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Chapter 1

Motivation

The year 2006 is declared as the year of computer and information science (Jahr
der Informatik [64]). It is part of the series ‘year of science’ that focuses on the
dialog between science and society. The selection of the current year reflects the
importance of computer and information technology for our society as well as the
global economy. Furthermore, it is long suspected that we already live in or are
heading towards an information society, in which the creation, distribution and
manipulation of information is a significant economic and cultural activity ([105]).
Approval facts are the expanding industrial sector of services and consulting or
the availability and use of digital and Internet services such as online banking or
shopping. Although an information society is not necessarily related to the Internet
or a digital world, the corresponding aspects contribute heavily.

Especially the availability of digitized data or Internet services influences our per-
sonal activities. Public wireless networks and broadband Internet access like Digital
Subscriber Lines (DSLs) have become a common means of communication. In Ger-
many, for example, every fourth household possesses such a connection [60] and
the current market situations indicate that this number is going to increase. Many
providers cut their prices or offer combinations of telephone and Internet access.
Although this availability of information provides an improved foundation for our
decision-making processes, the relation between the associated data become more
complex. As an example, consider the problem of finding a new book to read. Usu-
ally, one considers the top-seller list or recommendations of friends and colleagues.
If this fails, due to the fact that all suggested books are already read, then a quick
search in one of the (online) book shops could help. However, the sheer quantity
of books make it impossible to manually scan them. In such a case automatic pro-
cessing and reduction of the complexity can help to find a suitable answer. For
our book example, at least one of the online shops (Amazon [5]) implemented such
a recommendation system that provides for each offered product a short list of
other products that could match the buyer’s interest. Overall, the advantage of this
technique is that the construction process for the recommendations includes a large
quantity of information, while the output presents only relevant parts in a condensed
form.

Many applications in the field such as project planning, transportation manage-
ment, text analysis, bio-informatics, communication networks, epidemiology, and
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social network analysis require the analysis and evaluation of networks or network-
like data which usually consist of a set of objects and an associated binary relation.
Most of these fields independently developed their methodology and share only a
small formal foundation. In addition, many methods are specifically designed for
applications or have been re-invented several times. Unfortunately, a unified frame-
work has not yet emerged and the construction of such a one is clearly beyond the
scope of this thesis. Instead, we investigate various algorithmic aspects of cluster-
ings. More precisely, we seek a methodical approach to formulate, analyze, and
apply density-based clustering techniques for graphs. In the theoretical and ex-
perimental part of the thesis, we present several concepts for quality measuring,
comparing clusterings and generating graphs with significant clustering structure as
well as techniques for finding clusterings. The second part contains a case study of
applying such technique to a network taken from the real world. In more details,
this dissertation is structured as follows.

Structure

Chapter 2: Introduction to Clustering

A basic overview of clustering is presented. Beside the informal de-
scription of the underlying paradigm, i. e., intra-cluster density versus
inter-cluster sparsity, the notation and some preliminaries are stated.

Chapter 3: Quality Measures

We introduce a general framework for expressing quality measures
based on the paradigm of intra-cluster density versus inter-cluster
sparsity. The measures coverage, performance, intra-cluster conduc-
tance, inter-cluster conductance, and modularity are presented and
investigated in details.

Chapter 4: Comparison of Clusterings

A brief overview of comparison techniques for clusterings is presented.
In the first part of the chapter, we focus on lattice-based concepts
that have been established in literature, while in the second part,
extensions and new techniques incorporating the graph structure more
deeply are introduced.

Chapter 5: Clustering Methods

Concepts of clustering methods and their realization is the target of
this chapter. In the first part, we state the abstract definition of var-
ious concepts such as greedy and shifting techniques as well as ideas
from general optimization. The second part contains several realiza-
tions of these concepts, including general remarks about their applica-
bility. In the final part, we present a selection of several implemented
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algorithms that were considered in our study of quality assessment of
algorithms.

Chapter 6: Experimental Evaluation

We describe our benchmark suit for systematically and methodically
evaluating various clustering concepts such as quality measures, com-
parators, generators, and algorithms based experimental observation.
Concepts for generating graphs with a known (significant) clustering
structure are introduced and potential pit falls are discussed as well
as interdependencies with the techniques to test. The main part of
the chapter contains the experiments, results, and gained insights of
our performed experiments.

Chapter 7: Variations of Clustering

Partition-based clustering covers a large fraction of cluster analysis.
In this chapter, we give a brief overview of several extensions such
as dynamic problems and alternative data structures. More precisely,
we model the update problem, where a given clustering has to be
updated when the underlying graph changes as well as a sequential
problem, where a series of graphs is given and we are interested in the
stable groups over time. As structural extensions we state fuzzy and
hierarchical extensions.

Chapter 8: Case Study: Autonomous Systems

We perform a case study of the network of the Autonomous Systems
which is an abstract view of the physical Internet. The aspects of data
reduction and filtering irrelevant information are initially considered.
Furthermore, clustering is used to investigate short- and long-term
behavior of the network as well as to extract information about base-
lines. Clustering also contributed significantly to the development of
the presented visualization technique that highlights structural prop-
erties in a unique way. The final part of the case study consists of the
analysis of an embedded applications, i. e., the file-sharing application
Gnutella which creates a network on top of the Internet; although
communication takes place in this created network, the traffic flows
through the Internet. Thus, the corresponding analysis must consider
the interplay of both networks. We introduce a novel technique that
utilizes the prior presented visualization technique.

Chapter 9: Landscape Like Visualization Techniques

The visualization technique that we developed during the case study of
the network of Autonomous Systems is further refined in this chapter.
We discuss several potential extensions to derive a general visualiza-
tion technique for arbitrary nested decompositions.
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Chapter 10: Conclusion

The thesis is concluded with a summary of the presented results and
a brief outlook.

Parts of this work has been published in [24, 13, 49, 3, 14, 47, 50, 4, 20, 21, 32, 33,
48, 34, 23].



Part I.

Theory and Experimental Evaluation





Chapter 2

Preliminaries

Clustering is a synonym for the decomposition of a set of entities into ‘natural
groups’. There are two major aspects to this task: the first involves algorithmic
issues on the identification of such decompositions such as tractability, while the
second concerns the evaluation, i. e., the quality of a clustering or the comparison
between clusterings. Owing to the informal notion of natural groups, many differ-
ent disciplines have developed their view of clustering independently. Originally,
clustering was introduced to the data mining research as the unsupervised classifi-
cation of patterns into groups [65]. Since that time a comprehensive framework has
slowly started to evolve. In the following, the simple yet fundamental paradigm of
intra-cluster density versus inter-cluster sparsity will be discussed exclusively. This
restriction is necessary in order to provide some insight into clustering theory, and
to keep the scope of the thesis. However, many other interpretations of natural
decomposition extend this framework, or are relatively similar. Another specialty
is that the input data is represented as networks that are not complete in general.
In the classic clustering theory, entities were embedded in metric spaces, and the
distance between them was related to their similarity. Thus, all pairwise similarities
were known at the beginning. In standard network analysis, the input networks are
usually sparse. Even if they are not, it is very unlikely that they are complete. This
will be the motivation for studying clustering methods that deal with network input
data.

Clustering, based either on the simple paradigm of intra-cluster density versus
inter-cluster sparsity or on other more sophisticated formulations, focuses on disjoint
cliques as the ideal situation. In some instances the desired cases are totally different.
An overview of models, where clusters and their connection between each other can
have more complex roles, or traditional blockmodels can be found in [22, Ch. 9,10].

The popularity of density-based clustering is due to its similarity to the human
perception. Most things in our daily life are naturally grouped into categories. For
example books are classified with respect to their content, e. g., scientific, fiction,
guidebooks, law, etc. Each topic can be refined, e. g., scientific publications can be
grouped according to their scientific discipline. The relationship of elements within
the same group is strong, whereas elements in different groups typically have a weak
relation. Most approaches that deal with information processing are based upon this
fact. For example finding a book with a certain content. First, related topics are
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selected and only those books that belong to these groups are examined closer. The
recursive structure of topics and subtopics suggests a repeated application of this
technique. Using the clustering information on the data set, one can design methods
that explore and navigate within the data with a minimum of human interaction.
Therefore, it is a fundamental aspect of automatic information processing

2.1. Notation

We will use the notation of [47], however restrict ourselves to the undirected cases,
more precisely: Let G = (V, E) be an undirected graph, then a clustering C =
{C1, . . . , Ck} of G is a partition of the node set V into non-empty subsets Ci. The
set E(Ci, Cj) is the set of all edges that have their origin in Ci and their destination

in Cj; E(Ci) is a short-hand for E(Ci, Ci). Then E(C) :=
⋃k

i=1 E(Ci) is the set

of intra-cluster edges and E(C) := E \ E(C) the set of inter-cluster edges . The
number of intra-cluster edges is denoted by m (C) and the number of inter-cluster
edges by m (C). In the following, we often identify a cluster Ci with the induced
subgraph of G, i. e., the graph G[Ci] := (Ci, E(Ci)). A clustering is called trivial if
either k = 1 (1-clustering) or k = |V | (singletons). A clustering with k = 2 is also
called a cut .

The set of all possible clusterings is denoted by A (G). The set A (G) is par-
tially ordered with respect to inclusion. Given two clusterings C1 := {C1, . . . , Ck}
and C2 := {C ′

1, . . . , C
′
`}, the partial ordering is defined in Equation (2.1).

