra en un yacimiento localizado en la partdida de El Canari de Montesa, en la comarca de La Costera, Valencia. Allí se han encontrado una serie de estructuras y niveles arqueológicos que pueden ser asimilados a un santuario rural romano en uso desde la segunda mitad del siglo II a.C. hasta mediados de siglo I d.C. Asimismo, en su entorno, se han encontrado otras estructuras relacionadas con el abancalado de campos para el cultivo

    El Impacto de las habilidades sociales en el ámbito virtual enfocado a la negociación

    Get PDF
    En este trabajo se pretende analizar el desarrollo de la negociación, englobando aquí las habilidades sociales, dentro del ámbito virtual. Por ello analizamos primeramente el entorno donde se va a desarrollar la negociación, el ámbito virtual, en segundo lugar, la negociación, y, por último, trataremos las habilidades sociales, las cuales son indispensables para el correcto desarrollo de la negociación

    El uso de la Inteligencia Artificial por parte de la Administración Tributaria

    Get PDF
    La Inteligencia Artificial (IA) se está convirtiendo en una parte cada vez más vital de la Administración Tributaria debido a su capacidad para procesar grandes cantidades de datos, detectar tendencias, incoherencias e irregularidades, así como automatizar diversas tareas manuales. Esto supone un ahorro de costes y una mejora de la eficacia. La IA es utilizada por la Administración Tributaria para diversas aplicaciones, como identificar estafas fiscales, calcular el riesgo fiscal, descubrir errores en los impuestos que se han presentado y clasificar a los contribuyentes en grupos según su riesgo fiscal. Además, la IA ayuda a mejorar el servicio al cliente y la experiencia del usuario mediante chatbots y ayudantes virtuales. Sin embargo, la utilización de la IA en la Administración Tributaria se enfrenta a dificultades y peligros como la necesidad de garantizar la privacidad y la seguridad de los datos, la comprensión y aplicación precisas de los resultados de la IA, y cómo garantizar la claridad y la imparcialidad al utilizar la IA. Es indispensable que la Administración Tributaria emplee la IA con principios éticos y responsabilidad. En resumen, la IA proporciona muchas formas de mejorar el rendimiento y la productividad de la Administración Tributaria, pero también presenta dificultades sustanciales que deben tratarse adecuadamente. La integración de la IA debe gestionarse e implementarse tácticamente, teniendo en cuenta las cuestiones morales y legales asociadas a su utilización

    An interactive 3-D application for pain management: Results from a pilot study in spinal cord injury rehabilitation

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 ElevierResearch on pain following spinal cord injury (SCI) has revealed that patients not only experience several types of pain that could prove to be challenging to address, but also that each individual can interpret such pain in different subjective ways. In this paper we introduce a 3-D system for facilitating the efficient management of pain, and thus, supporting clinicians in overcoming the aforementioned challenges. This system was evaluated by a cohort of 15 SCI patients in a pilot study that took place between July and October 2010. Participants reported their experiences of using the 3-D system in an adapted version of the System Usability Scale (SUS) questionnaire. Statistically significant results were obtained with regards to the usability and efficiency of the 3-D system, with the majority of the patients finding it particularly useful to report their pain. Our findings suggest that the 3-D system can be an efficient tool in the efforts to better manage the pain experience of SCI patients

    Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions

