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Abstract: The regulation of gene expression is a fundamental process enabling cells to respond to
internal and external stimuli or to execute developmental programs. Changes in gene expression
are highly dynamic and depend on many intrinsic and extrinsic factors. In this review, we highlight
the dynamic nature of transient gene expression changes to better understand cell physiology and
development in general. We will start by comparing recent in vivo procedures to capture gene
expression in real time. Intrinsic factors modulating gene expression dynamics will then be discussed,
focusing on chromatin modifications. Furthermore, we will dissect how cell physiology or age impacts
on dynamic gene regulation and especially discuss molecular insights into acquired transcriptional
memory. Finally, this review will give an update on the mechanisms of heterogeneous gene expression
among genetically identical individual cells. We will mainly focus on state-of-the-art developments
in the yeast model but also cover higher eukaryotic systems.

Keywords: gene expression; transcriptional activation; transcriptional memory; single-cell variability;
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1. Introduction

The modulation of gene expression is a key feature of all living organisms and permits the
adjustment of the protein composition of a cell in response to infinite environmental cues or during
differentiation processes [1–3]. Traditionally, the expression rate of a gene has been measured by
the quantification of its product, either mRNA or protein, using invasive methods, which generally
impede the detection of the true dynamic nature of gene expression regulation. In the past decades,
numerous approaches have been developed to study gene expression in real time and in the living cell by
the introduction of different fluorescent or bioluminescent reporters or in situ hybridization techniques.
This has greatly advanced our perception of the highly dynamic nature of transcriptional regulation [4,5].
It is clear now that the dynamics of transient gene expression is crucial for the appropriate cellular
adaptation to changing environments [6], as is the timing and pattern of gene regulation fundamental
for the fate of developmental programs [7]. In eukaryotic organisms, the activation of gene expression
is a multistep process including transcription factor (TF) association with upstream control regions or
enhancers, chromatin modification and remodeling, recruitment of co-activators and RNA polymerase,
transcriptional elongation and termination, mRNA modification, and nuclear export. At each of these
steps, gene expression dynamics can be modulated for specific genes. Please refer to excellent reviews
for the mechanistic details of eukaryotic gene expression regulation in general [8–11], which is not the
aim of this overview. In this review, we will focus on the molecular steps, from signal transduction
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to active gene transcription, which confer dynamic gene- and cell-specific regulation (Figure 1).
We will summarize the mechanisms that modulate the expression rates of genes according to different
physiological determinants of the organism and compare methods for the in vivo determination of
dynamic gene expression.
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Traditional methods measure gene expression by the invasive determination of its final mRNA 
product by RT-PCR or Northern blotting or of the activity of a reporter protein such as 
β-galactosidase. Although, in principle, these techniques can infer the dynamics of gene expression 
in cell populations by serial sample preparation, the resolution and applicability to different parallel 
conditions of these approaches are limited. More directly, RNA polymerase II (PolII) association 
with target genes during activation can be dynamically estimated by kinetic chromatin 
immunoprecipitation (ChIP) techniques [12–14]. However, the comparison of transcriptional 
kinetics is very laborious with the ChIP approach. 

Another way to quantify the dynamics of transcription is the direct visualization of the nascent 
mRNA by in vivo imaging procedures [15]. This was first established, together with other 
microscopic techniques, by Janicki et al. [16] in order to get a closer look at the true kinetics of the 
gene expression process in a living cell. One strategy to visualize mRNA molecules in vivo is the 
introduction of multiple sequence tags into the gene of interest, which form characteristic stem–loop 
structures in the corresponding mRNA molecule, recognized by detector proteins fused to 
fluorescent markers. Common detection systems rely for example on the specific recognition of 
tertiary RNA structures by the MS2 or PP7 bacteriophage coat proteins [17,18]. Instantaneous 
detection of nascent mRNA molecules by this method has enabled studies of transcription dynamics 
in living cells from bacteria to humans [19–23]. Very recent approaches combine in vivo labeling of 
DNA, nascent RNA, and a fluorescent protein to resolve the spatiotemporal process of 
transcriptional induction at a single locus [24]. Although these approaches are highly sensitive and 
are applicable at single-cell resolution, they require engineered genes for visualization and are 

Figure 1. Determinants of dynamic transcriptional regulation of eukaryotic genes. Schematically are
shown the processes that can modulate the timing and efficiency of activated gene expression.
A given stimulus can give rise to different gene expression patterns in a gene- and cell-specific
manner. TF, transcription factor, UAS, upstream activating sequence, PolII, RNA polymerase II,
PIC, preinitiation complex.

2. Technical Approaches to Capture Gene Expression In Vivo

Traditional methods measure gene expression by the invasive determination of its final mRNA
product by RT-PCR or Northern blotting or of the activity of a reporter protein such as β-galactosidase.
Although, in principle, these techniques can infer the dynamics of gene expression in cell populations
by serial sample preparation, the resolution and applicability to different parallel conditions of these
approaches are limited. More directly, RNA polymerase II (PolII) association with target genes
during activation can be dynamically estimated by kinetic chromatin immunoprecipitation (ChIP)
techniques [12–14]. However, the comparison of transcriptional kinetics is very laborious with the
ChIP approach.

Another way to quantify the dynamics of transcription is the direct visualization of the nascent
mRNA by in vivo imaging procedures [15]. This was first established, together with other microscopic
techniques, by Janicki et al. [16] in order to get a closer look at the true kinetics of the gene expression
process in a living cell. One strategy to visualize mRNA molecules in vivo is the introduction of
multiple sequence tags into the gene of interest, which form characteristic stem–loop structures in the
corresponding mRNA molecule, recognized by detector proteins fused to fluorescent markers. Common
detection systems rely for example on the specific recognition of tertiary RNA structures by the MS2 or
PP7 bacteriophage coat proteins [17,18]. Instantaneous detection of nascent mRNA molecules by this
method has enabled studies of transcription dynamics in living cells from bacteria to humans [19–23].
Very recent approaches combine in vivo labeling of DNA, nascent RNA, and a fluorescent protein to
resolve the spatiotemporal process of transcriptional induction at a single locus [24]. Although these
approaches are highly sensitive and are applicable at single-cell resolution, they require engineered
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genes for visualization and are generally time-consuming, which greatly limits the parallel study of
several genes or their application to diverse conditions that modulate transcriptional dynamics.

A versatile way to quantify gene expression changes in vivo is the use of short-lived fluorescent
proteins or luciferases in reporter gene assays. Although these approaches are not specific for
transcription, they allow the continuous monitoring of gene expression in real time with little
experimental effort. Typically, the fluorescent or bioluminescent protein is expressed from the
control region of interest, either on plasmids or integrated in the genome, and protein synthesis is
quantified over time by time-lapse microscopy, fluorescence cytometry, or fluorescence or luminescence
readers. Fluorescent markers such as green fluorescent protein (GFP) are the most widely used
indicators for dynamic in vivo gene expression studies [25–27] because of their high photon yield
that is compatible with time-elapsed studies in single cells [28–30]. Additionally, GFP activity
does not depend on additional cellular cofactors, and engineered versions with different colors
are available for the simultaneous visualization of gene expression from several loci in the same
cell [31]. However, several limitations exist that make fluorescent proteins a less suitable approach,
especially for the faithful detection of transient and highly dynamic fluctuations of gene expression.
Fluorescent proteins of the GFP family are very stable, which is a serial constraint for a good resolution
of transient gene expression. Therefore, destabilized GFP variants have been developed [32–34],
which, however, still show considerable half-lives of at least 30 min and loss of signal output [35].
Furthermore, GFP shows a slow maturation that is an additional obstacle for the real-time visualization
of fast transcriptional responses. Furthermore, the continuous monitoring of fluorescent protein activity
requires external excitation with high-energy light sources, which causes problems of autofluorescence
and phototoxicity.

Many of these inconveniences of fluorescent markers for gene expression studies can be avoided
by the use of bioluminescent proteins such as luciferases as reporters. Luciferases do not require
external excitation and are co-translationally active. Additionally, unstable versions of firefly and
other luciferases have been created for time-elapsed gene expression studies, from bacteria to human
cells [36–38]. The destabilization of the firefly luciferase by the addition of combined protein
and mRNA degradation motifs has been especially useful in the yeast model, where these tools
allow real-time monitoring of gene expression fluctuations with unprecedented resolution [39–42].
Although luciferase reporters have significantly lower signal levels and are normally used in cell
populations, continuous single-cell gene expression studies are technically possible with unstable
luciferase reporters in yeast cells [42]. Bioluminescent reporters, however, pose yet other technical
challenges for the continuous measurement of gene activity over time. The specific substrate for
the luciferase enzyme, e.g., luciferin in the case of the firefly enzyme, has to be provided externally
at sufficient concentration for long-term studies. Also, luciferase activity depends on oxygen and
ATP levels, which might additionally have an influence on the light emission levels obtained during
prolonged live cell assays.