C1 ≤ C2 : ⇐⇒ ∀ 1 ≤ i ≤ k : ∃ j ∈ {1, . . . , `} : Ci ⊆ C ′
j (2.1)

Clustering C1 is called a refinement of C2, and C2 is called a coarsening of C1. The
common refinement of C1 and C2 is defined as

C1 ∧ C2 :=
{
C | ∃ 1 ≤ i ≤ k, 1 ≤ j ≤ ` : C = Ci ∩ C ′

j 6= ∅
}

(2.2)

The associated (k×`)-confusion matrix M = (mij) is defined by mij :=
∣∣Ci ∩ C ′

j

∣∣. A
chain of clusterings, i. e., a subset of clusterings such that every pair is comparable,
is also called a hierarchy . The hierarchy is called total if both trivial clusterings
are contained. A hierarchy that contains exactly one clustering of k clusters for
every k ∈ {1, . . . , n} is called complete. It is easy to see that such a hierarchy has n
clusterings and that no two of these clusterings have the same number of clusters.

Given a weighted graph G = (V, E, ω) and a clustering C = {C1, . . . , Ck}, we
define an abstracted version of G as weighted graph

GC := ({1, . . . , k} , {{i, j} | ∃ {u, v} ∈ E : u ∈ Ci ∧ v ∈ Cj} , ωC),

where ωC({i, j}) :=
∑

e∈E(Ci,Cj)
ω(e). This graph is obtained from the input graph G

by shrinking each cluster into a single node and replacing parallel edges.

Besides viewing a clustering as a partition, it can also be seen as an equivalence
relation ∼C on V ×V , where u ∼C v if u and v belong to the same cluster in C. Note
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that the edge set E is also a relation over V × V , and it is an equivalence relation
if and only if the graph consists of the union of disjoint cliques.

The power set of a set X is the set of all possible subsets, and is denoted by P (X).
A cut function S : P (V )→ P (V ) maps a set of nodes to a subset of itself, i. e.,

∀ V ′ ⊆ V : S(V ′) ⊆ V ′ . (2.3)

Cut functions formalize the idea of cutting a node-induced subgraph into two parts.
For a given node subset V ′ of V the cut function S defines a cut by (S(V ′), V ′\S(V ′)).
In order to exclude trivial functions, we require a cut function to assign a non-
empty proper subset whenever possible. Proper cut functions in addition fulfill the
condition (2.4).

∀ V ′ ⊆ V : |V ′| > 1 =⇒ ∅ 6= S(V ′) ⊂ V ′ . (2.4)

These functions are important for clustering techniques that are based on recursive
cutting.
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Chapter 3

Quality Measures

As was pointed out in the introduction (Chapter 2), clustering techniques are used
to find groups that are internally dense and that are sparsely connected with each
other. Although this paradigm of intra-cluster density versus inter-cluster sparsity
is more precise than the term ‘natural groups’, it is still based on our intuition
and not on a formal quantification. One way to mathematically express it is by
structural indices. These are mappings that assign a non-negative real number to
each clustering. Often their range is normalized to the unit interval, where one
means best possible structural behavior and zero means worst possible structural
behavior. Thus, these indices provide a quantitative means to formalize the notion
of clustering and to qualitatively evaluate them. More detail on the evaluation of
clusterings are given in Chapter 6. In the following a general framework for indices
is presented along the lines of [47]. Most of the existing measures can be expressed
within it.

Let G = (V, E, ω) be a simple, weighted and undirected graph, where ω : E → R+
0

represents the strength of the similarity relation modeled by the edges, and let C =
{C1, . . . , Ck} be a clustering of G. Although some applications require negative
similarity scores, e. g., for simultaneously expressing similarities and dissimilarities,
we will only consider non-negative similarity for the framework. Some extensions are
given in Chapter 7. For the unweighted case, the weighting function ω is assumed to
be constantly one. In many cases ω will be a mapping to R+, however, in some cases
it is useful to distinguish between edges with weight zero and those node pairs that
are not connected by an edge. We will also use the following short-cut for summing
up the weight of an edge subset:

ω(E ′) :=
∑
e∈E′

ω(e) for E ′ ⊆ E .

For simplicity, we assume that ω(E) 6= 0.

3.1. General Framework

Before defining the actual indices, their framework is presented. The indices will be
composed of two independent functions f, g : A (G) → R+

0 , where f measures the
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density inside the clusters and g the sparsity between clusters. The functions are
combined in the following way:

index (C) :=
f (C) + g (C)

max{f (C ′) + g (C ′) : C ′ ∈ A (G)}
(3.1)

In order to guarantee the well-definition of Equation (3.1), we assume that there is
at least one clustering C ′ such that f (C ′) + g (C ′) is not zero. If not then index (C)
is defined as zero. For some indices either f or g is constantly zero. These indices
examine only the (internal) density or the (external) sparsity.

Indices serve two different purposes simultaneously: first and foremost, they rate a
partition with respect to clustering paradigms, and, second, they compare clusterings
regarding quality. Before we explain both aspects in detail, please note that, while
our indices have these properties, there exist other measures that realize only one
aspect.

The quality of a partition as a clustering is expressed in quantitative terms, i. e., an
index (discretely) counts certain substructures like intra-cluster edges, triangles, or
cliques. These structural elements are related to clustering properties. Many intra-
cluster edges, triangles, or cliques inside the clusters indicate a large intra-cluster
density. In an analogous way the lack of these elements between clusters imply the
inter-cluster sparsity. Thus, the quality of clustering is reduced to a quantitative
aspect. Intuitively, there will always be a maximum number of these indicators. The
number of intra-cluster edges, triangles, or cliques is limited by the size of clusters.
In the ideal case the bounds are met. Thus, if an index counts only half of these
witnesses, then the clustering is only half as good as possible. As we will see, these
bounds are not tight for all indices and all input graphs. Thus, most of them are
‘absolute’ in the sense that they do not depend on the input graph, but rather on
the clustering paradigms. In conclusion, the actual range of indices provides useful
information.

Because of this absolute, quantitative structure of our indices, they can be used
to compare clusterings regardless of whether the underlying graph is the same or
not. Different graphs can have different bounds for the number of substructures,
but the indices rate the quality relative to the individual bounds. For example, in
a graph with 10 nodes and 15 edges a clustering could have 12 intra-cluster edges,
and in another graph with 18 nodes and 30 edges another clustering could have
27 intra-cluster edges. Although we have three inter-cluster edges in both cases,
the second clustering would be better since 27/30 = 9/10 > 4/5 = 12/15. This
property is required when algorithms are evaluated with random instances, or the
data of the input network is not reliable, i. e., different data collections result into
different networks. The clustering methods could be applied to all networks, and
the clustering with the best score would be chosen. However, if the index uses
characteristics of the input graph, like the number of edges, maximum weight, etc.,
then this comparison can only be done when the underlying graph is the same for all
clusterings. Therefore, indices that depend on the input graph are not appropriate
for all applications, such as benchmarks. Although this dependency will seldom
occur, one has to consider these facts when designing new indices.
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3.2. Coverage

The coverage cov (C) measures the weight of intra-cluster edges, compared to the
weight of all edges. Thus f (C) = ω(E(C)) and g ≡ 0. The maximum value is
achieved for the 1-clustering. Equation (3.2) shows the complete formula.

cov (C) :=
ω(E(C))

ω(E)
=

∑
e∈E(C) ω(e)∑

e∈E ω(e)
(3.2)

Coverage measures only the accumulated density within the clusters. Therefore, an
individual cluster can be sparse or the number of inter-cluster edges can be large.
This is illustrated in Figure 3.1. Coverage is also the probability of randomly select-

(a) intuitive clustering (b) non-trivial clustering with best coverage

Figure 3.1.: A situation where coverage splits an intuitive cluster. The thickness of
an edge corresponds to its weight. If normal edges have weight one and
bold edges weight 100, then the intuitive clustering has cov = 159/209 ≈
0.76 while the optimal value for coverage is 413/418 ≈ 0.99

ing an intra-cluster edge (where the probability of selection an edge is proportional
to its weight, i. e., Pr[e] ∼ ω(e)). The structure of clusterings with optimal coverage
value is related to the connectivity structure of the graph. A clustering is compatible
with the connectivity structure if clusters consist only of unions of connected com-
ponents of the graph. Proposition 3.1 gives a characterization of clusterings with
optimal coverage value.

Proposition 3.1. A clustering has cov = 1 if and only if either the set of inter-
cluster edges is empty or all inter-cluster edges have weight zero. Especially, clus-
terings that are compatible with the connectivity structure have coverage value 1.

Sketch of Proof. The edge set is disjointly partitioned into intra-cluster edges and
inter-cluster edges, therefore Equation (3.3) holds for any clustering C.

ω(E) = ω(E(C)) + ω(E(C)) (3.3)

Thus, coverage cov (C) = 1 holds if and only if ω(E(C)) = 0.
Because clusterings that are compatible with the connectivity structure of the

graph have no inter-cluster edge, one can use the equivalence to prove the proposi-
tion.
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A conclusion of Proposition 3.1 is that the 1-clustering always has a coverage
value 1. The case of disconnected input graphs is rather special and most techniques
even assume that it is connected. Proposition 3.1 can be extended to characterize
non-trivial clusterings that are optimal with respect to coverage. A further char-
acterization of non-trivial clusterings that are optimal when trivial clusterings are
excluded is possible and given in Proposition 3.2.