    Full text link
    [EN] Water is an essential resource for food production, as agriculture consumes close to 70% of the total freshwater, and its shortage is becoming critical in arid and semiarid areas of the world. Therefore, it is important to use water more efficiently. The objectives of this project are to determine the productive response and the irrigation water use efficiency of seedless watermelon to three irrigation management strategies over two growing seasons. This was done by applying 100, 75 and 50% of the irrigation water requirements (IWR) the first year, in the second year added six additional treatments, of which three treatments were regulated deficit irrigation with 75% IWR during the vegetative growth, fruit development and fruit ripening stages, and the other three treatments were with 50% IWR during the same stages. The exposure of watermelon plants to severe deficit irrigation resulted in a reduction in dry biomass, total and marketable yield, average fruit weight, fruit number and harvest index, and without improvement of marketable fruit quality. The fruit ripening was the less sensitive stage to water deficits. Relative water content and cell membrane stability index decreased as the water deficit increased. Irrigation water use efficiency decreased to a lesser extend during the fruit ripening stage than when water restriction were applied during different growth stages. If water is readily available, irrigating with 100% of water requirements is recommended, but in the case of water scarcity, applying water shortage during fruit ripening stage would be advisable.Abdelkhalik, A.; Pascual-Seva, N.; Nájera, I.; Giner, A.; Baixauli Soria, C.; Pascual España, B. (2019). Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions. Agricultural Water Management. 212:99-110. https://doi.org/10.1016/j.agwat.2018.08.0449911021

    Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease

    Get PDF
    [EN] Peroxisomes and mitochondria are the main intracellular sources for reactive oxygen species. At the same time, both organelles are critical for the maintenance of a healthy redox balance in the cell. Consequently, failure in the function of both organelles is causally linked to oxidative stress and accelerated aging. However, it has become clear that peroxisomes and mitochondria are much more intimately connected both physiologically and structurally. Both organelles share common fission components to dynamically respond to environmental cues, and the autophagic turnover of both peroxisomes and mitochondria is decisive for cellular homeostasis. Moreover, peroxisomes can physically associate with mitochondria via specific protein complexes. Therefore, the structural and functional connection of both organelles is a critical and dynamic feature in the regulation of oxidative metabolism, whose dynamic nature will be revealed in the future. In this review, we will focus on fundamental aspects of the peroxisome-mitochondria interplay derived from simple models such as yeast and move onto discussing the impact of an impaired peroxisomal and mitochondrial homeostasis on ROS production, aging, and disease in humans.Work from the authors’ laboratory was supported by grants from Ministerio de Economía, Industria y Competitividad (BFU2016-75792-R) and from Ministerio de Economía y Competitividad (BFU2011-23326).Pascual-Ahuir Giner, MD.; Manzanares-Estreder, S.; Proft, M. (2017). Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease. Oxidative Medicine and Cellular Longevity. (9860841). https://doi.org/10.1155/2017/9860841S986084

    Stress-Activated Degradation of Sphingolipids Regulates Mitochondrial Function and Cell Death in Yeast

    Get PDF