The techniques described above enable researchers to quantitate dynamic gene expression events
by measuring the final product of the process. In the past years, also the visualization of individual
TFs and their dynamic interaction with genomes and cis-regulatory elements at the single-cell and
single-molecule levels has greatly enhanced our models of eukaryotic gene activation [43,44].

3. Activated Gene Expression: A Highly Dynamic Dose-Dependent Biological Function Sensitive
to Many Physiological and Genetic Factors

Gene expression changes upon external stimuli often affect many genes simultaneously in order
to adapt the organism to the changing environment. Transient transcriptional activation is largely
dependent on the strength of the stimulus or stress. Recent applications of time-elapsed luciferase
reporters have revealed the dose-dependent dynamics of these responses by simultaneously measuring
gene expression upon continuously increasing stimulation [39,45]. The resulting dose–response (DR)
profiles contain information about how cells adjust gene expression upon dynamic environmental
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signals (Figure 2) [46]. A typical DR profile shows very little transcriptional activation upon low
threshold stimulation, which is continuously increased until reaching a maximal transcriptional output
upon the optimal stimulation in the dynamic range. Further increases in stimulation do not further
enhance gene expression but in many occasions lead to delayed and/or less efficient expression due to
inhibition of the gene expression process by harsher induction conditions. It is important to note that
an apparently low transcriptional response in cell populations can be produced when only a fraction
of the cells actually respond to the stimulation. This phenomenon called bimodal gene expression
has been found in several transcriptional responses to environmental changes and occurs often at
threshold stress levels [47–49].
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Figure 2. Transcriptional dose–response profiles and their modulation. Continuous monitoring of
gene expression quantifies the response of a cell population for a specific gene at any possible stress
dose (dose–response (DR) profile, depicted on the left). The responsiveness of gene expression over
a stress gradient can dynamically change, as shown on the right. For different genes, the sensitivity of
the dose–response might depend on differential signal transduction or on the ability of each gene to
engage in active transcription. The same gene might show different DR profiles in cells with altered
physiology, different age, or after repeated stress responses.

There are many factors which modulate the DR profile of the same or of different genes and cause
shifts towards more or less sensitive behaviors (Figure 2). One is the intrinsic promoter structure.
Quantitative studies in yeast populations have shown that different promoters have distinguishable
sensitivities towards the same abiotic stresses such as osmotic or oxidative challenges, resulting in
different half-maximal stimulus concentrations [45]. It has been recently elucidated that the dynamic
of a transcriptional stress response is modulated at both levels of transcription rate and duration and
that the gene expression output is modulated at different stages by multiple genetic determinants [50].
Detailed studies of specific inducible yeast promoters have been undertaken successfully to improve the
accessibility and affinity of TF binding sites in artificial promoters to create gene expression responses
with altered dynamics [51–53].

The ability to study transcriptional regulation at the single-locus level has advanced our model of
how genes switch from an inactive to an active state in a stochastic manner [54]. This phenomenon is
called transcriptional bursting and describes how an inactive locus can switch to the active synthesis
of active nascent RNA for a limited period, allowing transcription of several RNA polymerases
simultaneously. Both the timing and the frequency of the burst can be subject to regulation,
thereby adjusting gene expression to specific stimuli. The transcriptional burst itself is not a subject of
this review, and the interested reader is referred to excellent recent review articles [55,56]. Here, we are
interested in the molecular mechanisms which favor or disfavor bursting at specific genes. The critical
limiting steps prior to the formation of the preinitiation complex (PIC) and transcriptional initiation are
transcriptional activator binding and chromatin and nucleosome remodeling. Large-scale mutagenesis
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approaches using yeast promoters confirmed that indeed the upstream regulatory sequence is generally
responsible for high transcriptional activation [57]. Complementary to these studies, the introduction
of nucleosome disfavoring sequences in promoters largely favored active gene expression [58],
and modulating the extension of nucleosome-free regions is an important manner to dynamically tune
the transcriptional activity of a genetic locus [59]. This indicates that facilitating a stable activator
contact with its cognate promoter DNA is one of the rate-limiting steps in dynamic transcriptional
activation. Systematic studies in yeast have confirmed this and shown that in most cases, the amount of
activator protein, rather than the amount of binding sites, is the major determinant of gene expression
rate [60]. Studies of individual yeast TFs at the single-molecule level revealed that unspecific target
binding is common for different TFs, while coordinated chromatin remodeling is necessary for
dynamic TF association and transcriptional bursting [61,62]. In general, the timing of transcriptional
initiation and the efficiency of mRNA production seem to be linked to different recycling dynamics
of TFs [63]. Very recently, the application of simultaneous visualization techniques for TF binding
and RNA production at a single locus has permitted to directly correlate Gal4 activator binding
with the amount of RNA produced from different Gal4-regulated genes in a process which is highly
dependent on the presence of nucleosomes [64]. Single-molecule experiments at the GAL1/GAL10
locus furthermore indicated that transcription of non-coding (nc)RNAs can dynamically regulate gene
expression and adjust different activation thresholds [65]. Also, for metazoan genes, the efficient
recruitment of transcriptional activators and coactivators proximal to the transcriptional start site
seems to be essential for dynamic gene activation. This has been reported for the proto-onco gene cFos
and for a glucocorticoid-regulated reporter gene [66,67]. Specific mammalian TF levels are critical for
creating dynamic transcriptional behaviors for various genes [68,69]. Additionally, nuclear architecture
is an important determinant for target finding for individual TFs, according to single-molecule tracking
experiments [70]. Generally, also in higher eukaryotic systems, the number and affinity of cis-regulatory
elements in promoters is decisive for the dynamics of transcriptional bursting [71,72]. Stem cell
bursting dynamics have been recently found to be regulated by a combination of chromatin-remodeling
complexes and signal transduction pathways [73]. For developmental gene regulation in Drosophila,
it has been recently shown that dynamic morphogen gradients modulate different bursting parameters
to ensure graded mRNA synthesis at single loci during embryo development [74,75].

Chromatin remodeling is often the rate-limiting process affecting the transcription rates of
eukaryotic genes [76]. Since the cell can keep different chromatin states or marks at specific
genomic regions, these elements are important both for the short-term activation of environmental
stress-responsive genes (discussed here) and for long-term memory effects (discussed in the next
chapter). The requirement for nucleosome remodeling to ensure activator binding and/or stable PIC
formation might be very variable at different inducible loci or for different physiological states of the
cell. Thus, the efficient switch from an inactive to an active chromatin state modulates transcriptional
dynamics in an important manner [76,77]. In yeast, several inducible genes such as PHO5, INO1,
GAL1, SUC2, GRE2, CUP1, HO and others have been studied in detail to understand how the timely
recruitment of co-activator complexes, which modify and remodel nucleosomes at the promoter
chromatin, promotes dynamic transitions to the on state of genes responsive to diverse environmental
stimuli [78–83]. In many cases, a functional interplay between different complexes such as SWI/SNF2,
ISWI, CHD, INO80 ATPase-containing remodelers and SAGA, Rpd3 histone modifiers, or the mediator
complex has been documented [78,79,84–89]. It is important to note that the time needed for efficient
PIC formation after the first stimulation spans a wide range, from one or few minutes (typically, at acute
stress-responsive genes) to hours (at nutrient-responsive or developmental genes). For example, a first
induction of the nutrient-responsive GAL1 gene is slow and requires intensive chromatin modifications
for active Gal4 binding, PIC assembly at the promoter, and dynamic initiation [90–92]. This also
leads to a pronounced bimodal expression at medium or low galactose concentrations, which is
dependent on chromatin remodeling activities [90,93]. As a result, GAL1 and similar slow-responding
genes are prone to faster activation upon repeated stimulation by epigenetic and other mechanisms,
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as discussed in the next chapter. On the other hand, fast-responding stress genes such as the GRE2,
other osmostress-responsive genes, or genes responding to xenobiotic insults are characterized by
the rapid engagement of a pre-bound TF in PIC formation upon co-activator recruitment [88,94,95].
Accordingly, those genes do not show or have very little positive memory upon repeated exposure to
the stressor [90,94].

Looking more upstream from transcriptional initiation, it is important to understand the dynamic
signaling events which further increase the sensitivity of gene expression. External and internal
signals are usually transmitted to specific TFs either directly or indirectly via signal transduction
pathways. Frequently, activation derives from the direct binding of the TF to chemical compounds
such as hormones, metal ions, or xenobiotics or from a post-translational modification of the TF, such as
phosphorylation. As a result, the activated TF can acquire one or more of the following functionalities:
enhanced nuclear retention and/or enhanced association with the cognate DNA motif, weakening of
inhibitory factors, and favored recruitment of chromatin-modifying coactivators and PolII complexes.
It is important to note that the dynamics of gene induction upon a given stimulus depends on how
efficiently the TF is responsive to the stimulation. The same stress might provoke different gene
expression outputs depending on the specific TF involved. For example, various transcriptional
activators participate in the yeast osmostress response, and all receive a phosphorylation signal from
the upstream stress-activated protein kinase (SAPK) Hog1, upon osmotic stress. Here, the TF Sko1
has been found to more sensitively activate gene expression as compared to several other TFs [46],
which might enable the cell to adapt to a stress with a hierarchical response, employing differentially
sensitive transcriptional activators. Other examples are xenobiotic binding TFs of the Pdr family in
yeast, which very recently have been shown to transmit different gene activation dynamics by the
distinguishable recognition of chemically divergent compounds [94]. On the other hand, an opposing,
signal-integrating function has been described for the general stress-responsive transcriptional activator
Msn2, which is able to process up to four different stress inputs into distinguishable dynamic
transcriptional outputs based on its regulation of nuclear import and export [96–98].