Proposition 3.2. Let G = (V, E) be a connected graph where every cut has positive
weight. Then the clusterings that have more than one cluster and have optimal
coverage value are those that are induced by a minimum cut.

Proof. First, it is obvious that every clustering C with k > 1 can be transformed into
a clustering C ′ with less than k clusters, with cov (C) ≤ cov (C ′). This is achieved by
merging any two clusters. Therefore, a non-trivial clustering with optimal coverage
has two clusters, and thus is a cut. Second, maximizing coverage is equivalent to
minimizing the weight of the inter-cluster edges, and the edges that are contained
in the cut have minimum weight. That completes the proof.

Because of the properties described in Propositions 3.1 and 3.2, coverage is rarely
used as the only quality measurement of a clustering. Minimum cuts often cannot
catch the intuition, and separate only a very small portion of the graph. However,
there are a few exceptions [58], where both, the input graph and good clusterings,
have a very special structure. In the next section, we will investigate an alternative
cut measure that considers cut size as well as the balance of the two components.

3.3. Conductance Cut Measures

In contrast to coverage, which measures only the accumulated edge weight within
clusters, one can consider further structural properties like connectivity. Intuitively,
a cluster should be well connected, i. e., many edges need to be removed to bi-
sect it. Two clusters should also have a small degree of connectivity between each
other. In the ideal case, they are already disconnected. Cuts are a useful method to
measure connectivity. The standard minimum cut has certain disadvantages (Propo-
sition 3.2), therefore an alternative cut measure will be considered: conductance. It
compares the weight of the cut with the edge weight in either of the two induced
subgraphs. Informally speaking, the conductance is a measure for bottlenecks. A
cut is a bottleneck, if it separates two parts of roughly the same size with relatively
few edges.

Definition 3.3. Let C ′ = (C ′
1, C

′
2) be a cut, i. e., (C ′

2 = V \C ′
1) then the conductance-

weight a(C ′
1) of a cut side and the conductance φ(C ′) are defined in Equations (3.4)

and (3.5).
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a(C ′
1) :=

∑
(u,v)∈E(C′

1,V )

ω((u, v)) (3.4)

φ(C ′) :=


1, if C ′

1 ∈ {∅, V }
0, if C ′

1 6∈ {∅, V }, ω(E(C)) = 0

ω(E(C))
min(a(C ′

1), a(C ′
2))

, otherwise

(3.5)

The conductance of the graph G is defined by

φ(G) = min
C1⊆V

φ((C1, V \ C1)) . (3.6)

Note that the case differentiation in Equation (3.5) is only necessary in order
to prevent divisions by zero. Before presenting further general information about
conductance, graphs with maximum conductance are characterized.

Lemma 3.4. Let G = (V, E, ω) be an undirected and positively weighted graph.
Then G has maximum conductance, i. e., φ(G) = 1 if and only if G is connected
and has at most three nodes, or is a star.

Proof. Before the equivalence is shown, two short observations are stated:

1. All disconnected graphs have conductance 0 because there is a non-trivial cut
that has zero weight and the second condition of the Formula (3.5) holds.

2. For a non-trivial cut C ′ = (C ′
1, V \ C ′

1) the conductance-weight a(C ′
1) can be

rewritten as

a(C ′
1) =

∑
e∈E(C′

1,V )

ω(e) = ω(E(C ′
1)) + ω(E(C))

in undirected graphs. Thus, the third condition in Formula (3.5) can be sim-
plified to

ω(E(C))

min
(
a(C ′

1), a(V \ C ′
1)
) =

ω(E(C))

ω(E(C)) + min
(
ω(E(C ′

1)), ω(E(V \ C ′
1))
) .

(3.7)

‘⇐=’: If G has one node, then the first condition of Formula (3.5) holds and
thus φ(G) = 1.

If G has two or three nodes or is a star, then every non-trivial cut C ′ =
(C ′

1, V \ C ′
1) isolates an independent set, i. e., E(C ′

1) = ∅. This is achieved
by setting C ′

1 to the smaller cut set if G has at most three nodes and to
the cut set that does not contain the center node if G is a star. There-
fore ω(E(C ′

1)) = 0 and Equation (3.7) implies φ(C ′) = 1. Because all non-
trivial cuts have conductance 1, the graph G has conductance 1 as well.
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‘=⇒’: If G has conductance one, then G is connected (observation 1) and for every
non-trivial cut C ′ = (C ′

1, V \ C ′
1) at least one edge set E(C ′

1) or E(V \ C ′
1)

has 0 weight (observation 2). Because ω has only positive weight, at least
one of these sets has to be empty.

It is obvious that connected graphs with at most three nodes fulfill these
requirements, therefore assume that G has at least four nodes. The graph
has a diameter of at most two because otherwise there is a path of length
three with four pairwise distinct nodes v1, . . . , v4, where ei := {vi, vi+1} ∈ E
for 1 ≤ i ≤ 3. Then the non-trivial cut C ′ = ({v1, v2}, V \ {v1, v2}) cannot
have conductance 1, because first the inequality ω(E(C ′)) ≥ ω(e2) ≥ 0 im-
plies the third condition of Formula (3.5) and second both cut sides are non-
empty (e1 ∈ E({v1, v2}) and e3 ∈ E(V \ {v1, v2})). By the same argument,
G cannot contain a simple cycle of length four or greater. It also cannot
have a simple cycle of length three. Assume G has such a cycle v1, v2, v3.
Then there is another node v4 that is not contained in the cycle but in the
neighborhood of at least one vi. Without loss of generality i = 1. Thus, the
non-trivial cut ({v1, v4}, V \ {v1, v4}) is a counterexample. Thus G cannot
contain any cycle and is therefore a tree. The only trees with at least four
nodes, and a diameter of at most two, are stars.

It is NP-hard to calculate the conductance of a graph [7]. Fortunately, it can
be approximated with a guarantee of O (log n) [101] and O

(√
log n

)
[6]. For some

special graph classes, these algorithms have constant approximation factors. Several
of the involved ideas are found in the theory of Markov chains and random walks.
There, conductance models the probability that a random walk gets ‘stuck’ inside a
non-empty part. It is also used to estimate bounds on the rate of convergence. This
notion of ‘getting stuck’ is an alternative description of bottlenecks. One of these
approximation ideas is related to spectral properties. Lemma 3.5 indicates the use
of eigenvalues as bounds.

Lemma 3.5 ([95, Lemma 2.6]). For an ergodic1 reversible Markov
chain with underlying graph G, the second (largest) eigenvalue λ2 of the transition
matrix satisfies:

λ2 ≥ 1− 2 · φ(G) . (3.8)

A proof of that can be found in [95, p. 53]. Conductance is also related to isoperi-
metric problems as well as expanders, which are both related to similar spectral
properties themselves.

For unweighted graphs the conductance of the complete graph is often a useful
boundary. It is possible to calculate its exact conductance value. Proposition 3.6
states the result. Although the formula is different for even and odd number of
nodes, it shows that the conductance of complete graphs is asymptotically 1/2.

1Aperiodic and every state can be reached an arbitrary number of times from all initial states.
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Proposition 3.6. Let n be an integer, then equation (3.9) holds.

φ(Kn) =

{
1
2
· n

n−1
, if n is even

1
2

+ 1
n−1

, if n is odd
(3.9)

Proof. Evaluating Equation (3.5) in Definition 3.3 with G = Kn leads to

φ(Kn) = min
C⊂V,1≤|C|<n

|C| · (n− |C|)
min(|C|(|C| − 1), (n− |C|)(n− |C| − 1))

. (3.10)

Node subsets of size k of a complete graph are pairwise isomorphic, therefore only
the size of the subset C matters. Thus, Equation (3.10) can be simplified to

φ(Kn) = min
1≤k<n

k(n− k)

min(k2 − k, n2 − 2nk − n− k)
. (3.11)

The fraction in Equation (3.11) is symmetric, thus it is sufficient if k varies in
the range from 1 to dn/2e. Using the fact that the fraction is also monotonic
decreasing with increasing k, the minimum is assumed for k = bn/2c. A simple case
differentiation for even and odd ks leads to the final Equation (3.9).

In the following, two clustering indices are derived with the help of conductance.
These will be intra-cluster conductance and inter-cluster conductance that have been
introduced in [101] and [24], respectively. Both focus on one property only. The
first one measures internal density, while the second rates the connection between
clusters.

The intra-cluster conductance α is defined as the minimum conductance occurring
in the cluster-induced subgraphs G[Ci], i. e.,

f (C) = min
1≤i≤k

φ (G[Ci]) and g ≡ 0 . (3.12)

Note that G[Ci] in φ (G[Ci]) denotes a subgraph, and therefore is independent of
the rest of the original graph G. The conductance of a (sub)graph is small if it
can naturally be bisected, and great otherwise. Thus, in a clustering with small
intra-cluster conductance there is supposed to be at least one cluster containing a
bottleneck, i. e., the clustering is possibly too coarse in this case. The minimum
conductance cut itself can also be used as a guideline to split the cluster further.
The inter-cluster conductance δ considers the cuts induced by clusters, i. e.,

f ≡ 0 and g =

{
1, if C = {V }
1− max

1≤i≤k
φ ((Ci, V \ Ci)) , otherwise

. (3.13)

Note that (Ci, V \ Ci) in φ ((Ci, V \ Ci)) denotes a cut within the graph G. A
clustering with small inter-cluster conductance is supposed to contain at least one
cluster that has relatively strong connections outside, i. e., the clustering is possibly
too fine. In contrast to the intra-cluster conductance, one cannot directly use the
induced cut information to merge two clusters.
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For both indices the maximum of f + g is one, which leads to the final formula:

α (C) := min
1≤i≤k

φ (G[Ci]) (3.14)

δ (C) :=

{
1, if C = {V }
1− max

1≤i≤k
φ ((Ci, V \ Ci)) , otherwise

(3.15)

Again a characterization of optimum clusterings is possible.