    [EN] Sphingolipids are regulators of mitochondria-mediated cell death in higher eukaryotes. Here, we investigate how changes in sphingolipid metabolism and downstream intermediates of sphingosine impinge on mitochondrial function. We found in yeast that within the sphingolipid degradation pathway, the production via Dpl1p and degradation via Hfd1p of hexadecenal are critical for mitochondrial function and cell death. Genetic interventions, which favor hexadecenal accumulation, diminish oxygen consumption rates and increase reactive oxygen species production and mitochondrial fragmentation and vice versa. The location of the hexadecenal-degrading enzyme Hfd1p in punctuate structures all along the mitochondrial network depends on a functional ERMES (endoplasmic reticulum-mitochondria encounter structure) complex, indicating that modulation of hexadecenal levels at specific ER-mitochondria contact sites might be an important trigger of cell death. This is further supported by the finding that externally added hexadecenal or the absence of Hfd1p enhances cell death caused by ectopic expression of the human Bax protein. Finally, the induction of the sphingolipid degradation pathway upon stress is controlled by the Hog1p MAP kinase. Therefore, the stress-regulated modulation of sphingolipid degradation might be a conserved way to induce cell death in eukaryotic organisms.The authors thank Eulalia de Nadal, William Prinz, Benoit Kornmann, Stephen Manon, Benedikt Westermann, and Frank Madeo for the kind gift of yeast strains and plasmids. The authors thank Alba Calatayud for her help with Bax expression experiments and Benito Alarcon for his help with the confocal microscopy. This work was supported by the grants from the Ministerio de Economia y Competitividad (BFU2011-23326 and BFU2016-75792-R).Manzanares-Estreder, S.; Pascual-Ahuir Giner, MD.; Proft, M. (2017). Stress-Activated Degradation of Sphingolipids Regulates Mitochondrial Function and Cell Death in Yeast. Oxidative Medicine and Cellular Longevity. (2708345):1-15. https://doi.org/10.1155/2017/2708345S115270834

    Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell

    Get PDF
    [EN] The regulation of gene expression is a fundamental process enabling cells to respond to internal and external stimuli or to execute developmental programs. Changes in gene expression are highly dynamic and depend on many intrinsic and extrinsic factors. In this review, we highlight the dynamic nature of transient gene expression changes to better understand cell physiology and development in general. We will start by comparing recent in vivo procedures to capture gene expression in real time. Intrinsic factors modulating gene expression dynamics will then be discussed, focusing on chromatin modifications. Furthermore, we will dissect how cell physiology or age impacts on dynamic gene regulation and especially discuss molecular insights into acquired transcriptional memory. Finally, this review will give an update on the mechanisms of heterogeneous gene expression among genetically identical individual cells. We will mainly focus on state-of-the-art developments in the yeast model but also cover higher eukaryotic systems.This work was funded by Ministerio de Ciencia, Innovacion y Universidades, grant number BFU2016-75792-R.Pascual-Ahuir Giner, MD.; Fita-Torró, J.; Proft, MH. (2020). Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell. International Journal of Molecular Sciences. 21(21):1-19. https://doi.org/10.3390/ijms21218278S1192121Murray, J. I., Whitfield, M. L., Trinklein, N. D., Myers, R. M., Brown, P. O., & Botstein, D. (2004). Diverse and Specific Gene Expression Responses to Stresses in Cultured Human Cells. Molecular Biology of the Cell, 15(5), 2361-2374. doi:10.1091/mbc.e03-11-0799Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11(12), 4241-4257. doi:10.1091/mbc.11.12.4241de-Leon, S. B.