To fully understand how cells respond to environmental cues by modulating gene expression,
it is important to consider cells’ physiology. One has to keep in mind that cells in many cases
engage in activated gene expression in order to overcome a particular disruption of their homeostasis
and eventually return to the equilibrium state. The amount of gene regulation needed for this
compensation is often dependent on the physiological properties of the cell. A simple example
illustrates this dependence. It has been shown that yeast cells adapted to rich growth conditions tend
to transcriptionally respond to abiotic stresses at lower doses, which could be explained by a more
repressed general stress defense as compared to cells adapted to minimal growth conditions [46]. In the
same vein, osmotic stress causes transcriptional adaptation at significantly lower stress concentrations in
galactose- as opposed to glucose-grown cells, because galactose metabolism does not allow an efficient
osmoprotection in budding yeast [99,100]. These examples illustrate that the physiological properties
of a cell are important modulators of the sensitivity and dynamics of its transcriptional response to
many stressors.

Cellular aging is a specific physiological change that has consequences for the dynamics of
gene expression [101]. Work in the yeast model has shown that cell-to-cell heterogeneity of gene
expression, also called transcriptional noise, increases in aged cells due to the lower expression of
histone genes [102]. This global deregulation of precise gene expression control is manifested by the
overall loss of promoter nucleosomes with advanced age [103]. Further studies revealed that the
maintenance of a specific histone mark—H3K36 methylation—was critical to avoid transcriptional
leakage during aging [104]. These data suggested that global changes in chromatin structure occur in
old yeast populations, leading to an increase in transcriptional noise and a decrease in transcriptional
fidelity [105]. However, by monitoring specific reporter genes in single yeast cells, noise reduction
during normal aging has been reported, with a complete deregulation at the final stages of the aging
process [106]. Also in individual mammalian cells, a great increase of transcriptional diversity has
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been found during aging [107–111]. Additionally, chromatin rearrangements of different magnitude
have been reported in old mammalian cells and lead to altered gene expression dynamics for several
genes [112–116]. Another important change in gene expression dynamics occurs in old cells at the
level of rapid gene activation upon stress signals. Aging yeast populations show an increasing loss
of efficiency, dynamics, and timing of oxidative stress-responsive reporter genes [46]. In T cells
from old mice, the immune response is less tightly regulated, and an inefficient and heterogeneously
uncontrolled transcriptional response has been found [117]. These data indicate that the loss of a timely
and efficient transcriptional activation upon cellular stress might contribute to aging-related cellular
and organismal dysfunctions [101,118,119].

Another important factor which shapes the transcriptional response to a given stimulus is cells
history. Very often, a previous encounter with the same or related stress determines the transcriptional
response in a later, repeated encounter. An improved response by means of transcriptional memory,
as detailed in the next chapter, is only one of several scenarios. Indeed, transcriptional memory can be
separated from acquired tolerance mechanisms in yeast, and both contribute to an enhanced fitness
after a previous stress insult [120]. Furthermore, the prevalent behavior depends on the combination
of different stress experiences. For example, repeated oxidative stress in yeast leads to a more efficient
transcriptional activation [46,120], while repeated salt stress makes cells less responsive [90,121].
A combination of both stresses induces a mixed behavior, with cells responding less at low doses
and more efficiently at high stress doses [46]. Additionally, it has been reported that a first round of
xenobiotic-induced gene expression is very efficient in yeast cells, while a shortly repeated stimulation
leads to a significantly reduced transcriptional activation [94]. This behavior can be explained by the
rapid degradation of the main xenobiotic-regulated TF, Pdr1, after its activation [94].

4. Epigenetic Transcriptional Memory: Modulating Gene Expression Dynamics upon
Repeated Stimulation

An important mechanism that changes the expression dynamics of genes is epigenetic
transcriptional memory. This phenomenon has been found in many organisms and describes the
fact that a response to a previous environmental stimulus alters the dynamics of gene expression
upon subsequent stimulation [122,123]. These heritable changes normally last during several cell
generations and might permit the organism to respond faster and more efficiently to periodically
occurring environmental challenges. For example, human cells memorize past infections by favoring
interferon-γ-mediated gene induction [124], and plants show an enhanced transcriptional response
to heat shock several days after a previous heat stress [125–127]. Budding yeast has been used
very extensively in transcriptional memory investigation, because several nutritional changes induce
profound memory effects, which can be easily studied in depth in this organism. Two genetic systems
and environmental conditions have been mainly applied in yeast: the induction of the GAL genes
(encoding the enzymes necessary for galactose utilization), which show strong epigenetic memory upon
repeated exposure to galactose, and the expression of the INO1 gene (encoding inositol-1-phosphate
synthase), which is activated by inositol starvation and potentiated upon previous inositol deprivation
(Figure 3).

In naïve yeast cells, induction of the GAL genes is slow and requires high inducer concentrations
to be efficient. After a previous galactose encounter, this response is significantly faster and more
sensitive to low galactose concentrations, and this memory state is maintained as long as through seven
generations [90,91,128]. Different molecular mechanisms have been identified so far to explain the
establishment of GAL memory. One mechanism is chromatin-based and leads to the relocalization of the
GAL gene to the nuclear periphery, where it physically associates with the nuclear pore complex (NPC)
upon the first induction [128,129]. The NPC subunit Nup100, the H2A.Z histone variant, and specific
GAL1 promoter sequences are important for this translocation [129]. GAL1 tethering to the nuclear
periphery is maintained even in the absence of active GAL gene transcription. However, disruption of
GAL1 interaction with the NPC did not affect GAL1 transcriptional memory, which implies other
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memory mechanisms in the case of GAL genes [129]. Accordingly, it has been suggested that enhanced
GAL induction during memory largely depends on the accumulation of signaling molecules, such as
the Gal1 and Gal3 proteins [90,130,131] (Figure 3). Both factors bind to the Gal80 repressor [132],
which inhibits GAL gene expression by masking the activator domain of the Gal4 transcriptional
activator. Therefore, previous induction of Gal1/Gal3 can promote a faster activation by more efficiently
counteracting GAL repression through reinforced signaling during memory. Indeed, the degree of
GAL memory seems to correlate with the expression levels of Gal1 or Gal3 [90,130,133].
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Figure 3. Mechanisms of transcriptional memory. (A) Trans mechanisms of improved reactivation
at the GAL1 gene after repeated galactose stimulation. Upper panel: Naïve cells exhibit slow and
galactose-insensitive GAL1 activation kinetics. After a previous encounter with galactose, cells respond
with a faster, more efficient and sensitive gene induction. Lower panel: Details of transcriptional
memory at GAL1 by the reinforcement of signaling. The inactive GAL1 gene is bound by the Gal4
transcriptional activator, which is completely inactivated by association with the Gal80 repressor
masking the Gal4 activation domain (AD). A first round of GAL1 transcriptional activation (active) is
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slow and inefficient due to the low amount of the Gal3 galactose sensor and signal transducer.
After memory, the previously induced and inherited Gal1 and Gal3 proteins prepare the experienced
cells for fast reactivation even at low galactose doses. Both Gal1 and Gal3 can induce GAL1 expression
by Gal80 inhibition. (B) Epigenetic mechanisms of memory at the INO1 gene after repeated inositol
starvation. The inactive INO1 gene is characterized by absent histone acetylation or methylation
despite Ino2,4 activator binding. A first round of INO1 induction includes the physical anchoring
of the gene to the nuclear pore complex (NPC) through binding of Put3 and Cbf1 to the INO1 gene
recruitment sequences (GRS). Histones are modified by acetylation and trimethylation of histone H3 by
the Spp1-containing COMPASS complex. Transcriptionally competent RNA polymerase II is present,
accompanied by the Kin28-containing mediator complex. After addition of inositol, the INO1 gene
shifts to the memory mode, which is characterized by prolonged NPC anchoring via Sfl1 and the
INO1 memory recruitment sequence (MRS), loss of Spp1 from COMPASS, predominant histone H3
dimethylation, binding of the SET3C histone deacetylase complex, and the association of a poised,
transcriptionally inactive version of PolII sustained by the Cdk8 module of Mediator. INO1 in the
poised chromatin state is reactivated with faster kinetics.