Proposition 3.7. Only clusterings where the clusters consist of connected subgraphs
that are stars or have size of at most three, have maximum intra-cluster conductance
of 1.

Proposition 3.8. Only clusterings that have an inter-cluster edge weight of zero,
including the 1-clustering, have maximum inter-cluster conductance of 1.

Both Proposition 3.7 and 3.8 are immediate consequences of the Definition 3.3 and
Lemma 3.4. Both measures, intra-cluster conductance and inter-cluster conduc-

(a) intuitive clustering

(b) non-trivial clustering with best intra-cluster
conductance

(c) non-trivial clustering with best intra-cluster
conductance

Figure 3.2.: A situation where intra-cluster conductance splits intuitive clusters.
The intuitive clustering has α = 3/4, while the other two clusterings
have α = 1. The split in Figure 3.2(b) is only a refinement of the
intuitive clustering, while Figure 3.2(c) shows a clusterings with same
intra-cluster conductance value that is skew to the intuitive clustering

tance, have certain disadvantages. Two examples are shown in Figures 3.2 and 3.3.
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(a) intuitive clustering (b) non-trivial clustering with best inter-cluster
conductance

Figure 3.3.: A situation where two very similar clusterings have very different inter-
cluster conductance values. The intuitive clustering has δ = 0, while
the other has the optimum value of 8/9

Both examples explore the ‘artificial’ handling of small graphs considering their
conductance. In practical instances, intra-cluster conductance values are usually
below 1/2. Small clusters with few connections have relatively small inter-cluster
conductance values.

3.4. Performance

The next index combines two non-trivial functions for the density measure f and
the sparsity measure g. It simply counts certain pairs of nodes and was introduced
in [100]. According to the general intuition of intra-cluster density versus inter-
cluster sparsity, we define for a given clustering a ‘correct’ classified pair of nodes as
two nodes either belonging to the same cluster and being connected by an edge, or
belonging to different clusters and being not connected by an edge. The resulting
index is called performance. Its density function f counts the number of edges
within all clusters while its sparsity function g counts the number of nonexistent
edges between clusters, i. e.,

f (C) :=
k∑

i=1

|E(Ci)| and

g (C) :=
∑

u,v∈V

[(u, v) 6∈ E] · [u ∈ Ci, v ∈ Cj, i 6= j] .

(3.16)

The definition is given in Iverson Notation, first described in [63], and adapted by
Knuth in [73]. The term inside the parentheses can be any logical statement. If the
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statement is true the term evaluates to 1, otherwise the term is 0. The maximum
of f +g has n · (n−1)/2 as upper bound because this is the total number of different
pairs of nodes. Please recall that loops are not present and each pair contributes
with either zero or one. Calculating the maximum of f + g is NP-hard (see [93]),
therefore this bound is used instead of the real maximum. By using some duality
aspects, such as the number of intra-cluster edges and the number of inter-cluster
edges sum up to the whole number of edges, the formula of performance can be
simplified as shown in Equation (3.18).

perf (C) =
m (C) +

(
1
2
n(n− 1)− 1

2

∑k
i=1 |Ci|(|Ci| − 1)−m (C)

)
1
2
n(n− 1)

=
1
2
n(n− 1)−m + 2m (C)− 1

2

∑k
i=1 |Ci|(|Ci| − 1)

1
2
n(n− 1)

(3.17)

= 1−
m(1− 2m(C)

m
) + 1

2

∑k
i=1 |Ci|(|Ci| − 1)

1
2
n(n− 1)

. (3.18)

Note that the derivation from Equation (3.17) to (3.18) applies the equality m =
m (C) + m (C), and that m (C) /m is just the coverage cov (C) in the unweighted
case. Similarly to the other indices, performance has some disadvantages. Its main
drawback is the handling of very sparse graphs. Graphs of this type do not contain
subgraphs of arbitrary size and density. Thus, the gap between the number of
feasible edges (with respect to the structure) and the maximum number of edges
(regardless of the structure) is also huge. For example, a planar graph cannot contain
any complete graph with five or more nodes, and the maximum number of edges
such that the graph is planar is linear in the number of nodes, while in general it
is quadratic. In conclusion, clusterings with good performance tend to have many
small clusters. Such an example is given in Figure 3.4.

Before introducing a weighted version of performance, we present several opti-
mality results. In contrast to the previous indices, we are not aware of a general
characterization for clusterings with maximum performance. On the other hand, for
some graph families such results exists.

Lemma 3.9. Let G be an undirected and unweighted graph. Every clustering C
which has maximum performance consists of connected clusters.

Proof. Assume otherwise and let C be a counter-example. More precisely, let C ∈ C
be a cluster consisting of k > 1 connected components Ci. We define the clustering C ′
as follows:

C ′ := (C \ {C}) ] {{Ci} | 1 ≤ i ≤ k} .

Since E(Ci, Cj) = ∅ for i 6= j, we obtain f (C) = f (C ′) and

g (C ′) = g (C) +
∑
i<j

|Ci| |Cj| .

Since k > 1 the sum is positive and thus perf (C) < perf (C ′) which contradicts the
optimality of C.
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(a) clustering with best performance

(b) intuitive clustering (c) another intuitive clustering

Figure 3.4.: A situation where the clustering with optimal performance is a re-
finement (Figure 3.4(b)) of an intuitive clustering and is skew (Fig-
ure 3.4(c)) to another intuitive clustering

Theorem 3.10. Let G be an the disjoint union of k complete graphs with nodeset Vi.
Then the clustering C := {{Vi} | 1 ≤ i ≤ k} is the only clustering with maximum
performance.

Proof. Due to Lemma 3.9, each cluster in a clustering with maximum performance
is connected, thus each cluster is contained within one of the cliques. Assume, there
is another clustering C ′ that has maximum performance and at least one clique is
partitioned into ` (non-empty) clusters {C1, . . . , C`}. We define the clustering C ′′ as

C ′′ := (C ′ \ {C1, . . . , C`}) ]

{⊎̀
i=1

Ci

}
.

We obtain g (C ′′) = g (C ′) and f (C ′′) = f (C ′) +
∏

i<j |Ci| |Cj|, which contradicts the
optimality of C ′. Thus C is the unique clustering having maximum performance.

Lemma 3.11. Let T be an undirected and unweighted tree. Every clustering C which
has maximum performance has clusters of size at most three.

Proof. Assume otherwise and let C be a counter-example. More precisely, let C ∈ C
with at least four nodes. According to Lemma 3.9, the cluster C is connected and
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thus T ′ := T [C] is a subtree of T . Let u ∈ C be a leaf in T ′, the node v ∈ C its
parent. We define the clustering C ′ as follows:

C ′ := (C \ C) ] {{u, v}} ] {{C ′} | C ′ is a connected component of C \ {u, v}}

In the following, we use the term inter-cluster node pair to denote a pair of nodes
contained in different clusters that are not connected with an edge. The tree without
the nodes {u, v} has deg(v) − 1 connected components. If deg(v) = 2, then the
clustering C ′ has one intra-cluster edge less and at least three inter-cluster node
pairs more than C. Similarly, if deg(v) > 2, then C ′ has deg(v) − 1 intra-cluster
edges less and at least deg(v)− 1 + 1 inter-cluster node pairs more than C. In both
cases perf (C) < perf (C ′) holds, which contradicts the optimality of C.
Theorem 3.12. Let T be an undirected and unweighted tree. Every clustering C
that consists of a maximum matching has maximum performance.

Proof. Assume otherwise and let C ′ be a clustering such that perf (C) < perf (C ′).
According to Lemma 3.11 all clusters in C ′ have at most three nodes. Further note,
that for a clustering C ′′ where each cluster has at most three nodes the following
equation holds:

f (C ′′) + g (C ′′) = f (C ′′) +

(
n

2

)
− (n− 1) + f (C ′′)− n2 − 3n3

=

(
n

2

)
− n + 1 + n3 + n2 ,

where n is the number of nodes, ni is the number of clusters having i nodes. Thus
the clustering C ′ has the maximum number of cluster of size two and three. If C ′
has no clusters of size three, then C ′ cannot contain more cluster of size two than C,
thus perf (C) = perf (C ′). Therefore C ′ has at least one cluster with three elements.
We replace all clusters of size three in C ′ by a connected cluster of size two and the
single node. The number of clusters of size two and three remains constant which
implies the same performance score. Since the newly build clustering cannot have
more clusters of size two than C its performance value is less or equal than perf (C)
which contracts the assumption.

Corollary 3.13. Let Pn := ({1, . . . , n} , {{i, i + 1} | 1 ≤ i < n}) be the undirected,
unweighted path with n nodes. Then every clustering C with maximum performance
has at most one cluster with an odd number of nodes.