-T., & Davidson, E. H. (2007). Gene Regulation: Gene Control Network in Development. Annual Review of Biophysics and Biomolecular Structure, 36(1), 191-212. doi:10.1146/annurev.biophys.35.040405.102002Lenstra, T. L., Rodriguez, J., Chen, H., & Larson, D. R. (2016). Transcription Dynamics in Living Cells. Annual Review of Biophysics, 45(1), 25-47. doi:10.1146/annurev-biophys-062215-010838Coulon, A., Chow, C. C., Singer, R. H., & Larson, D. R. (2013). Eukaryotic transcriptional dynamics: from single molecules to cell populations. Nature Reviews Genetics, 14(8), 572-584. doi:10.1038/nrg3484Yosef, N., & Regev, A. (2011). Impulse Control: Temporal Dynamics in Gene Transcription. Cell, 144(6), 886-896. doi:10.1016/j.cell.2011.02.015Purvis, J. E., & Lahav, G. (2013). Encoding and Decoding Cellular Information through Signaling Dynamics. Cell, 152(5), 945-956. doi:10.1016/j.cell.2013.02.005Weake, V. M., & Workman, J. L. (2010). Inducible gene expression: diverse regulatory mechanisms. Nature Reviews Genetics, 11(6), 426-437. doi:10.1038/nrg2781De Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. Nature Reviews Genetics, 12(12), 833-845. doi:10.1038/nrg3055Vihervaara, A., Duarte, F. M., & Lis, J. T. (2018). Molecular mechanisms driving transcriptional stress responses. Nature Reviews Genetics, 19(6), 385-397. doi:10.1038/s41576-018-0001-6Pérez-Ortín, J. E., Alepuz, P., Chávez, S., & Choder, M. (2013). Eukaryotic mRNA Decay: Methodologies, Pathways, and Links to Other Stages of Gene Expression. Journal of Molecular Biology, 425(20), 3750-3775. doi:10.1016/j.jmb.2013.02.029Aparicio, O., Geisberg, J. V., Sekinger, E., Yang, A., Moqtaderi, Z., & Struhl, K. (2005). Chromatin Immunoprecipitation for Determining the Association of Proteins with Specific Genomic Sequences In Vivo. Current Protocols in Molecular Biology, 69(1). doi:10.1002/0471142727.mb2103s69Wa Maina, C., Honkela, A., Matarese, F., Grote, K., Stunnenberg, H. G., Reid, G., … Rattray, M. (2014). Inference of RNA Polymerase II Transcription Dynamics from Chromatin Immunoprecipitation Time Course Data. PLoS Computational Biology, 10(5), e1003598. doi:10.1371/journal.pcbi.1003598Mason, P. B., & Struhl, K. (2005). Distinction and Relationship between Elongation Rate and Processivity of RNA Polymerase II In Vivo. Molecular Cell, 17(6), 831-840. doi:10.1016/j.molcel.2005.02.017Sato, H., Das, S., Singer, R. H., & Vera, M. (2020). Imaging of DNA and RNA in Living Eukaryotic Cells to Reveal Spatiotemporal Dynamics of Gene Expression. Annual Review of Biochemistry, 89(1), 159-187. doi:10.1146/annurev-biochem-011520-104955Janicki, S. M., Tsukamoto, T., Salghetti, S. E., Tansey, W. P., Sachidanandam, R., Prasanth, K. V., … Spector, D. L. (2004). From Silencing to Gene Expression. Cell, 116(5), 683-698. doi:10.1016/s0092-8674(04)00171-0Chao, J. A., Patskovsky, Y., Almo, S. C., & Singer, R. H. (2007). Structural basis for the coevolution of a viral RNA–protein complex. Nature Structural & Molecular Biology, 15(1), 103-105. doi:10.1038/nsmb1327Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S. M., Singer, R. H., & Long, R. M. (1998). Localization of ASH1 mRNA Particles in Living Yeast. Molecular Cell, 2(4), 437-445. doi:10.1016/s1097-2765(00)80143-4Campbell, P. D., Chao, J. A., Singer, R. H., & Marlow, F. L. (2015). Dynamic visualization of transcription and RNA subcellular localization in zebrafish. Development. doi:10.1242/dev.118968Golding, I., Paulsson, J., Zawilski, S. M., & Cox, E. C. (2005). Real-Time Kinetics of Gene Activity in Individual Bacteria. Cell, 123(6), 1025-1036. doi:10.1016/j.cell.2005.09.031Larson, D. R., Zenklusen, D., Wu, B., Chao, J. A., & Singer, R. H. (2011). Real-Time Observation of Transcription Initiation and Elongation on an Endogenous Yeast