A more pronounced role for chromatin modification and relocalization to the NPC has been found
in the case of memory at the INO1 locus (Figure 3). Once activated by a first inositol deprivation,
INO1 adopts a memory-specific chromatin configuration characterized by the binding of a specific
TF, the persistent translocation to the nuclear envelope, the incorporation of histone variants and
histone modifications, and the recruitment of remodeled chromatin-modifying complexes and of
a poised PolII complex [122]. The conversion from the activated to the memory state at INO1 is
mediated by the binding of the TF Sfl1 to a specific DNA motif in the promoter region, the so-called
memory recruitment sequence (MRS) [134]. Both Sfl1 and MRS are necessary to keep INO1 anchored
at the nuclear periphery and to maintain several characteristic chromatin features. One feature is
histone H3 dimethylation at lysine 4 (H3K4me2) at the INO1 promoter and coding region [135].
Additionally, the histone variant H2A.Z is specifically incorporated into INO1 chromatin during the
memory phase [128,136]. H3K4me2 is produced by a remodeled version of the Set1/COMPASS complex
lacking the Spp1 subunit necessary for H3K4me3 only during activated INO1 transcription [134].
H3K4me2 is then recognized and maintained by the SET3C histone deacetylase complex, which is
required to recruit a poised version of PolII to INO1 during memory. PolII assembly during memory is
different from PIC formation during normal gene activation, as it recruits PolII in a transcriptionally
inactive form. This seems to be assured by PolII assembly in the absence of the Cdk7/Kin28 C-terminal
domain (CTD) kinase [134]. Cdk7 promotes promoter escape of the enzyme during normal activation
by PolII CTD phosphorylation, which is blocked during INO1 memory. Additionally, Mediator binds
as a specific, Cdk8-containing module, which might facilitate maintaining a poised PolII complex at the
INO1 locus during memory [134]. Altogether, the INO1 memory mechanism shows that specific genes
can adopt a memory configuration after a first stimulation via specific TFs, which is characterized by
a combination of histone marks, NPC anchoring, and association of specific chromatin-modifying
complexes leading to the permanent binding of PolII in a poised state, thus allowing a faster reactivation
of transcription in repeated rounds of stimulation [122,137]. It is important to note that these findings
from yeast research reflect several mechanisms conserved for epigenetic memory in higher eukaryotic
organisms. Prolonged H3K4me2 is an epigenetic hallmark for memory also for plant and human
genes [124,138–140]. Moreover, the persistent binding of a poised, transcriptionally inactive PolII
has been found in Caenorhabditis elegans and human cells at some memory genes after previous
stimulation [134,135,141].

5. Gene Expression Heterogeneity in Individual Cells

Genetically identical cells can show considerable variability in their gene expression patterns,
a phenomenon generally called gene expression noise [142]. There are extrinsic and intrinsic factors
causing a noisy expression across individual cells. Extrinsic sources of noise are, for example,
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the stochastic initiation of different transcriptional cell fate programs in multicellular organisms
in response to gradients of morphogens [143,144]. Another example of the extrinsic induction of
heterogeneous expression patterns is the response to inflammatory signals in mammalian organisms,
where oscillations in NF-κB TFs determine different immune responses and specific cytokine
production [145,146]. Furthermore, very recently it has been proposed that intrinsic stochasticity of
gene expression favors plasticity and robustness of mouse stem cells [147].

Here, we will focus on the establishment and regulation of intrinsic noise of gene expression,
which is originated by natural fluctuations of cellular and, especially, intra-nuclear factors or chromatin
states [148,149]. In microorganisms, the stochastic heterogeneity of gene expression is a mechanism to
improve the fitness of a cell population upon unpredicted environmental cues [150–152], in a process
which has been coined “bet hedging” [153–155]. Similarly, cancer cell subpopulations with specific
chromatin and gene expression variability are sources of drug tolerance during pharmacological
treatment [156–158]. It is important to note that, in most cases, the observed heterogeneity is transient
and reversible, because it is caused by epigenetic alterations or fluctuations in the activity of proteins
critical to the process of gene expression [142,149,159–161].

Pioneering experiments exploring lac repressor regulation by the expression of fluorescent protein
markers in bacteria discovered a striking cell-to-cell variability even in this simple regulatory circuit [142].
As a first intrinsic determinant of the observed noise, the abundance of the lac repressor itself was
identified [142]. Similar studies in the yeast model using the inducible PHO5 system confirmed gene
expression heterogeneity in eukaryotic cells, which is modulated by extrinsic and intrinsic factors [159].
Later genome-wide studies revealed that low expression levels are generally accompanied by high
noise, while highly expressed genes are not [162]. Similarly, housekeeping genes are usually more
uniformly expressed among cell populations, while environmental stress-responsive genes show
a noisier expression pattern [163–165]. This might be explained by the fact that fluctuations of
housekeeping proteins is less compatible with essential cell functions as compared to stress-responsive
proteins, whose fluctuations might be beneficial for the adaptation to environmental changes [166,167].

Several studies have addressed the question whether transcriptional noise was created by specific
cellular or nuclear processes. Promoter engineering in bacteria has shown that variations in the intrinsic
promoter design modulates the degree of noise [168], which suggests that altered affinity of TFs is a main
source of transcriptional variability [169–171]. Indeed, the TF resources of a cell seem to be critical for
noise determination, which increases with limited amount of active TF [172]. Recent studies point to the
importance of different bacterial sigma factors in the modulation of transcriptional noise [173]. Studies of
the yeast PHO5 nucleosome positioning further demonstrated that specific chromatin configurations
can be an important intrinsic source of transcriptional noise [174,175]. Genome-wide studies in single
mammalian cells showed, on a broader scale, that changes in chromatin accessibility generally control
transcript variability [176]. Specific histone marks such as H3K79 methylation have been furthermore
shown to determine the level of expression noise [177]. Additionally, Drosophila genes with pre-bound,
paused RNA PolII have been associated with a more uniform expression pattern, while disruption
of PolII pausing increased the stochasticity of gene expression [178]. Transcriptional variability can
furthermore be modulated by more physiological characteristics of the cell such as the cell cycle [179] or
the process of mRNA export and nuclear compartmentalization, which can have functions in buffering
stochastic transcription bursts [180].

It remains an intriguing question whether and how cells are able to regulate general or gene-specific
transcription variability according to developmental or environmental changes. It has been determined
that noisy gene expression is a complex heritable trait [181]. However, recent work in yeast identified
a specific regulator, the methyltransferase Hmt1, as a master regulator of noise [182]. Hmt1 has been
proposed to reduce transcriptional variability by methylating strategic effectors with functions in
chromatin remodeling (Snf2) or translation (Rps2). Environmental stress could inactivate this pathway
and increase cell-to-cell variability in order to better adapt to adverse conditions [182].
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6. Conclusions and Future Perspectives

In the past years, we have witnessed many significant advances in the field of dynamic
transcriptional responses. We have successfully moved from a static view of transcription towards
a fully dynamic description of gene activation, both at the cell population and at the single-cell
level. In fact, any transcriptional regulation cannot be sufficiently understood on the basis of fixed
snapshots of the process. Many technical advances, from the continuous monitoring of gene expression
by fluorescent and luminescent reporters to the single-cell tracing of TF binding, nascent mRNAs,
and chromatin remodeling at single loci, have largely increased the resolution with which we are
able to look at specific dynamic features of gene activation processes. TF dynamics and recycling,
as well as specific chromatin remodeling have emerged from those studies as modulators of dynamic
gene expression. A main future challenge, however, will be to link dynamic transcriptional readouts
with higher-order determinants, such as nucleosomal or chromosomal topology and arrangement.
Additionally, the great variety of changes in gene expression dynamics must have fundamental
biological functions, which in many cases are not well known. For example, it will be important
to reveal the molecular drivers of the loss of dynamic gene activation in aged cells, if and how
transcriptional dynamics and memory change during adaptation to specific environments or during
evolution, or how modulation of transcriptional heterogeneity is achieved and possibly impacts on
adaptation and fitness of the cell.

Funding: This work was funded by Ministerio de Ciencia, Innovación y Universidades, grant
number BFU2016-75792-R.