Proof. According to proof of Theorem 3.12, the clustering C maximizes n3 + n2,
where ni is the number of clusters of size i. By transposing neighboring clusters, we
achieve that the first 3 · n3 nodes belong to clusters of size three, the next n1 nodes
are singletons, and the remaining 2 · n2 are grouped in clusters of size two. Assume
that n3 + n1 > 1 for C, thus there are two neighboring clusters Ci and Ci+1 both
of odd size. Since s := |Ci ∪ Ci+1| is even, we can regroup them in groups of two.
If s = 6 then, we can replace the two clusters each of size three by three clusters
each of size two, if s = 4 then, we can obtain two clusters of size two, and if s = 2
then a cluster of size two is the replacement. In each case the sum n3 +n2 increases,
which contradicts the assumption of n3 + n1 > 1.
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Note that, due to the similar structure of simple cycles and paths, Corollary 3.13
can be stated analogously:

Lemma 3.14. Let Cn := ({1, . . . , n} , {{i, i + 1 mod n} | 1 ≤ i ≤ n}) be the undi-
rected, unweighted cycle with n nodes. Then every clustering C with maximum per-
formance has at most one cluster with an odd number of nodes and consists of cluster
with size at most three.

We omit the formal proof due to the high degree of similarity. Informally speaking,
a cycle is just a path with an additional edge. This concluded the characterizations
of clusterings with maximum performance. In the following, we consider different
extensions of performance for weighted graphs.

Weighted Version There exist miscellaneous variations of performance that use
more complex models for classification. However, many modifications highly depend
on their application-specific background. Instead of presenting them, some varia-
tions to include edge weights are given. As pointed out in Section 3.1, indices serve
two different tasks. In order to preserve the comparability aspect, we assume that
all the considered edge weights have a meaningful maximum M . It is not sufficient
to replace M with the maximum occurring edge weight because this value depends
on the input graph. Also, choosing an extremely large value of M is not suitable
because it disrupts the range aspects of the index. An example of such weightings
with a meaningful maximum are probabilities where M = 1. The weighting repre-
sents the probability that an edge can be observed in a random draw. Using the
same counting scheme of performance, one has to solve the problem of assigning a
real value for node pairs that are not connected. This problem will be overcome
with the help of the meaningful maximum M .

The first variation is straightforward and leads to the measure functions given in
Equation (3.19):

f (C) :=
k∑

i=1

ω (E(Ci)) and

g (C) :=
∑

u,v∈V

M · [(u, v) 6∈ E] · [u ∈ Ci, v ∈ Cj, i 6= j] .

(3.19)

Please note the similarity to the unweighted definition in Formula (3.16). How-
ever, the weight of the inter-cluster edges is neglected. This can be integrated by
modifying g:

g′ (C) := g (C) +M ·
∣∣∣E(C)

∣∣∣− ω
(
E(C)

)
︸ ︷︷ ︸

=:gw(C)

. (3.20)

The additional term gw (C) corresponds to the difference of weight that would be
counted if no inter-cluster edges were present and the weight that is assigned to the
actual inter-cluster edges. In both cases the maximum is bounded by M · n(n− 1),
and the combined formula would be:

perfw (C) =
f (C) + g (C) + θ · gw (C)

n(n− 1)M
, (3.21)
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where θ ∈ [0, 1] is a scaling parameter that rates the importance of the weight of
the inter-cluster edges (with respect to the weight of the intra-cluster edges). In this
way there is a whole family of weighted performance indices.

An alternative variation is based on the duality. Instead of counting ‘correct’
classified node pairs the number/weight of the errors is measured. Equation (3.18)
will be the foundation:

f̃ (C) =
k∑

i=1

(
M |Ci|(|Ci| − 1)− ϑ · ω(E(Ci)

)
and

g̃ (C) = ω
(
E(C)

)
,

(3.22)

where ϑ is a scaling parameter that rates the importance of the weight of the intra-
cluster edges (with respect to the weight of the inter-cluster edges). The different
symbols for density f̃ and sparsity g̃ functions are used to clarify that these functions
perform inversely to the standard functions f and g with respect to their range:
small values indicate better structural behavior instead of large values. Both can be
combined to a standard index via

perfm (C) = 1− f̃ (C) + g̃ (C)
n(n− 1)M

. (3.23)

Note that the versions are the same for θ = ϑ = 1. In general, this is not true for
other choices of θ and ϑ. Both families have their advantages and disadvantages.
The first version (Equation (3.21)) should be used, if the clusters are expected to
be heavy, while the other version (Equation (3.23)) handles clusters with inhomo-
geneous weights better. Note, that these extensions for ϑ > 0 are not compatible
extensions with respect to the unweighted case, since perfw (C) and perf (C) have dif-
ferent values when evaluated on the same clustering on a undirected and unweighted
graph.

3.5. Modularity and Significance

Another index that has recently gained a lot of attention is modularity [28]. The
founding idea is to evaluate a clustering based on the fraction of intra-cluster edges
and on an approximation of this fraction considering a certain random model. Al-
though, modularity does not directly realize the intra-cluster density versus inter-
cluster sparsity paradigm, an experimental evaluation confirms its relatedness. The
standard definition is given in Equation (3.24).

q (C) =
∑
C∈C

ω(E(C))

ω(E)
− 1

4ω(E)2

(∑
v∈C

∑
{v,w}∈E

ω({v, w})

)2
 (3.24)

Extending the range of g to R, the index can be expressed using the function f
and g as given in Equations (3.25), where the maximum f + g is trivially bounded
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by ω(E).

f (C) := ω(E(C)) and g (C) := − 1

4ω(E)

(∑
v∈C

∑
{v,w}∈E

ω({v, w})

)2

(3.25)

Unfortunately, modularity can also attain negative values, which violates the original
range of the images of [0; 1]. Before showing in Lemma 3.15 that −1/2 is a lower
bound for modularity, note that the following equality:

q (C) =
∑
C∈C

ω(E(C))

ω(E)
− 1

4 · ω(E)2

2 · ω(E(C)) +
∑

C 6=C′∈C

ω(E(C, C ′))

2
Lemma 3.15. Let G be an undirected and unweighted graph and C ∈ A (G). Then
the following inequalities hold:

−1

2
≤ q (C) ≤ 1 . (3.26)

Proof. Let C ∈ C, m be the number of edges, mi = |E(C)| be the number of edges
inside cluster C and me =

∑
C 6=C′∈C |E(C, C ′)| be the number of edges having exactly

one end-node in C. Then the contribution of C is:

mi

m
−
(mi

m
+

me

2m

)2

.

This expression is strictly decreasing in me and, when varying mi, the only maximum
point is at mi = (m − me)/2. Hence, the contribution of a cluster is minimized
when mi is 0 and me is as large as possible. Using the inequality (a + b)2 ≥ a2 + b2

for all non-negative numbers a and b, modularity has a minimum score for two
clusters where all edges are inter-cluster edges. This proves the lower bound, the
upper bound trivially given by the upper bound on f + g.

Before considering special graph families such as cliques or cycles, we state two
features that cannot occur in clusterings with maximum modularity, namely a node
of degree one forming its own cluster and disconnected clusters.

Lemma 3.16. A clustering with maximum modularity has no cluster that consists
of a single node with degree one.

Proof. Suppose for contradiction that there is a clustering C with a cluster Cv =
{v} and deg(v) = 1. Consider a cluster Cu that contains the neighbor node u.
Suppose there are a number of mi intra-cluster edges in Cu and me inter-cluster
edges connecting Cu to other clusters. Together these clusters add

mi

m
− (2mi + me)

2 + 1

4m2

to q (C). Merging Cv with Cu results in a new contribution of

mi + 1

m
− (2mi + me + 1)2

4m2
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The merge yields an increase of

1

m
− 2mi + me

2m2
> 0

in the modularity, because mi+me ≤ m and me ≥ 1. This proves the statement.

Lemma 3.17. There is always a clustering with maximum modularity, in which any
cluster consists of a connected subgraph. If the graph has no nodes of degree 0, than
every clustering with maximum modularity consists of connected clusters.

Proof. Consider for contradiction a clustering C with a cluster C of mi intra- and
me inter-cluster edges that consists of a set of more than one connected subgraph.
All components that consists of nodes of degree 0 can be put in individual clusters
without changing the modularity, thus we assume that all components have nodes
of degree at least 1. The subgraphs in C do not have to be disconnected in G, they
are only disconnected when we consider the edges E(C). Cluster C adds

mi

m
− (2mi + me)

2

4m2

to q (C). Now suppose we create a new clustering C ′ by splitting C into two new
clusters. One cluster Cv consists of the component of one component, i.e. all vertices,
which can be reached from a vertex v with a path running only through vertices
of C, i.e. Cv =

⋃∞
i=0 Ci

v, where Ci
v = {w | ∃(w,wi) ∈ E(C) with wi ∈ Ci−1

v } and
C0

v = {v}. The other nonempty cluster is given by C − Cv. Let Cv have mv
i intra-

and mv
e inter-cluster edges. Together the new clusters add

mi

m
− (2mv

i + mv
e)

2 + (2(m−mv
i ) + m−mv

e)
2

4m2
(3.27)

to q (C ′). For a, b ≥ 0 obviously a2 + b2 ≤ (a + b)2. Thus modularity of clustering C ′
exceeds q (C).

If G has no isolated nodes, both terms (2mv
i + mv

e) and (2(m −mv
i ) + m −mv

e)
are strictly positive, thus q (C ′) > q (C).

