817 research outputs found

    The Validity of Locus of Control Dimensions for Chicano Populations

    Get PDF
    The multidimensional locus of control literature supported the tenability of five factorial dimensions: a) luck; fate, b) leadership/success, c) academics, d) politics, and e) respect. Contending that the contradictory locus ofcontrol findings involving Chicano populations may be due to methodological inadequacies, the purpose ofthe present study was to empirically determine theappropriatenessof the five categories for comparing Chicano and Anglo populations. This was done by factor analyzing the responses of 203 Anglo and 244 Chicano undergraduates to Rotter's (1966) I-E scale separately, and then comparing the corresponding factor pairs by using Cliffs (1966) congruence procedure. The luck/fate and leadership/success factors show substantial invariance across the two samples, whereas the cultural equivalence ofthe remaining three factors is somewhat questionable. The findings are discussed in relation to current knowledge of crosscultural differences between Anglo and Chicano populations

    Correspondence between Electro-Magnetic Field and other Dark Energies in Non-linear Electrodynamics

    Full text link
    In this work, we have considered the flat FRW model of the universe filled with electro-magnetic field. First, the Maxwell's electro-magnetic field in linear form has been discussed and after that the modified Lagrangian in non-linear form for accelerated universe has been considered. The corresponding energy density and pressure for non-linear electro-magnetic field have been calculated. We have found the condition such that the electro-magnetic field generates dark energy. The correspondence between the electro-magnetic field and the other dark energy candidates namely tachyonic field, DBI-essence, Chaplygin gas, hessence dark energy, k-essenece and dilaton dark energy have been investigated. We have also reconstructed the potential functions and the scalar fields in this scenario.Comment: 11 pages, 7 figure

    The Rotation Of The Deep Solar Layers

    Full text link
    From the analysis of low-order GOLF+MDI sectoral modes and LOWL data (l > 3), we derive the solar radial rotation profile assuming no latitudinal dependance in the solar core. These low-order acoustic modes contain the most statistically significant information about rotation of the deepest solar layers and should be least influenced by internal variability associated with the solar dynamo. After correction of the sectoral splittings for their contamination by the rotation of the higher latitudes, we obtain a flat rotation profile down to 0.2 solar radius.Comment: accepted in ApJ Letters 5 pages, 2 figure

    Wavepacket basis for time-dependent processes and its application to relaxation in resonant electronic transport

    Full text link
    Stroboscopic wavepacket basis sets [P. Bokes, F. Corsetti, R. W. Godby, Phys. Rev. Lett. 101, 046402 (2008)] are specifically tailored for a description of time-dependent processes in extended systems like non-periodic geometries of various contacts consisting of solids and molecules. The explanation of the construction of such a basis for two simple finite systems is followed by a review of the general theory for extended systems with continuous spectrum. The latter is further elaborated with the introduction of the interaction representation which takes the full advantage of the time-dynamics built into the basis. The formalism is applied to a semi-analytical example of electronic transport through resonant tunnelling barrier in 1D. Through the time-dependent generalisation of the Landauer formula given in terms of the Fourier expansion of the transmission amplitude we analyze the temporal character of the onset of the steady-state. Various time-scales in this process are shown to be directly related to the energetic structure of the resonant barrier

    Public debates driven by incomplete scientific data: the cases of evolution theory, global warming and H1N1 pandemic influenza

    Full text link
    Public debates driven by incomplete scientific data where nobody can claim absolute certainty, due to current state of scientific knowledge, are studied. The cases of evolution theory, global warming and H1N1 pandemic influenza are investigated. The first two are of controversial impact while the third is more neutral and resolved. To adopt a cautious balanced attitude based on clear but inconclusive data appears to be a lose-out strategy. In contrast overstating arguments with wrong claims which cannot be scientifically refuted appear to be necessary but not sufficient to eventually win a public debate. The underlying key mechanism of these puzzling and unfortunate conclusions are identified using the Galam sequential probabilistic model of opinion dynamics. It reveals that the existence of inflexible agents and their respective proportions are the instrumental parameters to determine the faith of incomplete scientific data public debates. Acting on one's own inflexible proportion modifies the topology of the flow diagram, which in turn can make irrelevant initial supports. On the contrary focusing on open-minded agents may be useless given some topologies. When the evidence is not as strong as claimed, the inflexibles rather than the data are found to drive the opinion of the population. The results shed a new but disturbing light on designing adequate strategies to win a public debate.Comment: 31 pages, 7 figure

    Critical points in a relativistic bosonic gas induced by the quantum structure of spacetime

    Full text link
    It is well known that phase transitions arise if the interaction among particles embodies an attractive as well as a repulsive contribution. In this work it will be shown that the breakdown of Lorentz symmetry, characterized through a deformation in the relation dispersion, plus the bosonic statistics predict the emergence of critical points. In other words, in some quantum gravity models the structure of spacetime implies the emergence of critical points even when no interaction among the particle has been considered.Comment: 5 pages, no figure

    Electron wave functions on T2T^2 in a static magnetic field of arbitrary direction

    Full text link
    A basis set expansion is performed to find the eigenvalues and wave functions for an electron on a toroidal surface T2T^2 subject to a constant magnetic field in an arbitrary direction. The evolution of several low-lying states as a function of field strength and field orientation is reported, and a procedure to extend the results to include two-body Coulomb matrix elements on T2T^2 is presented.Comment: 18 pages, 6 figure

    Designing multifunctional chemical sensors using Ni and Cu doped carbon nanotubes

    Get PDF
    We demonstrate a "bottom up" approach to the computational design of a multifunctional chemical sensor. General techniques are employed for describing the adsorption coverage and resistance properties of the sensor based on density functional theory (DFT) and non-equilibrium Green's function methodologies (NEGF), respectively. Specifically, we show how Ni and Cu doped metallic (6,6) single-walled carbon nanotubes (SWNTs) may work as effective multifunctional sensors for both CO and NH3.Comment: 24th International Winterschool on Electronic Properties of Novel Material
    • …
    corecore