Acknowledgments: We apologize to all researchers whose work on related topics was not cited here due to
space limitations.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

TF Transcription factor
PolII RNA polymerase II
ChIP Chromatin immunoprecipitation
GFP Green fluorescent protein
NPC Nuclear pore complex
PIC Preinitiation complex
MRS Memory recruitment sequence
GRS Gene recruitment sequence
AD Activation domain
DR Dose–response
SAPK Stress-activated protein kinase
CTD C-terminal domain

References

1. Murray, J.I.; Whitfield, M.L.; Trinklein, N.D.; Myers, R.M.; Brown, P.O.; Botstein, D. Diverse and specific gene
expression responses to stresses in cultured human cells. Mol. Biol. Cell 2004, 15, 2361–2374. [CrossRef]

2. Gasch, A.P.; Spellman, P.T.; Kao, C.M.; Carmel-Harel, O.; Eisen, M.B.; Storz, G.; Botstein, D.; Brown, P.O.
Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 2000,
11, 4241–4257. [CrossRef]

3. Ben-Tabou de-Leon, S.; Davidson, E.H. Gene regulation: Gene control network in development. Annu. Rev.
Biophys. Biomol. Struct. 2007, 36, 191–212. [CrossRef]

4. Lenstra, T.L.; Rodriguez, J.; Chen, H.; Larson, D.R. Transcription dynamics in living cells. Annu. Rev. Biophys.
2016, 45, 25–47. [CrossRef]

5. Coulon, A.; Chow, C.C.; Singer, R.H.; Larson, D.R. Eukaryotic transcriptional dynamics: From single
molecules to cell populations. Nat. Rev. Genet. 2013, 14, 572–584. [CrossRef] [PubMed]

http://dx.doi.org/10.1091/mbc.e03-11-0799
http://dx.doi.org/10.1091/mbc.11.12.4241
http://dx.doi.org/10.1146/annurev.biophys.35.040405.102002
http://dx.doi.org/10.1146/annurev-biophys-062215-010838
http://dx.doi.org/10.1038/nrg3484
http://www.ncbi.nlm.nih.gov/pubmed/23835438


Int. J. Mol. Sci. 2020, 21, 8278 12 of 19

6. Yosef, N.; Regev, A. Impulse control: Temporal dynamics in gene transcription. Cell 2011, 144, 886–896.
[CrossRef]

7. Purvis, J.E.; Lahav, G. Encoding and decoding cellular information through signaling dynamics. Cell 2013,
152, 945–956. [CrossRef]

8. Weake, V.M.; Workman, J.L. Inducible gene expression: Diverse regulatory mechanisms. Nat. Rev. Genet.
2010, 11, 426–437. [CrossRef]

9. de Nadal, E.; Ammerer, G.; Posas, F. Controlling gene expression in response to stress. Nat. Rev. Genet. 2011,
12, 833–845. [CrossRef]

10. Vihervaara, A.; Duarte, F.M.; Lis, J.T. Molecular mechanisms driving transcriptional stress responses. Nat. Rev.
Genet. 2018, 19, 385–397. [CrossRef]

11. Pérez-Ortín, J.E.; Alepuz, P.; Chávez, S.; Choder, M. Eukaryotic mRNA decay: Methodologies, pathways,
and links to other stages of gene expression. J. Mol. Biol. 2013, 425, 3750–3775. [CrossRef]

12. Aparicio, O.; Geisberg, J.V.; Sekinger, E.; Yang, A.; Moqtaderi, Z.; Struhl, K. Chromatin immunoprecipitation
for determining the association of proteins with specific genomic sequences in vivo. Curr. Protoc. Mol. Biol.
2005, 69, 21.3.1–21.3.33. [CrossRef]

13. wa Maina, C.; Honkela, A.; Matarese, F.; Grote, K.; Stunnenberg, H.G.; Reid, G.; Lawrence, N.D.; Rattray, M.
Inference of RNA polymerase II transcription dynamics from chromatin immunoprecipitation time course
data. PLoS Comput. Biol. 2014, 10, e1003598. [CrossRef] [PubMed]

14. Mason, P.B.; Struhl, K. Distinction and relationship between elongation rate and processivity of RNA
polymerase II in vivo. Mol. Cell 2005, 17, 831–840. [CrossRef]

15. Sato, H.; Das, S.; Singer, R.H.; Vera, M. Imaging of DNA and RNA in living eukaryotic cells to reveal
spatiotemporal dynamics of gene expression. Annu. Rev. Biochem. 2020, 89, 159–187. [CrossRef]

16. Janicki, S.M.; Tsukamoto, T.; Salghetti, S.E.; Tansey, W.P.; Sachidanandam, R.; Prasanth, K.V.; Ried, T.;
Shav-Tal, Y.; Bertrand, E.; Singer, R.H.; et al. From silencing to gene expression: Real-time analysis in single
cells. Cell 2004, 116, 683–698. [CrossRef]

17. Chao, J.A.; Patskovsky, Y.; Almo, S.C.; Singer, R.H. Structural basis for the coevolution of a viral RNA-protein
complex. Nat. Struct. Mol. Biol. 2008, 15, 103–105. [CrossRef]

18. Bertrand, E.; Chartrand, P.; Schaefer, M.; Shenoy, S.M.; Singer, R.H.; Long, R.M. Localization of ASH1 mRNA
particles in living yeast. Mol. Cell 1998, 2, 437–445. [CrossRef]

19. Campbell, P.D.; Chao, J.A.; Singer, R.H.; Marlow, F.L. Dynamic visualization of transcription and RNA
subcellular localization in zebrafish. Development 2015, 142, 1368–1374. [CrossRef] [PubMed]

20. Golding, I.; Paulsson, J.; Zawilski, S.M.; Cox, E.C. Real-time kinetics of gene activity in individual bacteria.
Cell 2005, 123, 1025–1036. [CrossRef] [PubMed]

21. Larson, D.R.; Zenklusen, D.; Wu, B.; Chao, J.A.; Singer, R.H. Real-time observation of transcription initiation
and elongation on an endogenous yeast gene. Science 2011, 332, 475–478. [CrossRef]

22. Chubb, J.R.; Trcek, T.; Shenoy, S.M.; Singer, R.H. Transcriptional pulsing of a developmental gene. Curr. Biol.
2006, 16, 1018–1025. [CrossRef]

23. Garcia, H.G.; Tikhonov, M.; Lin, A.; Gregor, T. Quantitative imaging of transcription in living Drosophila
embryos links polymerase activity to patterning. Curr. Biol. 2013, 23, 2140–2145. [CrossRef]

24. Xu, H.; Wang, J.; Liang, Y.; Fu, Y.; Li, S.; Huang, J.; Xu, H.; Zou, W.; Chen, B. TriTag: An integrative tool to
correlate chromatin dynamics and gene expression in living cells. Nucleic Acids Res. 2020. [CrossRef]

25. Niedenthal, R.K.; Riles, L.; Johnston, M.; Hegemann, J.H. Green fluorescent protein as a marker for gene
expression and subcellular localization in budding yeast. Yeast 1996, 12, 773–786. [CrossRef]

26. Plautz, J.D.; Day, R.N.; Dailey, G.M.; Welsh, S.B.; Hall, J.C.; Halpain, S.; Kay, S.A. Green fluorescent protein
and its derivatives as versatile markers for gene expression in living Drosophila melanogaster, plant and
mammalian cells. Gene 1996, 173, 83–87. [CrossRef]

27. Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W.W.; Prasher, D.C. Green fluorescent protein as a marker for gene
expression. Science 1994, 263, 802–805. [CrossRef] [PubMed]

28. Bongaerts, R.J.M.; Hautefort, I.; Sidebotham, J.M.; Hinton, J.C.D. Green fluorescent protein as a marker
for conditional gene expression in bacterial cells. In Bacterial Pathogenesis Part C: Identification, Regulation,
and Function of Virulence Factors; Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2002;
Volume 358, pp. 43–66. ISBN 9780121822613.

29. Longo, D.; Hasty, J. Dynamics of single-cell gene expression. Mol. Syst. Biol. 2006, 2, 64. [CrossRef]

http://dx.doi.org/10.1016/j.cell.2011.02.015
http://dx.doi.org/10.1016/j.cell.2013.02.005
http://dx.doi.org/10.1038/nrg2781
http://dx.doi.org/10.1038/nrg3055
http://dx.doi.org/10.1038/s41576-018-0001-6
http://dx.doi.org/10.1016/j.jmb.2013.02.029
http://dx.doi.org/10.1002/0471142727.mb2103s69
http://dx.doi.org/10.1371/journal.pcbi.1003598
http://www.ncbi.nlm.nih.gov/pubmed/24830797
http://dx.doi.org/10.1016/j.molcel.2005.02.017
http://dx.doi.org/10.1146/annurev-biochem-011520-104955
http://dx.doi.org/10.1016/S0092-8674(04)00171-0
http://dx.doi.org/10.1038/nsmb1327
http://dx.doi.org/10.1016/S1097-2765(00)80143-4
http://dx.doi.org/10.1242/dev.118968
http://www.ncbi.nlm.nih.gov/pubmed/25758462
http://dx.doi.org/10.1016/j.cell.2005.09.031
http://www.ncbi.nlm.nih.gov/pubmed/16360033
http://dx.doi.org/10.1126/science.1202142
http://dx.doi.org/10.1016/j.cub.2006.03.092
http://dx.doi.org/10.1016/j.cub.2013.08.054
http://dx.doi.org/10.1093/nar/gkaa906
http://dx.doi.org/10.1002/(SICI)1097-0061(19960630)12:8&lt;773::AID-YEA972&gt;3.0.CO;2-L
http://dx.doi.org/10.1016/0378-1119(95)00700-8
http://dx.doi.org/10.1126/science.8303295
http://www.ncbi.nlm.nih.gov/pubmed/8303295
http://dx.doi.org/10.1038/msb4100110