3.5.1. NP-Completeness
Before characterizing the clusterings with maximum modularity for certain regular
graph families, we briefly show that optimizing modularity is NP-complete. The
whole proof can be found in [20, 21].

We consider the decision problem associated with optimizing modularity: Given a
graph G and a number K, is there a clustering C of G with q (C) ≥ K. Although, the
number K could be real, note that 4m2 ·q (C) is an integer for every clustering C and
is polynomially bounded in the size of G, where m denotes the number of edges in the
graph. The proof uses a transformation to the problem 3–Partition which is defined
as follows: Given 3k positive integers a1, . . . , a3k such that the sum

∑
i ai = kb

and b/4 < ai < b/2 for an integer b and for all 1 ≤ i ≤ 3k, is there a partition of
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these numbers into k sets, such that the numbers in each set sum up to b. Note that
3–Partition is strongly NP-complete [52], i. e., the problem remains NP-complete
even if the input is represented in unary coding.

In order to show the hardness of optimizing modularity, we show that given
an instance of 3–Partition, we can create an instance of the decision problem of
maximizing modularity, such that the instance of 3–Partition is solvable if and
only if the decision problem is solvable. More precisely, let A := {a1, . . . , a3k} be
an instance of 3–Partition, then we define a graph G(A) := (V (A), E(A)) in the
following way:

V (A) := {1, . . . , 3k} ]
k⊎

i=1

{
c
(i)
j

∣∣∣ 1 ≤ j ≤
3k∑

`=1

a`

}

E(A) :=

{{
j, c

(i)
j′

}∣∣∣ 1 ≤ i ≤ k; 1 ≤ j ≤ 3k;

j−1∑
`=1

a` < j′ ≤
j∑

`=1

a`

}

]

{{
c
(i)
j , c

(i)
j′

}∣∣∣ 1 ≤ i ≤ k; 1 ≤ j 6= j′ ≤
3k∑

`=1

a`

}

An illustrating example for the instance A = {2, 2, 2, 2, 3, 3} is given in Figure 3.5.
Informally speaking, the graph G(A) consists of a node for each integer ai and k

Figure 3.5.: An example graph G(A) for the instance A = {2, 2, 2, 2, 3, 3} of 3–
Partition. Node labels indicate the corresponding value of ai ∈ A.

complete subgraphs which individual size is defined by the total sum of the ai.
Furthermore, each representative node of an ai is connected to ai (unique) nodes in
each clique. Before defining the necessary bound K(A) for the decision problem of
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modularity, we briefly summarize characteristics of the clustering with maximum
modularity in such a graph G(A).

The first two important issues are that none of the complete subgraphs are split
over several clusters and no pair is of them is contain in the same cluster. In other
words, each clustering with maximum modularity has at least k clusters and k of
them contain each one of the complete subgraphs completely. The proof is straight-
forward, but very technical; basically, one can improve the modularity of a clustering
violating the above requirements by either shifting nodes such that the cliques are
no long split or by splitting the cluster containing more than one complete subgraph.
The final an most interesting characteristic is that each node corresponding to one
of the ai is contained in a cluster along with one of the k big cliques. This fea-
ture ensures that we can read of the required partition for 3–Partition directly from
the clustering with maximum modularity. Furthermore by setting an appropriate
threshold K(A), we can decide if the clusters are balanced and thus if the instance
of 3–Partition is solvable or not. The proof of the characteristic uses the fact, that
clusterings with maximum modularity have no disconnected clusters (Lemma 3.17);

more precisely, a node j has clique nodes c
(i)
j′ and thus, one can improve the modu-

larity, if it is not contained in a cluster containing a clique.

Summarizing, given an instance A := {a1, . . . , ak} of 3–Partition, we can decide
if A is solvable or not, by deciding the corresponding instance of the modularity
problem using (G(A), K(A) := (k − 1)(a− 1)/(k(a + 1))), where a :=

∑
i ai.

3.5.2. Optimality Results for Cliques and Cycles

In the following, we present some optimality results for cliques and cycles. Please
note, that modularity can be simplified as given in Corollary 3.18 for general d-
regular graphs.

Corollary 3.18. Let G = (V, E) be an unweighted d-regular graph and C ∈ A (G)
a clustering with C = {C1, . . . , Ck}. Then the following equality holds:

q (C) = cov (C)− 1

|V |2
k∑

i=1

|Ci|2 .

The correctness of the corollary can be read off the definition given in Equa-
tion (3.24) and the fact that |E| = d|V |/2. Thus modularity only depends on
cluster size and coverage.

Cliques

We first deal with the case of the complete graphs. The Corollary 3.19 provides a
simplified formulation for modularity. From this rewriting, one directly reads of the
clustering with maximum modularity.

Corollary 3.19. Let Kn be a complete graph on n nodes and C := {C1, . . . , Ck} ∈
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A (Kn). Then the following equality holds:

q (C) = − 1

n− 1
+

1

n2(n− 1)

k∑
i=1

|Ci|2 . (3.28)

Proof. Coverage of C can be expressed in terms of cluster sizes as follows:

|E(C)| =

(
n

2

)
−

k∑
i=1

∏
j>i

|Ci| · |Cj| =
(

n

2

)
− 1

2

k∑
i=1

∏
j 6=i

|Ci| · |Cj|

=

(
n

2

)
− 1

2

k∑
i=1

|Ci| ·
∑
j 6=i

|Cj| =
(

n

2

)
− 1

2

k∑
i=1

|Ci| · (n− |Ci|)

=

(
n

2

)
− 1

2

(
n2 −

k∑
i=1

|Ci|2
)

= −n

2
+

1

2

k∑
i=1

|Ci|2 .

Thus, we obtain

q (C) = − 1

n− 1
+

1

n(n− 1)

k∑
i=1

|Ci|2 −
1

n2

k∑
i=1

|Ci|2

= − 1

n− 1
+

1

n2 · (n− 1)

k∑
i=1

|Ci|2 ,

which proves given equation.

Thus maximizing modularity is equivalent to maximizing the squares of cluster
sizes. Using the general inequality (a + b)2 ≥ a2 + b2 for non-negative real numbers,
the clustering with maximum modularity is the 1–clustering. More precisely:

Theorem 3.20. Let ` and n be integers, K`n be the complete graph on ` · n nodes
and C a clustering such that each clusters contains exactly n elements. Then the
following equality holds:

q (C) =

(
−1 +

1

`

)
· 1

`n− 1
.

For fixed ` > 1 and as n tends to infinity, modularity is always strictly negative, but
tends to zero. Only for ` = 1 modularity is zero and thus is the global maximum.

Simple Cycles

A simple cycle is a connected 2-regular graph. In the following, we prove that
clusterings with maximum modularity are balanced with respect to number and
size of clusters.
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Corollary 3.21. Let Cn be a simple cycle with n nodes and C = {C1, . . . , Ck} a
clustering such that all clusters are connected. Then the following equality holds:

q (C) =
n− k

n
− 1

n2

k∑
i=1

|Ci|2 . (3.29)

As proven in Lemma 3.17, the clustering with maximum modularity have only
connected clusters, thus, we can safely use Equation (3.29). As preparation, we first
study the case of fixed number k of clusters and characterize the cluster sizes that
have maximum modularity.

Proposition 3.22. Let k and n be integers, the set D(k) ⊂ Nk defined as

D(k) :=

{
(x1, . . . , xk) ∈ Nk

∣∣∣∣∣
k∑

i=1

xi = n

}
,

and the function F : D(k) → R defined as

F (x) :=
k

n
+

1

n2

k∑
i=1

x2
i for x ∈ D(k) .

Then F has a global minimum at

xopt =
(⌊n

k

⌋
, . . . ,

⌊n

k

⌋
︸ ︷︷ ︸

k−r times

,
⌈n

k

⌉
, . . . ,

⌈n

k

⌉
︸ ︷︷ ︸

r times

)
,

where 0 ≤ r < k and r ≡ n mod k.

Proof. Since k and n are given, minimizing F is equivalent to minimizing
∑

i x
2
i .

Thus let us rewrite this term:

k∑
i=1

(
xi −

n

k

)2

=
k∑

i=1

x2
i − 2

n

k

k∑
i=1

xi + k ·
(n

k

)2

=
k∑

i=1

x2
i − 2

n2

k
+

n2

k

⇐⇒
k∑

i=1

x2
i =

k∑
i=1

(
xi −

n

k

)2

︸ ︷︷ ︸
=:h(x)

+
n2

k

Thus minimizing F is equivalent to minimizing h. If r is 0, then h(xopt) = 0. For
every other vector y the function h is strict positive, since at least one summand is
positive. Thus xopt is a global optimum.