Gene. Science, 332(6028), 475-478. doi:10.1126/science.1202142Chubb, J. R., Trcek, T., Shenoy, S. M., & Singer, R. H. (2006). Transcriptional Pulsing of a Developmental Gene. Current Biology, 16(10), 1018-1025. doi:10.1016/j.cub.2006.03.092Garcia, H. G., Tikhonov, M., Lin, A., & Gregor, T. (2013). Quantitative Imaging of Transcription in Living Drosophila Embryos Links Polymerase Activity to Patterning. Current Biology, 23(21), 2140-2145. doi:10.1016/j.cub.2013.08.054Xu, H., Wang, J., Liang, Y., Fu, Y., Li, S., Huang, J., … Chen, B. (2020). TriTag: an integrative tool to correlate chromatin dynamics and gene expression in living cells. Nucleic Acids Research, 48(22), e127-e127. doi:10.1093/nar/gkaa906Niedenthal, R. K., Riles, L., Johnston, M., & Hegemann, J. H. (1996). Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast, 12(8), 773-786. doi:10.1002/(sici)1097-0061(19960630)12:83.0.co;2-lPlautz, J. D., Day, R. N., Dailey, G. M., Welsh, S. B., Hall, J. C., Halpain, S., & Kay, S. A. (1996). Green fluorescent protein and its derivatives as versatile markers for gene expression in living Drosophila melanogaster, plant and mammalian cells. Gene, 173(1), 83-87. doi:10.1016/0378-1119(95)00700-8Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. C. (1994). Green Fluorescent Protein as a Marker for Gene Expression. Science, 263(5148), 802-805. doi:10.1126/science.8303295Longo, D., & Hasty, J. (2006). Dynamics of single‐cell gene expression. Molecular Systems Biology, 2(1), 64. doi:10.1038/msb4100110Zou, F., & Bai, L. (2019). Using time-lapse fluorescence microscopy to study gene regulation. Methods, 159-160, 138-145. doi:10.1016/j.ymeth.2018.12.010Han, J., Xia, A., Huang, Y., Ni, L., Chen, W., Jin, Z., … Jin, F. (2019). Simultaneous Visualization of Multiple Gene Expression in Single Cells Using an Engineered Multicolor Reporter Toolbox and Approach of Spectral Crosstalk Correction. ACS Synthetic Biology, 8(11), 2536-2546. doi:10.1021/acssynbio.9b00223Mateus, C., & Avery, S. V. (2000). Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast, 16(14), 1313-1323. doi:10.1002/1097-0061(200010)16:143.0.co;2-oLi, X., Zhao, X., Fang, Y., Jiang, X., Duong, T., Fan, C., … Kain, S. R. (1998). Generation of Destabilized Green Fluorescent Protein as a Transcription Reporter. Journal of Biological Chemistry, 273(52), 34970-34975. doi:10.1074/jbc.273.52.34970Andersen, J. B., Sternberg, C., Poulsen, L. K., Bjørn, S. P., Givskov, M., & Molin, S. (1998). New Unstable Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria. Applied and Environmental Microbiology, 64(6), 2240-2246. doi:10.1128/aem.64.6.2240-2246.1998He, L., Binari, R., Huang, J., Falo-Sanjuan, J., & Perrimon, N. (2019). In vivo study of gene expression with an enhanced dual-color fluorescent transcriptional timer. eLife, 8. doi:10.7554/elife.46181Allen, M. S., Wilgus, J. R., Chewning, C. S., Sayler, G. S., & Simpson, M. L. (2006). A destabilized bacterial luciferase for dynamic gene expression studies. Systems and Synthetic Biology, 1(1), 3-9. doi:10.1007/s11693-006-9001-5Yasunaga, M., Murotomi, K., Abe, H., Yamazaki, T., Nishii, S., Ohbayashi, T., … Nakajima, Y. (2015). Highly sensitive luciferase reporter assay using a potent destabilization sequence of calpain 3. Journal of Biotechnology, 194, 115-123. doi:10.1016/j.jbiotec.2014.12.004Leclerc, G. M., Boockfor, F. R., Faught, W. J., & Frawley, L. S. (2000). Development of a Destabilized Firefly Luciferase Enzyme for Measurement of Gene Expression. BioTechniques, 29(3), 590-601. doi:10.2144/00293rr02Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905Robertson, J. B., Stowers, C. C., Boczko, E., & Hirschie Johnson, C. (2008). Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast. Proceedings of the National Academy of Sciences, 105(46), 17988-17993. doi:10.1073/pnas.0809482105Deng, L., Sugiura, R., Takeuchi, M., Suzuki, M., Ebina, H., Takami, T., … Kuno, T. (2006). Real-Time Monitoring of Calcineurin Activity in Living Cells: Evidence for Two Distinct Ca2+-dependent Pathways in Fission Yeast. Molecular Biology of the Cell, 17(11), 4790-4800. doi:10.1091/mbc.e06-06-0526Mazo-Vargas, A., Park, H., Aydin, M., & Buchler, N. E. (2014). Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy. Molecular Biology of the Cell, 25(22), 3699-3708. doi:10.1091/mbc.e14-07-1187Liu, Z., & Tjian, R. (2018). Visualizing transcription factor dynamics in living cells. Journal of Cell Biology, 217(4), 1181-1191. doi:10.1083/jcb.201710038Jin, X., Hapsari, N. D., Lee, S., & Jo, K. (2020). DNA binding fluorescent proteins as single-molecule probes. The Analyst, 145(12), 4079-4095. doi:10.1039/d0an00218fDolz-Edo, L., Rienzo, A., Poveda-Huertes, D., Pascual-Ahuir, A., & Proft, M. (2013). Deciphering Dynamic Dose Responses of Natural Promoters and Single cis Elements upon Osmotic and Oxidative Stress in Yeast. Molecular and Cellular Biology, 33(11), 2228-2240. doi:10.1128/mcb.00240-13Pascual-Ahuir, A., González-Cantó, E., Juyoux, P., Pable, J., Poveda-Huertes, D., Saiz-Balbastre, S., … Proft, M. (2019). Dose dependent gene expression is dynamically modulated by the history, physiology and age of yeast cells. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1862(4), 457-471. doi:10.1016/j.bbagrm.2019.02.009Pelet, S., Rudolf, F., Nadal-Ribelles, M., de Nadal, E., Posas, F., & Peter, M. (2011). Transient Activation of the HOG MAPK Pathway Regulates Bimodal Gene Expression. Science, 332(6030), 732-735. doi:10.1126/science.1198851Paliwal, S., Iglesias, P. A., Campbell, K., Hilioti, Z., Groisman, A., & Levchenko, A. (2007). MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature, 446(7131), 46-51. doi:10.1038/nature05561Zhang, Q., Yoon, Y., Yu, Y., Parnell, E. J., Garay, J. A. R., Mwangi, M. M., … Bai, L. (2013). Stochastic expression and epigenetic memory at the yeastHOpromoter. Proceedings of the National Academy of Sciences, 110(34), 14012-14017. doi:10.1073/pnas.1306113110Gutin, J., Joseph‐Strauss, D., Sadeh, A., Shalom, E., & Friedman, N. (2019). Genetic screen of the yeast environmental stress response dynamics uncovers distinct regulatory phases. Molecular Systems Biology, 15(8). doi:10.15252/msb.20198939Rajkumar, A. S., Liu, G., Bergenholm, D., Arsovska, D., Kristensen, M., Nielsen, J., … Keasling, J. D. (2016). Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Research, 44(17), e136-e136. doi:10.1093/nar/gkw553Duveau, F., Yuan, D. C., Metzger, B. P. H., Hodgins-Davis, A., & Wittkopp, P. J. (2017). Effects of mutation and selection on plasticity of a promoter activity inSaccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 114(52), E11218-E11227. doi:10.1073/pnas.1713960115Redden, H., Morse, N., & Alper, H. S. (2014). The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Research, n/a-n/a. doi:10.1111/1567-1364.12188Brouwer, I., & Lenstra, T. L. (2019). Visualizing transcription: key to understanding gene expression dynamics. Current Opinion in Chemical Biology, 51, 122-129. doi:10.1016/j.cbpa.2019.05.031Rodriguez, J., & Larson, D. R. (2020). Transcription in Living Cells: Molecular Mechanisms of Bursting. Annual Review of Biochemistry, 89(1), 189-212. doi:10.1146/annurev-biochem-011520-105250Tunnacliffe, E., & Chubb, J. R. (2020). What Is a Transcriptional Burst? Trends in Genetics, 36(4), 288-297. doi:10.1016/j.tig.2020.01.003Hornung, G., Bar-Ziv, R., Rosin, D., Tokuriki, N., Tawfik, D. S., Oren, M., & Barkai, N. (2012). Noise-mean relationship in mutated promoters. Genome Research, 22(12), 2409-2417. doi:10.1101/gr.139378.112Dadiani, M., van Dijk, D., Segal, B., Field, Y., Ben-Artzi, G., Raveh-Sadka, T., … Segal, E. (2013). Two DNA-encoded strategies for increasing expression with opposing effects on promoter dynamics and transcriptional noise. Genome Research, 23(6), 966-976. doi:10.1101/gr.149096.112Raveh-Sadka, T., Levo, M., Shabi, U., Shany, B., Keren, L., Lotan-Pompan, M., … Segal, E. (2012). Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nature Genetics, 44(7), 743-750. doi:10.1038/ng.2305Van Dijk, D., Sharon, E., Lotan-Pompan, M., Weinberger, A., Segal, E., & Carey, L. B. (2016). Large-scale mapping of gene regulatory logic reveals context-dependent repression by transcriptional activators. Genome Research, 27(1), 87-94. doi:10.1101/gr.212316.116Mehta, G. D., Ball, D. A., Eriksson, P. R., Chereji, R. V., Clark, D. J., McNally, J. G., & Karpova, T. S. (2018). Single-Molecule Analysis Reveals Linked Cycles of RSC Chromatin Remodeling and Ace1p Transcription Factor Binding in Yeast. Molecular Cell, 72(5), 875-887.e9. doi:10.1016/j.molcel.2018.09.009Ball, D. A., Mehta, G. D., Salomon-Kent, R., Mazza, D., Morisaki, T., Mueller, F., … Karpova, T. S. (2016). Single molecule tracking of Ace1p in Saccharomyces cerevisiae defines a characteristic residence time for non-specific interactions of transcription factors with chromatin. Nucleic Acids Research, 44(21), e160-e160. doi:10.1093/nar/gkw744Karpova, T. S., Kim, M. J., Spriet, C., Nalley, K., Stasevich, T. J., Kherrouche, Z., … McNally, J. G. (2008). Concurrent Fast and Slow Cycling of a Transcriptional Activator at an Endogenous Promoter. Science, 319(5862), 466-469. doi:10.1126/science.1150559Donovan, B. T., Huynh, A., Ball, D. A., Patel, H. P., Poirier, M. G., Larson, D. R., … Lenstra, T. L. (2019). Live‐cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting. The EMBO Journal, 38(12). doi:10.15252/embj.2018100809Lenstra, T. L., Coulon, A., Chow, C. C., & Larson, D. R. (2015). Single-Molecule Imaging Reveals a Switch between Spurious and Functional ncRNA Transcription. Molecular Cell, 60(4), 597-610. doi:10.1016/j.molcel.2015.09.028Senecal, A., Munsky, B., Proux, F., Ly, N., Braye, F. E., Zimmer, C., … Darzacq, X. (2014). Transcription Factors Modulate c-Fos Transcriptional Bursts. Cell Reports, 8(1), 75-83. doi:10.1016/j.celrep.2014.05.053Stavreva, D. A., Garcia, D. A., Fettweis, G., Gudla, P. R., Zaki, G. F., Soni, V., … Hager, G. L. (2019). Transcriptional Bursting and Co-bursting Regulation by Steroid Hormone Release Pattern and Transcription Factor Mobility. Molecular Cell, 75(6), 1161-1177.e11. doi:10.1016/j.molcel.2019.06.042Nelson, D. E., Ihekwaba, A. E. C., Elliott, M., Johnson, J. R., Gibney, C. A., Foreman, B. E., … White, M. R. H. (2004). Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression. Science, 306(5696), 704-708. doi:10.1126/science.1099962Lahav, G., Rosenfeld, N., Sigal, A., Geva-Zatorsky, N., Levine, A. J., Elowitz, M. B., & Alon, U. (2004). Dynamics of the p53-Mdm2 feedback loop in individual cells. Nature Genetics, 36(2), 147-150. doi:10.1038/ng1293Izeddin, I., Récamier, V., Bosanac, L., Cissé, I. I., Boudarene, L., Dugast-Darzacq, C., … Darzacq, X. (2014). Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife, 3. doi:10.7554/elife.02230Suter, D. M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., & Naef, F. (2011). Mammalian Genes Are Transcribed with Widely Different Bursting Kinetics. Science, 332(6028), 472-474. doi:10.1126/science.1198817Keller, S. H., Jena, S. G., Yamazaki, Y., & Lim, B. (2020). Regulation of spatiotemporal limits of developmental gene expression via enhancer grammar. Proceedings of the National Academy of Sciences, 117(26), 15096-15103. doi:10.1073/pnas.1917040117Ochiai, H., Hayashi, T., Umeda, M., Yoshimura, M., Harada, A., Shimizu, Y., … Nikaido, I. (2020). Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem cells. Science Advances, 6(25). doi:10.1126/sciadv.aaz6699Hoppe, C., Bowles, J. R., Minchington, T. G., Sutcliffe, C., Upadhyai, P., Rattray, M., & Ashe, H. L. (2020). Modulation of the Promoter Activation Rate Dictates the Transcriptional Response to Graded BMP Signaling Levels in the Drosophila Embryo. Developmental Cell, 54(6), 727-741.e7. doi:10.1016/j.devcel.2020.07.007Bakker, R., Mani, M., & Carthew, R. W. (2020). The Wg and Dpp morphogens regulate gene expression by modulating the frequency of transcriptional bursts. eLife, 9. doi:10.7554/elife.56076Klemm, S. L., Shipony, Z., & Greenleaf, W. J. (2019). Chromatin accessibility and the regulatory epigenome. Nature Reviews Genetics, 20(4), 207-220. doi:10.1038/s41576-018-0089-8Nocetti, N., & Whitehouse, I. (2016). Nucleosome repositioning underlies dynamic gene expression. Genes & Development, 30(6), 660-672. doi:10.1101/gad.274910.115Cosma, M. P., Tanaka, T., & Nasmyth, K. (1999). Ordered Recruitment of Transcription and Chromatin Remodeling Factors to a Cell Cycle– and Developmentally Regulated Promoter. Cell, 97(3), 299-311. doi:10.1016/s0092-8674(00)80740-0Govind, C. K., Yoon, S., Qiu, H., Govind, S., & Hinnebusch, A. G. (2005). Simultaneous Recruitment of Coactivators by Gcn4p Stimulates Multiple Steps of Transcription In Vivo. Molecular and Cellular Biology, 25(13), 5626-5638. doi:10.1128/mcb.25.13.5626-5638.2005Biggar, S. R. (1999). Continuous and widespread roles for the Swi-Snf complex in transcription. The EMBO Journal, 18(8), 2254-2264. doi:10.1093/emboj/18.8.2254Rando, O. J., & Winston, F. (2012). Chromatin and Transcription in Yeast. Genetics, 190(2), 351-387. doi:10.1534/genetics.111.132266Shen, C.-H., Leblanc, B. P., Alfieri, J. A., & Clark, D. J. (2001). Remodeling of Yeast CUP1 Chromatin Involves Activator-Dependent Repositioning of Nucleosomes over the Entire Gene and Flanking Sequences. Molecular and Cellular Biology, 21(2), 534-547. doi:10.1128/mcb.21.2.534-547.2001Shen, C.-H., & Clark, D. J. (2001). DNA Sequence Plays a Major Role in Determining Nucleosome Positions in Yeast CUP1 Chromatin. Journal of Biological Chemistry, 276(37), 35209-35216. doi:10.1074/jbc.m104733200Erkina, T. Y., Zou, Y., Freeling, S., Vorobyev, V. I., & Erkine, A. M. (2009). Functional interplay between chromatin remodeling complexes RSC, SWI/SNF and ISWI in regulation of yeast heat shock genes. Nucleic Acids Research, 38(5), 1441-1449. doi:10.1093/nar/gkp1130Mitra, D., Parnell, E. J., Landon, J. W., Yu, Y., & Stillman, D. J. (2006). SWI/SNF Binding to the HO Promoter Requires Histone Acetylation and Stimulates TATA-Binding Protein Recruitment. Molecular and Cellular Biology, 26(11), 4095-4110. doi:10.1128/mcb.01849-05Sudarsanam, P. (1999). The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription invivo and is partially redundant with the histone acetyltransferase, Gcn5. The EMBO Journal, 18(11), 3101-3106. doi:10.1093/emboj/18.11.3101Barbaric, S., Luckenbach, T., Schmid, A., Blaschke, D., Hörz, W., & Korber, P. (2007). Redundancy of Chromatin Remodeling Pathways for the Induction of the Yeast PHO5 Promoter in Vivo. Journal of Biological Chemistry, 282(38), 27610-27621. doi:10.1074/jbc.m700623200Proft, M., & Struhl, K. (2002). Hog1 Kinase Converts the Sko1-Cyc8-Tup1 Repressor Complex into an Activator that Recruits SAGA and SWI/SNF in Response to Osmotic Stress. Molecular Cell, 9(6), 1307-1317. doi:10.1016/s1097-2765(02)00557-9Lemieux, K., & Gaudreau, L. (2004). Targeting of Swi/Snf to the yeast GAL1 UASG requires the Mediator, TAFIIs, and RNA polymerase II. The EMBO Journal, 23(20), 4040-4050. doi:10.1038/sj.emboj.7600416Rienzo, A., Poveda-Huertes, D., Aydin, S., Buchler, N. E., Pascual-Ahuir, A., & Proft, M. (2015). Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-R
    corecore