25 research outputs found

    Switching Off Hysteresis in Perovskite Solar Cells by Fine‐Tuning Energy Levels of Extraction Layers

    Get PDF
    Lead halide perovskites often suffer from a strong hysteretic behavior on their j–V response in photovoltaic devices that has been correlated with slow ion migration. The electron extraction layer has frequently been pointed to as the main culprit for the observed hysteretic behavior. In this work three hole transport layers are studied with well‐defined highest occupied molecular orbital (HOMO) levels and interestingly the hysteretic behavior is markedly different. Here it is shown that an adequate energy level alignment between the HOMO level of the extraction layer and the valence band of the perovskite, not only suppresses the hysteresis, avoiding charge accumulation at the interfaces, but also degradation of the hole transport layer is reduced. Numerical simulation suggests that formation of an injection barrier at the organic/perovskite heterointerface could be one mechanism causing hysteresis. The suppression of such barriers may require novel design rules for interface materials. Overall, this work highlights that both external contacts need to be carefully optimized in order to obtain hysteresis‐free perovskite devices

    Ionic-to-electronic current amplification in hybrid perovskite solar cells: ionically gated transistor-interface circuit model explains hysteresis and impedance of mixed conducting devices

    Get PDF
    Mobile ions in hybrid perovskite semiconductors introduce a new degree of freedom to electronic devices suggesting applications beyond photovoltaics. An intuitive device model describing the interplay between ionic and electronic charge transfer is needed to unlock the full potential of the technology. We describe the perovskite-contact interfaces as transistors which couple ionic charge redistribution to energetic barriers controlling electronic injection and recombination. This reveals an amplification factor between the out of phase electronic current and the ionic current. Our findings suggest a strategy to design thin film electronic components with large, tuneable, capacitor-like and inductor-like characteristics. The resulting simple equivalent circuit model, which we verified with time-dependent drift-diffusion simulations of measured impedance spectra, allows a general description and interpretation of perovskite solar cell behaviour

    The Influence of Embedded Plasmonic Nanostructures on the Optical Absorption of Perovskite Solar Cells

    No full text
    The interaction of light with plasmonic nanostructures can induce electric field intensity either around or at the surface of the nanostructures. The enhanced intensity of the electric field can increase the probability of light absorption in the active layer of solar cells. The absorption edge of perovskite solar cells (PSCs), which is almost 800 nm, can be raised to higher wavelengths with the help of plasmonic nanostructures due to their perfect photovoltaic characteristics. We placed plasmonic nanoparticles (NPs) with different radii (20–60 nm) within the bulk of the perovskite solar cell and found that the Au nanoparticles with a radius of 60 nm increased the absorption of the cell by 20% compared to the bare one without Au nanoparticles. By increasing the radius of the nanoparticles, the total absorption of the cell will increase because of the scattering enhancement. The results reveal that the best case is the PSC with the NP radius of 60 nm

    Inductive Loop in the Impedance Response of Perovskite Solar Cells Explained by Surface Polarization Model

    No full text
    The analysis of perovskite solar cells by impedance spectroscopy has provided a rich variety of behaviors that demand adequate interpretation. Two main features have been reported: First, different impedance spectral arcs vary in combination; second, inductive loops and negative capacitance characteristics appear as an intrinsic property of the current configuration of perovskite solar cells. Here we adopt a previously developed surface polarization model based on the assumption of large electric and ionic charge accumulation at the external contact interface. Just from the equations of the model, the impedance spectroscopy response is calculated and explains the mentioned general features. The inductance element in the equivalent circuit is the result of the delay of the surface voltage and depends on the kinetic relaxation time. The model is therefore able to quantitatively describe exotic features of the perovskite solar cell and provides insight into the operation mechanisms of the device

    Surface Polarization Model for the Dynamic Hysteresis of Perovskite Solar Cells

    No full text
    The dynamic hysteresis of perovskite solar cells consists of the occurrence of significant deviations of the current density–voltage curve shapes depending on the specific conditions of measurement such as starting voltage, waiting time, scan rate, and other factors. Dynamic hysteresis is a serious impediment to stabilized and reliable measurement and operation of the perovskite solar cells. In this Letter, we formulate a model for the dynamic hysteresis based on the idea that the cell accumulates a huge quantity of surface electronic charge at forward bias that is released on voltage sweeping, causing extra current over the normal response. The charge shows a retarded dynamics due to the slow relaxation of the accompanying ionic charge, that produces variable shapes depending on scan rate or poling value and time. We show that the quantitative model provides a consistent description of experimental results and allows us to determine significant parameters of the perovskite solar cell for both the transient and steady-state performance

    Towards a universal approach for the analysis of impedance spectra of perovskite solar cells equivalent circuits and empirical analysis

    No full text
    \u3cp\u3eImpedance spectroscopy is a powerful electrochemical small-perturbation technique that provides dynamic electrical data in solar cells. This technique has been widely used to characterize dye-sensitized solar cells and perovskite solar cells (PSCs). Physical parameters are normally obtained by fitting to an equivalent circuit, composed of electrical elements which theoretically correspond to physical processes involved in the photoconversion process. A variety of equivalent circuits to model the impedance spectra of PSCs are commonly used by different research groups. In this work, we evaluate their performance and adequacy. We demonstrate the analytical and numerical equivalence of impedance expressions for Voight, matryoshka, and hybrid circuits, which are used to fit a typical impedance spectrum of a PSC and compare the resulting parameters to the empirical values obtained without any equivalent circuit. The numerical equivalence can be demonstrated by using two- and three-component impedance spectra. In contrast, Maxwell-type equivalent circuits reveal parameters that have a more complex relation to empirical values. The presence of inductive effects such as “loops” and “negative tails” in impedance spectra are also discussed in terms of negative values of resistances and capacitances. We propose a general protocol to analyze impedance data of PSCs and to extract useful information from them.\u3c/p\u3
    corecore