Let r > 0. First, we show that every vector x ∈ D(k) that is close to (n
k
, . . . , n

k
)

has (in principle) the form of xopt. Let x ∈ D ∩ [
⌊

n
k

⌋
,
⌈

n
k

⌉
]k, then there are k − r

entries that have value
⌊

n
k

⌋
and the remaining r entries have value

⌈
n
k

⌉
.
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Subproof: Since xi ≥
⌊

n
k

⌋
, we obtain

n =
∑

i

xi ≥ k ·
⌊n

k

⌋
= k · n− r

k
= n− r ,

thus r entries have to have value
⌈

n
k

⌉
. �

Any ‘shift of one unit’ between two variables having the same value, increases the
corresponding cost: Let ε :=

⌈
n
k

⌉
− n

k
and xi = xj =

⌈
n
k

⌉
. Replacing xi with

⌊
n
k

⌋
and xj with

⌈
n
k

⌉
+ 1, causes an increase of h by 5 + 2ε > 0. Similarly, in the case

of xi = xj =
⌊

n
k

⌋
and the reassignment xi =

⌈
n
k

⌉
and xj =

⌊
n
k

⌋
− 1, causes an

increase of h by 2 > 0.
Finally, we show that any vector of D(k) can be reach from xopt by ‘shifting

one unit’ between variables. Let x ∈ D(k) and with loss of generality, we assume
that xi ≤ xi+1 for all i. We define a sequence of elements in D(k) as follows:

1. x(0) := xopt

2. if x(i) 6= x, define x(i+1) as follows

x
(i+1)
j :=


x

(i)
j − 1 , if j = min

{
` | x(i)

` > x`

}
=: L

x
(i)
j + 1 , if j = max

{
` | x(i)

` < x`

}
=: L′

x
(i)
j , otherwise

Note that all obtained vectors x(i) are elements of D(k) and meet the condition
of x

(i)
j ≤ x

(i)
j+1. Furthermore, we gain the following formula for the cost:

∑
j

(
x

(i+1)
j

)2

=
∑

j

(
x

(i)
j

)2

+ 2
(
x

(i)
L′ − x

(i)
L + 1

)
.

Since L < L′, one obtains x
(i)
L′ ≥ x

(i)
L . Thus xopt is a global optimum in D(k).

Due to the special structure of simple cycles, we can swap neighboring clusters
without changing the modularity. Thus, we can safely assume that clusters are
sorted according to their sizes starting with the smallest element. Thus xopt is
the only optimum. Evaluating F at xopt leads to a term that depends only on k
and n. Thus, we can characterize the clusterings with maximum modularity only
with respect to the number of clusters. A summarizing lemma is Lemma 3.23.

Lemma 3.23. Let Cn be a simple cycle with n nodes, h : [1, . . . , n]→ R a function
defined as

h(x) := x · n + n +
⌊n

x

⌋(
2n− x ·

(
1 +

⌊n

x

⌋))
,

and kopt be the global optimum of h. Then every clustering of Cn with maximum
modularity has kopt clusters.
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Proof. Note, that h(k) = n2 · F (xopt), where F is the function of Proposition 3.22
with the given k. Consider first the following equations:

k∑
i=1

(xopt)
2
i = (k − r) ·

⌊n

k

⌋2

+ r ·
⌈n

k

⌉2

= (k − r)
(n− r)2

k2
+ r

(
(n− r)

k
+ 1

)2

=
(n− r)2

k
− r

(n− r)2

k2
+ r

(n− r)2

k2
+ 2 · r (n− r)

k
+ r

=
n− r

k
((n− r) + 2r) + r =

n2 − r2

k
+ r

=
1

k

(
n2 −

(
n−

⌊n

k

⌋
k
)2
)

+ n−
⌊n

k

⌋
k

=
1

k

(
n2 − n2 + 2nk

⌊n

k

⌋
− k2

⌊n

k

⌋2
)

+ n−
⌊n

k

⌋
k

= 2n
⌊n

k

⌋
− k

⌊n

k

⌋2

+ n−
⌊n

k

⌋
k

= n +
⌊n

k

⌋(
2n− k

(⌊n

k

⌋
+ 1
))

Since maximizing the modularity is equivalent to minimize the expression k/n +
1/n2

∑
i x

2
i for (xi) ∈

⋃n
j=1 D(j). Note that every vector (xi) can be realized as

clustering with connected clusters. Since we have characterized the global minima
for fixed k, it is sufficient to find the global minima by varying k.

In the following, we show some properties of h regarding monotonicity which will
help us to restrict the definition range containing global minima. But first note the
following continuous bounds given in

Lemma 3.24. Given the function h of Lemma 3.23, then h is bounded by

kn +
n2

k
≤ h(k) ≤ kn +

n2

k
+

k

4
. (3.30)

Proof. Let εk be defined as n/k − bn/kc (≥ 0). The formula of h can be rewritten
as follows:

h(k) = kn + n +
⌊n

k

⌋(
2n−

(
1 +

⌊n

k

⌋)
k
)

= kn + n +
(n

k
− εk

)(
2n−

(
1 +

n

k
− εk

)
k
)

= kn + n +
2n2

k
− (1− εk)n−

n2

k
− 2nεk + (1− εk)kεk + nεk

= kn +
n2

k
+ (1− εk)εkk .

Replacing the term (1−εk)εkk by a lower (upper) bound of 0 (k/4) proves the given
statements.
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Lemma 3.25. Given the function h of Lemma 3.23, then h is monotonically increas-
ing for k ≥ 1/2 +

√
1/4 + n and monotonically decreasing for k ≤ n/

√
n +
√

n− 1.

Proof. For the first part, it is sufficient to show that h(k) ≤ h(k + 1) for every
suitable k.

h(k + 1)− h(k) = (k + 1)n + n +

⌊
n

k + 1

⌋(
2n−

(
1 +

⌊
n

k + 1

⌋)
(k + 1)

)
−kn− n−

⌊n

k

⌋(
2n−

(
1 +

⌊n

k

⌋)
k
)

= n + 2n

(⌊
n

k + 1

⌋
−
⌊n

k

⌋)
−
(

1 +

⌊
n

k + 1

⌋)⌊
n

k + 1

⌋
+k

((
1 +

⌊n

k

⌋) ⌊n

k

⌋
−
(

1 +

⌊
n

k + 1

⌋)⌊
n

k + 1

⌋)
Since b·c is discrete and |bxc − bx− 1c| ≤ 1, one obtains:

h(k + 1)− h(k) =


n−

⌊n

k

⌋2

−
⌊n

k

⌋
, if

⌊
n
k

⌋
=
⌊

n
k−1

⌋
3n−

⌊n

k

⌋2

−
⌊n

k

⌋
+ 2k

⌊n

k

⌋
, otherwise

(3.31)

Since 3n−bn/kc2−bn/kc+ 2k bn/kc > n−bn/kc2−bn/kc, it is sufficient to show
that n − bn/kc2 − bn/kc ≥ 0. This inequality is fulfilled if n − (n/k)2 − n/k ≥ 0.
Solving the quadratic equations leads to k ≥ 1/2 +

√
1/4 + n.

For the second part, it is sufficient to show that

kn +
n2

k
− (k + 1)n− n2

k + 1
− k + 1

4
≥ 0 , (3.32)

since this implies that the upper bound of h(k +1) is smaller than (the lower bound
of) h(k). One can rewrite the left side of Inequality (3.32) as:

kn +
n2

k
− (k + 1)n− n2

k + 1
− k + 1

4
= −n +

n2

k(k + 1)
− k + 1

4
.

Since h(k)− h(k + 1) is monotonically decreasing for 0 ≤ k ≤
√

n, it is sufficient to
show that h(k) − h(k + 1) is non-negative for the maximum value of k. We show
that the lower bound h−(k) := −n + n2/(k + 1)2 − (k + 1)/4 is non-negative.

h−

(
n√

n +
√

n
− 1

)
= −n− n

4
√

n +
√

n
+

n2(n +
√

n)

n2

=
√

n− n

4
√

n +
√

n︸ ︷︷ ︸
≤ 1

4

√
n

≥ 0

By combining these partial results we obtain the final characterization for clus-
terings with maximum modularity for simple cycles.
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Theorem 3.26. Let n be an integer and Cn a simple cycle with n nodes. Then a
clustering C with maximum modularity has k cluster of almost equal size, where

k ∈

[
n√

n +
√

n
− 1,

1

2
+

√
1

4
+ n

]
.

Furthermore, there are only 3 possible values for k for sufficiently large n.

Proof. As a result of Lemma 3.25, the number of clusters k can only be contained
in the given interval, since outside the function h (of Lemma 3.23) is either mono-
tonically increasing or decreasing.The length of the interval is less than

1

2
+

√
1

4
+ n− n√

n +
√

n︸ ︷︷ ︸
=:`(n)

+1 .

The function `(n) can be rewritten as follows:

`(n) =

√(
1
4

+ n
) (√

n +
√

n
)
− n√

n +
√

n

≤
(
n + 1+ε

2

√
n
)
− n√

n +
√

n
(3.33)

≤ 1 + ε

2

√
n

n +
√

n
,

for every positive ε. Inequality (3.33) is due to the fact that(
1

4
+ n

)(√
n +
√

n

)
≤ n2 + n

√
n +

1

4

(
n +
√

n
)

≤ n2 + 2
1 + ε

2
n
√

n +
(1 + ε)2

4
n

=

(
n +

1 + ε

2

√
n

)2

,

for sufficiently large n.

Figure 3.6 gives a brief impression of the tightness of the bounds used in Theo-
rem 3.26.

3.6. Other Indices

Clearly these indices are only a small fraction of the whole spectrum used to formalize
and evaluate clusterings. However, they clarify different concepts very well. This
part covers some historical indices that have been used for clustering.
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Figure 3.6.: The diagram shows for each Cn the size of one clustering that has max-
imum modularity. The green line indicates the square-root function,
while the other two are lower and upper bound.