Int. J. Mol. Sci. 2020, 21, 8278 13 of 19

30. Zou, F.; Bai, L. Using time-lapse fluorescence microscopy to study gene regulation. Methods 2019, 159–160,
138–145. [CrossRef]

31. Han, J.; Xia, A.; Huang, Y.; Ni, L.; Chen, W.; Jin, Z.; Yang, S.; Jin, F. Simultaneous visualization of multiple
gene expression in single cells using an engineered multicolor reporter toolbox and approach of spectral
crosstalk correction. ACS Synth. Biol. 2019, 8, 2536–2546. [CrossRef]

32. Mateus, C.; Avery, S.V. Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene
expression with flow cytometry. Yeast 2000, 16, 1313–1323. [CrossRef]

33. Li, X.; Zhao, X.; Fang, Y.; Jiang, X.; Duong, T.; Fan, C.; Huang, C.C.; Kain, S.R. Generation of destabilized
green fluorescent protein as a transcription reporter. J. Biol. Chem. 1998, 273, 34970–34975. [CrossRef]

34. Andersen, J.B.; Sternberg, C.; Poulsen, L.K.; Bjorn, S.P.; Givskov, M.; Molin, S. New unstable variants of green
fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 1998, 64,
2240–2246. [CrossRef]

35. He, L.; Binari, R.; Huang, J.; Falo-Sanjuan, J.; Perrimon, N. In vivo study of gene expression with an enhanced
dual-color fluorescent transcriptional timer. eLife 2019, 8. [CrossRef]

36. Allen, M.S.; Wilgus, J.R.; Chewning, C.S.; Sayler, G.S.; Simpson, M.L. A destabilized bacterial luciferase for
dynamic gene expression studies. Syst. Synth. Biol. 2007, 1, 3–9. [CrossRef]

37. Yasunaga, M.; Murotomi, K.; Abe, H.; Yamazaki, T.; Nishii, S.; Ohbayashi, T.; Oshimura, M.; Noguchi, T.;
Niwa, K.; Ohmiya, Y.; et al. Highly sensitive luciferase reporter assay using a potent destabilization sequence
of calpain 3. J. Biotechnol. 2015, 194, 115–123. [CrossRef]

38. Leclerc, G.M.; Boockfor, F.R.; Faught, W.J.; Frawley, L.S. Development of a destabilized firefly luciferase
enzyme for measurement of gene expression. BioTechniques 2000, 29, 590–591, 594. [CrossRef] [PubMed]

39. Rienzo, A.; Pascual-Ahuir, A.; Proft, M. The use of a real-time luciferase assay to quantify gene expression
dynamics in the living yeast cell. Yeast 2012, 29, 219–231. [CrossRef]

40. Robertson, J.B.; Stowers, C.C.; Boczko, E.; Johnson, C.H. Real-time luminescence monitoring of cell-cycle and
respiratory oscillations in yeast. Proc. Natl. Acad. Sci. USA 2008, 105, 17988–17993. [CrossRef]

41. Deng, L.; Sugiura, R.; Takeuchi, M.; Suzuki, M.; Ebina, H.; Takami, T.; Koike, A.; Iba, S.; Kuno, T. Real-time
monitoring of calcineurin activity in living cells: Evidence for two distinct Ca2+-dependent pathways in
fission yeast. Mol. Biol. Cell 2006, 17, 4790–4800. [CrossRef] [PubMed]

42. Mazo-Vargas, A.; Park, H.; Aydin, M.; Buchler, N.E. Measuring fast gene dynamics in single cells with
time-lapse luminescence microscopy. Mol. Biol. Cell 2014, 25, 3699–3708. [CrossRef] [PubMed]

43. Liu, Z.; Tjian, R. Visualizing transcription factor dynamics in living cells. J. Cell Biol. 2018, 217, 1181–1191.
[CrossRef]

44. Jin, X.; Hapsari, N.D.; Lee, S.; Jo, K. DNA binding fluorescent proteins as single-molecule probes. Analyst
2020, 145, 4079–4095. [CrossRef] [PubMed]

45. Dolz-Edo, L.; Rienzo, A.; Poveda-Huertes, D.; Pascual-Ahuir, A.; Proft, M. Deciphering dynamic dose
responses of natural promoters and single cis elements upon osmotic and oxidative stress in yeast. Mol. Cell.
Biol. 2013, 33, 2228–2240. [CrossRef]

46. Pascual-Ahuir, A.; González-Cantó, E.; Juyoux, P.; Pable, J.; Poveda-Huertes, D.; Saiz-Balbastre, S.; Squeo, S.;
Ureña-Marco, A.; Vanacloig-Pedros, E.; Zaragoza-Infante, L.; et al. Dose dependent gene expression is
dynamically modulated by the history, physiology and age of yeast cells. Biochim. Biophys. Acta Gene Regul.
Mech. 2019, 1862, 457–471. [CrossRef]

47. Pelet, S.; Rudolf, F.; Nadal-Ribelles, M.; de Nadal, E.; Posas, F.; Peter, M. Transient activation of the HOG
MAPK pathway regulates bimodal gene expression. Science 2011, 332, 732–735. [CrossRef]

48. Paliwal, S.; Iglesias, P.A.; Campbell, K.; Hilioti, Z.; Groisman, A.; Levchenko, A. MAPK-mediated bimodal
gene expression and adaptive gradient sensing in yeast. Nature 2007, 446, 46–51. [CrossRef]

49. Zhang, Q.; Yoon, Y.; Yu, Y.; Parnell, E.J.; Garay, J.A.R.; Mwangi, M.M.; Cross, F.R.; Stillman, D.J.; Bai, L.
Stochastic expression and epigenetic memory at the yeast HO promoter. Proc. Natl. Acad. Sci. USA 2013, 110,
14012–14017. [CrossRef] [PubMed]

50. Gutin, J.; Joseph-Strauss, D.; Sadeh, A.; Shalom, E.; Friedman, N. Genetic screen of the yeast environmental
stress response dynamics uncovers distinct regulatory phases. Mol. Syst. Biol. 2019, 15, e8939. [CrossRef]

51. Rajkumar, A.S.; Liu, G.; Bergenholm, D.; Arsovska, D.; Kristensen, M.; Nielsen, J.; Jensen, M.K.; Keasling, J.D.
Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Res. 2016, 44, e136. [CrossRef]

http://dx.doi.org/10.1016/j.ymeth.2018.12.010
http://dx.doi.org/10.1021/acssynbio.9b00223
http://dx.doi.org/10.1002/1097-0061(200010)16:14&lt;1313::AID-YEA626&gt;3.0.CO;2-O
http://dx.doi.org/10.1074/jbc.273.52.34970
http://dx.doi.org/10.1128/AEM.64.6.2240-2246.1998
http://dx.doi.org/10.7554/eLife.46181
http://dx.doi.org/10.1007/s11693-006-9001-5
http://dx.doi.org/10.1016/j.jbiotec.2014.12.004
http://dx.doi.org/10.2144/00293rr02
http://www.ncbi.nlm.nih.gov/pubmed/10997273
http://dx.doi.org/10.1002/yea.2905
http://dx.doi.org/10.1073/pnas.0809482105
http://dx.doi.org/10.1091/mbc.e06-06-0526
http://www.ncbi.nlm.nih.gov/pubmed/16928959
http://dx.doi.org/10.1091/mbc.e14-07-1187
http://www.ncbi.nlm.nih.gov/pubmed/25232010
http://dx.doi.org/10.1083/jcb.201710038
http://dx.doi.org/10.1039/D0AN00218F
http://www.ncbi.nlm.nih.gov/pubmed/32386402
http://dx.doi.org/10.1128/MCB.00240-13
http://dx.doi.org/10.1016/j.bbagrm.2019.02.009
http://dx.doi.org/10.1126/science.1198851
http://dx.doi.org/10.1038/nature05561
http://dx.doi.org/10.1073/pnas.1306113110
http://www.ncbi.nlm.nih.gov/pubmed/23836672
http://dx.doi.org/10.15252/msb.20198939
http://dx.doi.org/10.1093/nar/gkw553


Int. J. Mol. Sci. 2020, 21, 8278 14 of 19

52. Duveau, F.; Yuan, D.C.; Metzger, B.P.H.; Hodgins-Davis, A.; Wittkopp, P.J. Effects of mutation and selection
on plasticity of a promoter activity in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2017, 114,
E11218–E11227. [CrossRef]

53. Redden, H.; Morse, N.; Alper, H.S. The synthetic biology toolbox for tuning gene expression in yeast.
FEMS Yeast Res. 2015, 15, 1–10. [CrossRef]

54. Brouwer, I.; Lenstra, T.L. Visualizing transcription: Key to understanding gene expression dynamics.
Curr. Opin. Chem. Biol. 2019, 51, 122–129. [CrossRef]

55. Rodriguez, J.; Larson, D.R. Transcription in living cells: Molecular mechanisms of bursting. Annu. Rev.
Biochem. 2020, 89, 189–212. [CrossRef]

56. Tunnacliffe, E.; Chubb, J.R. What is a transcriptional burst? Trends Genet. 2020, 36, 288–297. [CrossRef]
[PubMed]

57. Hornung, G.; Bar-Ziv, R.; Rosin, D.; Tokuriki, N.; Tawfik, D.S.; Oren, M.; Barkai, N. Noise-mean relationship
in mutated promoters. Genome Res. 2012, 22, 2409–2417. [CrossRef]

58. Dadiani, M.; van Dijk, D.; Segal, B.; Field, Y.; Ben-Artzi, G.; Raveh-Sadka, T.; Levo, M.; Kaplow, I.;
Weinberger, A.; Segal, E. Two DNA-encoded strategies for increasing expression with opposing effects on
promoter dynamics and transcriptional noise. Genome Res. 2013, 23, 966–976. [CrossRef]

59. Raveh-Sadka, T.; Levo, M.; Shabi, U.; Shany, B.; Keren, L.; Lotan-Pompan, M.; Zeevi, D.; Sharon, E.;
Weinberger, A.; Segal, E. Manipulating nucleosome disfavoring sequences allows fine-tune regulation of
gene expression in yeast. Nat. Genet. 2012, 44, 743–750. [CrossRef]

60. van Dijk, D.; Sharon, E.; Lotan-Pompan, M.; Weinberger, A.; Segal, E.; Carey, L.B. Large-scale mapping of
gene regulatory logic reveals context-dependent repression by transcriptional activators. Genome Res. 2017,
27, 87–94. [CrossRef]

61. Mehta, G.D.; Ball, D.A.; Eriksson, P.R.; Chereji, R.V.; Clark, D.J.; McNally, J.G.; Karpova, T.S. Single-Molecule
Analysis Reveals Linked Cycles of RSC Chromatin Remodeling and Ace1p Transcription Factor Binding in
Yeast. Mol. Cell 2018, 72, 875–887.e9. [CrossRef] [PubMed]

62. Ball, D.A.; Mehta, G.D.; Salomon-Kent, R.; Mazza, D.; Morisaki, T.; Mueller, F.; McNally, J.G.; Karpova, T.S.
Single molecule tracking of Ace1p in Saccharomyces cerevisiae defines a characteristic residence time for
non-specific interactions of transcription factors with chromatin. Nucleic Acids Res. 2016, 44, e160. [CrossRef]

63. Karpova, T.S.; Kim, M.J.; Spriet, C.; Nalley, K.; Stasevich, T.J.; Kherrouche, Z.; Heliot, L.; McNally, J.G.
Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter. Science 2008, 319,
466–469. [CrossRef] [PubMed]

64. Donovan, B.T.; Huynh, A.; Ball, D.A.; Patel, H.P.; Poirier, M.G.; Larson, D.R.; Ferguson, M.L.; Lenstra, T.L.
Live-cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting. EMBO J.
2019, 38. [CrossRef]

65. Lenstra, T.L.; Coulon, A.; Chow, C.C.; Larson, D.R. Single-Molecule Imaging Reveals a Switch between
Spurious and Functional ncRNA Transcription. Mol. Cell 2015, 60, 597–610. [CrossRef] [PubMed]

66. Senecal, A.; Munsky, B.; Proux, F.; Ly, N.; Braye, F.E.; Zimmer, C.; Mueller, F.; Darzacq, X. Transcription factors
modulate c-Fos transcriptional bursts. Cell Rep. 2014, 8, 75–83. [CrossRef]

67. Stavreva, D.A.; Garcia, D.A.; Fettweis, G.; Gudla, P.R.; Zaki, G.F.; Soni, V.; McGowan, A.; Williams, G.;
Huynh, A.; Palangat, M.; et al. Transcriptional Bursting and Co-bursting Regulation by Steroid Hormone
Release Pattern and Transcription Factor Mobility. Mol. Cell 2019, 75, 1161–1177.e11. [CrossRef]

68. Nelson, D.E.; Ihekwaba, A.E.C.; Elliott, M.; Johnson, J.R.; Gibney, C.A.; Foreman, B.E.; Nelson, G.; See, V.;
Horton, C.A.; Spiller, D.G.; et al. Oscillations in NF-kappaB signaling control the dynamics of gene expression.
Science 2004, 306, 704–708. [CrossRef] [PubMed]

69. Lahav, G.; Rosenfeld, N.; Sigal, A.; Geva-Zatorsky, N.; Levine, A.J.; Elowitz, M.B.; Alon, U. Dynamics of the
p53-Mdm2 feedback loop in individual cells. Nat. Genet. 2004, 36, 147–150. [CrossRef]

70. Izeddin, I.; Récamier, V.; Bosanac, L.; Cissé, I.I.; Boudarene, L.; Dugast-Darzacq, C.; Proux, F.; Bénichou, O.;
Voituriez, R.; Bensaude, O.; et al. Single-molecule tracking in live cells reveals distinct target-search strategies
of transcription factors in the nucleus. ELife 2014, 3. [CrossRef] [PubMed]

71. Suter, D.M.; Molina, N.; Gatfield, D.; Schneider, K.; Schibler, U.; Naef, F. Mammalian genes are transcribed
with widely different bursting kinetics. Science 2011, 332, 472–474. [CrossRef]

72. Keller, S.H.; Jena, S.G.; Yamazaki, Y.; Lim, B. Regulation of spatiotemporal limits of developmental gene
expression via enhancer grammar. Proc. Natl. Acad. Sci. USA 2020, 117, 15096–15103. [CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.1713960115
http://dx.doi.org/10.1111/1567-1364.12188
http://dx.doi.org/10.1016/j.cbpa.2019.05.031
http://dx.doi.org/10.1146/annurev-biochem-011520-105250
http://dx.doi.org/10.1016/j.tig.2020.01.003
http://www.ncbi.nlm.nih.gov/pubmed/32035656
http://dx.doi.org/10.1101/gr.139378.112
http://dx.doi.org/10.1101/gr.149096.112
http://dx.doi.org/10.1038/ng.2305
http://dx.doi.org/10.1101/gr.212316.116
http://dx.doi.org/10.1016/j.molcel.2018.09.009
http://www.ncbi.nlm.nih.gov/pubmed/30318444
http://dx.doi.org/10.1093/nar/gkw744
http://dx.doi.org/10.1126/science.1150559
http://www.ncbi.nlm.nih.gov/pubmed/18218898
http://dx.doi.org/10.15252/embj.2018100809
http://dx.doi.org/10.1016/j.molcel.2015.09.028
http://www.ncbi.nlm.nih.gov/pubmed/26549684
http://dx.doi.org/10.1016/j.celrep.2014.05.053
http://dx.doi.org/10.1016/j.molcel.2019.06.042
http://dx.doi.org/10.1126/science.1099962
http://www.ncbi.nlm.nih.gov/pubmed/15499023
http://dx.doi.org/10.1038/ng1293
http://dx.doi.org/10.7554/eLife.02230
http://www.ncbi.nlm.nih.gov/pubmed/24925319
http://dx.doi.org/10.1126/science.1198817
http://dx.doi.org/10.1073/pnas.1917040117
http://www.ncbi.nlm.nih.gov/pubmed/32541043


Int. J. Mol. Sci. 2020, 21, 8278 15 of 19

73. Ochiai, H.; Hayashi, T.; Umeda, M.; Yoshimura, M.; Harada, A.; Shimizu, Y.; Nakano, K.; Saitoh, N.; Liu, Z.;
Yamamoto, T.; et al. Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem
cells. Sci. Adv. 2020, 6, eaaz6699. [CrossRef] [PubMed]

74. Hoppe, C.; Bowles, J.R.; Minchington, T.G.; Sutcliffe, C.; Upadhyai, P.; Rattray, M.; Ashe, H.L. Modulation
of the promoter activation rate dictates the transcriptional response to graded BMP signaling levels in the
drosophila embryo. Dev. Cell 2020, 54, 727–741.e7. [CrossRef]

75. Bakker, R.; Mani, M.; Carthew, R.W. The Wg and Dpp morphogens regulate gene expression by modulating
the frequency of transcriptional bursts. Elife 2020, 9. [CrossRef]

76. Klemm, S.L.; Shipony, Z.; Greenleaf, W.J. Chromatin accessibility and the regulatory epigenome. Nat. Rev.
Genet. 2019, 20, 207–220. [CrossRef]

77. Nocetti, N.; Whitehouse, I. Nucleosome repositioning underlies dynamic gene expression. Genes Dev. 2016,
30, 660–672. [CrossRef]

78. Cosma, M.P.; Tanaka, T.; Nasmyth, K. Ordered recruitment of transcription and chromatin remodeling factors
to a cell cycle- and developmentally regulated promoter. Cell 1999, 97, 299–311. [CrossRef]

79. Govind, C.K.; Yoon, S.; Qiu, H.; Govind, S.; Hinnebusch, A.G. Simultaneous recruitment of coactivators by
Gcn4p stimulates multiple steps of transcription in vivo. Mol. Cell. Biol. 2005, 25, 5626–5638. [CrossRef]

80. Biggar, S.R.; Crabtree, G.R. Continuous and widespread roles for the Swi-Snf complex in transcription.
EMBO J. 1999, 18, 2254–2264. [CrossRef] [PubMed]

81. Rando, O.J.; Winston, F. Chromatin and transcription in yeast. Genetics 2012, 190, 351–387. [CrossRef]
82. Shen, C.H.; Leblanc, B.P.; Alfieri, J.A.; Clark, D.J. Remodeling of yeast CUP1 chromatin involves

activator-dependent repositioning of nucleosomes over the entire gene and flanking sequences. Mol. Cell.
Biol. 2001, 21, 534–547. [CrossRef]

83. Shen, C.H.; Clark, D.J. DNA sequence plays a major role in determining nucleosome positions in yeast CUP1
chromatin. J. Biol. Chem. 2001, 276, 35209–35216. [CrossRef]

84. Erkina, T.Y.; Zou, Y.; Freeling, S.; Vorobyev, V.I.; Erkine, A.M. Functional interplay between chromatin
remodeling complexes RSC, SWI/SNF and ISWI in regulation of yeast heat shock genes. Nucleic Acids Res.
2010, 38, 1441–1449. [CrossRef] [PubMed]

85. Mitra, D.; Parnell, E.J.; Landon, J.W.; Yu, Y.; Stillman, D.J. SWI/SNF binding to the HO promoter requires
histone acetylation and stimulates TATA-binding protein recruitment. Mol. Cell. Biol. 2006, 26, 4095–4110.
[CrossRef]

86. Sudarsanam, P.; Cao, Y.; Wu, L.; Laurent, B.C.; Winston, F. The nucleosome remodeling complex, Snf/Swi,
is required for the maintenance of transcription in vivo and is partially redundant with the histone
acetyltransferase, Gcn5. EMBO J. 1999, 18, 3101–3106. [CrossRef] [PubMed]

87. Barbaric, S.; Luckenbach, T.; Schmid, A.; Blaschke, D.; Hörz, W.; Korber, P. Redundancy of chromatin
remodeling pathways for the induction of the yeast PHO5 promoter in vivo. J. Biol. Chem. 2007, 282,
27610–27621. [CrossRef]

88. Proft, M.; Struhl, K. Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that
recruits SAGA and SWI/SNF in response to osmotic stress. Mol. Cell 2002, 9, 1307–1317. [CrossRef]

89. Lemieux, K.; Gaudreau, L. Targeting of Swi/Snf to the yeast GAL1 UAS G requires the Mediator, TAF IIs,
and RNA polymerase II. EMBO J. 2004, 23, 4040–4050. [CrossRef]

90. Rienzo, A.; Poveda-Huertes, D.; Aydin, S.; Buchler, N.E.; Pascual-Ahuir, A.; Proft, M. Different Mechanisms
Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast. Mol. Cell. Biol. 2015,
35, 3669–3683. [CrossRef]

91. Kundu, S.; Horn, P.J.; Peterson, C.L. SWI/SNF is required for transcriptional memory at the yeast GAL gene
cluster. Genes Dev. 2007, 21, 997–1004. [CrossRef]

92. Dhasarathy, A.; Kladde, M.P. Promoter occupancy is a major determinant of chromatin remodeling enzyme
requirements. Mol. Cell. Biol. 2005, 25, 2698–2707. [CrossRef] [PubMed]

93. Acar, M.; Becskei, A.; van Oudenaarden, A. Enhancement of cellular memory by reducing stochastic
transitions. Nature 2005, 435, 228–232. [CrossRef]

94. Vanacloig-Pedros, E.; Lozano-Pérez, C.; Alarcón, B.; Pascual-Ahuir, A.; Proft, M. Live-cell assays reveal
selectivity and sensitivity of the multidrug response in budding yeast. J. Biol. Chem. 2019, 294, 12933–12946.
[CrossRef]

http://dx.doi.org/10.1126/sciadv.aaz6699
http://www.ncbi.nlm.nih.gov/pubmed/32596448
http://dx.doi.org/10.1016/j.devcel.2020.07.007
http://dx.doi.org/10.7554/eLife.56076
http://dx.doi.org/10.1038/s41576-018-0089-8
http://dx.doi.org/10.1101/gad.274910.115
http://dx.doi.org/10.1016/S0092-8674(00)80740-0
http://dx.doi.org/10.1128/MCB.25.13.5626-5638.2005
http://dx.doi.org/10.1093/emboj/18.8.2254
http://www.ncbi.nlm.nih.gov/pubmed/10205178
http://dx.doi.org/10.1534/genetics.111.132266
http://dx.doi.org/10.1128/MCB.21.2.534-547.2001
http://dx.doi.org/10.1074/jbc.M104733200
http://dx.doi.org/10.1093/nar/gkp1130
http://www.ncbi.nlm.nih.gov/pubmed/20015969
http://dx.doi.org/10.1128/MCB.01849-05
http://dx.doi.org/10.1093/emboj/18.11.3101
http://www.ncbi.nlm.nih.gov/pubmed/10357821
http://dx.doi.org/10.1074/jbc.M700623200
http://dx.doi.org/10.1016/S1097-2765(02)00557-9
http://dx.doi.org/10.1038/sj.emboj.7600416
http://dx.doi.org/10.1128/MCB.00729-15
http://dx.doi.org/10.1101/gad.1506607
http://dx.doi.org/10.1128/MCB.25.7.2698-2707.2005
http://www.ncbi.nlm.nih.gov/pubmed/15767675
http://dx.doi.org/10.1038/nature03524
http://dx.doi.org/10.1074/jbc.RA119.009291


Int. J. Mol. Sci. 2020, 21, 8278 16 of 19

95. Thakur, J.K.; Arthanari, H.; Yang, F.; Pan, S.-J.; Fan, X.; Breger, J.; Frueh, D.P.; Gulshan, K.; Li, D.K.;
Mylonakis, E.; et al. A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature 2008,
452, 604–609. [CrossRef] [PubMed]

96. Hao, N.; Budnik, B.A.; Gunawardena, J.; O’Shea, E.K. Tunable signal processing through modular control of
transcription factor translocation. Science 2013, 339, 460–464. [CrossRef]

97. Hansen, A.S.; O’Shea, E.K. Encoding four gene expression programs in the activation dynamics of a single
transcription factor. Curr. Biol. 2016, 26, R269–R271. [CrossRef] [PubMed]

98. Hao, N.; O’Shea, E.K. Signal-dependent dynamics of transcription factor translocation controls gene
expression. Nat. Struct. Mol. Biol. 2011, 19, 31–39. [CrossRef]

99. Babazadeh, R.; Lahtvee, P.-J.; Adiels, C.B.; Goksör, M.; Nielsen, J.B.; Hohmann, S. The yeast osmostress
response is carbon source dependent. Sci. Rep. 2017, 7, 990. [CrossRef]

100. Vanacloig-Pedros, E.; Bets-Plasencia, C.; Pascual-Ahuir, A.; Proft, M. Coordinated gene regulation in the
initial phase of salt stress adaptation. J. Biol. Chem. 2015, 290, 10163–10175. [CrossRef]

101. Nikopoulou, C.; Parekh, S.; Tessarz, P. Ageing and sources of transcriptional heterogeneity. Biol. Chem. 2019,
400, 867–878. [CrossRef]

102. Feser, J.; Truong, D.; Das, C.; Carson, J.J.; Kieft, J.; Harkness, T.; Tyler, J.K. Elevated histone expression
promotes life span extension. Mol. Cell 2010, 39, 724–735. [CrossRef]

103. Hu, Z.; Chen, K.; Xia, Z.; Chavez, M.; Pal, S.; Seol, J.-H.; Chen, C.-C.; Li, W.; Tyler, J.K. Nucleosome loss leads
to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev. 2014, 28,
396–408. [CrossRef] [PubMed]

104. Sen, P.; Dang, W.; Donahue, G.; Dai, J.; Dorsey, J.; Cao, X.; Liu, W.; Cao, K.; Perry, R.; Lee, J.Y.; et al.
H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev. 2015, 29, 1362–1376.
[CrossRef]

105. Feser, J.; Tyler, J. Chromatin structure as a mediator of aging. FEBS Lett. 2011, 585, 2041–2048. [CrossRef]
106. Liu, P.; Song, R.; Elison, G.L.; Peng, W.; Acar, M. Noise reduction as an emergent property of single-cell aging.

Nat. Commun. 2017, 8, 680. [CrossRef]
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