Clustering was originally applied to entities embedded in metric spaces or vector
spaces with a norm function. Many indices have been developed that use essential
structural properties of these spaces, e. g., the possibility to calculate a barycenter
or geometric coverings. Over time, some indices have been transferred to graph
clustering as well. Because these spaces usually provide information for all pair, the
first problem is to estimate the similarity of nodes that are not connected with an
edge. This is often solved using shortest path techniques that respect all information,
like weight or direction, or only partial information, or none. The most common
measures resulting are: diameter, edge weight variance, and average distance within
the clusters. In contrast to the previous indices, these measures do not primarily
focus on the intra-cluster density versus inter-cluster sparsity paradigm. Most of
them even ignore the inter-cluster structure completely. Another difference is that
these indices usually rate each cluster individually, regardless of its position within
the graph. The resulting distribution is then rated with respect to the average or
the worst case. Thus, a density measure2 π can be transformed into an index by
applying π on all cluster-induced subgraphs and rating the resulting distribution of

2greater values imply larger density
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values, e. g., via minimum, maximum, average, or mean:

worst case: min
i
{π(G[C1]), . . . , π(G[Ck])}

average case:
1

k

∑
i

π(G[Ci])

best case: max
i
{π(G[C1]), . . . , π(G[Ck])}

Their popularity is partially based on the easy computation in metric or normed
vector spaces, where the distance (inverse similarity) of (all) pairs is defined by
their distance within the given space. The other reason is their use for some greedy
approaches.



Chapter 4

Comparison of Clusterings

Several clustering techniques and applications are based on the formalization of
‘natural groups’ given by indices. Due to intuitive concept of clusterings and the
large variety of existing quality measures, many different algorithms have been de-
veloped. Although most behave very well with respect to certain indices, all have
their weaknesses and drawbacks. Several tasks for designing and engineering new
algorithms require the comparison of clusterings. Such issues are robustness, i. e.,
the sensitivity with respect to small perturbations, comparison of exact techniques
and heuristics, and benchmarks where an ‘optimal’ clustering is known in advanced.

In the following, we present a short overview of comparison methods based on
the summary [103, 31]. The experimental evaluation is given in Chapter 6. Stan-
dard comparators are founded on the lattice structure of the set of all clusterings
(for a fixed graph), thus they are independent of the quality measures. However,
counter-intuitive situations can arise; an example is given in Figure 4.1. The exam-

(a) clustering C1 (b) clustering C′
1 (c) clustering C2 (d) clustering C′

2

Figure 4.1.: Counter-intuitive example where a lattice-based comparator cannot dis-
tinguish the two cases.
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ple consists of two cliques of size five connected by an edge and two stars of with
four leaves where the two center nodes are connected. In both cases the clustering Ci
groups the cliques (stars) and corresponds to the favored partition, while C ′i results
from Ci by moving one incident node of the inter-cluster edge to the other cluster.
Although, clustering C ′1 is suboptimal, it is still interpretable as clustering. Since
the upper cluster of C ′2 is not only disconnected by does not contain any edges at
all, clustering C2 is meaningless. As lattice-based comparators are independent of
the edge set, the distance between clustering C1 and C ′1 is the same as the distance
between C2 and C ′2.

Although independent concepts for quality and comparison are beneficial for en-
gineering and evaluating, counter-intuitive situations easily out weight such advan-
tages. Thus, we present some new approaches, introduced in [31, 33], that incor-
porate quality aspects as well. In contrast to the general framework for quality
measures, no comprehensive framework has emerged yet; still the comparators can
be roughly classified according to their origins. Since our goal is to obtain a uniform
framework that can be easily integrated into a benchmark environment, we will
present all comparators as distance measures, although they might have been intro-
duced as similarity measure in the literature. Note that the given overview is a first
and preliminary step towards the design and engineering of comparators for graph
clusterings. As the performed evaluation reveals, all graph-structural comparators
suffer certain drawbacks similar to the quality indices.

4.1. Lattice-Based Approach

Most comparators defined in literature are founded on the lattice structure for par-
titions. The set of all clusterings (for a fixed graph) forms a lattice-ordered set,
where inf(C1, C2) := C1 ∧ C2 and sup(C1, C2) := C where C is the smallest coarsen-
ing of C1 and C2. Thus A (G) of a graph G forms a lattice. Many lattice-based
comparators are solely based on counting pairs or matchings. In the following, we
give a short summary of existing measures; for this presentation let G = (V, E)
be an undirected and unweighted graphs with two clusterings C1 := {C1, . . . , Ck}
and C2 := {C ′

1, . . . , C
′
`}.

4.1.1. Pair Comparators

Similar to the quality index performance the set of all pairs of nodes is partitioned
into four groups:

Sab :=

{
{u, v} ∈

(
V

2

)∣∣∣∣ [u ∼C1 v] = a ∧ [u ∼C2 v] = b

}
, (4.1)

for a, b ∈ {0, 1}. As short-cut for the sizes of the sets, we define nab := |Sab|.
Lemma 4.1 shows the relation between the sizes and the confusion matrix.



4.1 Lattice-Based Approach 47

Lemma 4.1. Let M = (mij) be the confusion matrix of C1 and C2. Then the
following equations holds:

n11 =
1

2

(
k∑

i=1

∑̀
j=1

m2
ij − |V |

)
(4.2)

n10 =
1

2

(
k∑

i=1

|Ci|2 −
k∑

i=1

∑̀
j=1

m2
ij

)
(4.3)

n01 =
1

2

(∑̀
j=1

∣∣C ′
j

∣∣2 − k∑
i=1

∑̀
j=1

m2
ij

)
. (4.4)

Proof. All pairs of nodes that are in some clusters (with respect to both clusterings)
are those located in the same cluster with respect to C1 ∧ C2. Thus, we obtain the
following equation:

n11 =
∑
i,j

(
mij

2

)
=

1

2

∑
ij

(
m2

ij −mij

)
.

Since C1 ∧ C2 is a clustering of G, it has |V | nodes and thus
∑

ij mij = |V |. For the

other equations, note the symmetry of n10 and n01 and that n1 :=
∑k

i=1

(|Ci|
2

)
is the

number of pairs within clusters (with respect to C1). Thus equation n10 = n1 − n11

holds. Using the Equation (4.2) and substituting n11 results in Equation (4.3).

The comparators that corresponds to performance are Rand R and Adjusted Rand
Radj which are defined as:

R(C1, C2) := 1− n11 + n00(|V |
2

)
Radj(C1, C2) := 1− n11 − t3

1
2
(t1 + t2)− t3

, with

t1 :=
k∑

i=1

(
|Ci|
2

)
, t2 :=

∑̀
k=1

(∣∣C ′
j

∣∣
2

)
, and t3 :=

t1t2(|V |
2

) .

The founding idea of the Rand comparator is to count the number of pairs classified
in the same way with respect to both clusterings. Rand has some disadvantages,
if number of clusters is large. An attempt to counter-act this drawback is given in
Adjusted Rand comparator, which normalizes Rand by the expected value of Rand
under the null hypothesis of a hypergeometric distribution. A scaled version of Rand
is also known as Equivalence Mismatch Distance or Mirkin Metric, its defined as in
Formula (4.5).

k∑
i=1

|Ci|2 +
∑̀
j=1

∣∣C ′
j

∣∣2 − 2
k∑

i=1

∑̀
j=1

m2
ij (4.5)

It corresponds to the Hamming distance when clusterings are interpreted as binary
function on the set of all pairs of nodes. Two more variations arise from different
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applications: Information Retrieval, geology, and ecology. The first one is Fowlkes-
Mallows which is defined as the geometric mean of precision and recall, defined in
Equation (4.6).

FM(C1, C2) :=


1− n11√

(n11 + n10)(n11 + n01)
, if |C1| 6= |V | ∧ |C2| 6= |V |∣∣ |C1| − |C2| ∣∣

|V | − 1
, otherwise

(4.6)

In Information Retrieval, precision is defined as the ratio of the number of retrieved
relevant documents to the total number of retrieved documents whereas recall is
the ratio of the number of retrieved documents to the total number of relevant
documents. Similar to the Adjusted Rand, Fowlkes-Mallows corresponds to the de-
viation from the expected value under the null hypothesis of independent clusterings
with fixed sizes. A similar version which uses a different normalization factor is the
Jaccard comparator J defined in Equation (4.7).

J(C1, C2) :=


1− n11

n11 + n10 + n01

, if |C1| 6= |V | ∧ |C2| 6= |V |

0 , otherwise

(4.7)

4.1.2. Matching Comparators
Another group of lattice-based comparators employ matchings, i. e., they consider
the relation between the common refinement C1 ∧ C2 and the two clusterings C1
and C2. A very intuitive comparator is the maximum matching of the two clusterings.
Let |C1| ≥ |C2| then one considers surjective mapping m : C1 → C2 that meet the
restriction that each cluster of C1 has a non-empty intersection with its image. The
set of all these function defines the set match(C1, C2). The formula of the comparator
is given in (4.8).

1− 1

|V |
· max

m∈match(C1,C2)

k∑
i=1

|Ci ∩m(Ci)| (4.8)

Since the Maximum Matching Comparator can potentially ignore many clusters, it is
almost never used. Instead the versions introduced by Meila and Heckerman or van
Dongen are considered. The Meila-Heckerman comparator considers the individual
best match for a cluster; its definition is given in Equation (4.9).

MH(C1, C2) := 1− 1

|V |

k∑
i=1

max
j∈{1,...,`}

mij (4.9)

Similar to the maximum matching, it is asymmetric. Its symmetric counterpart,
introduced by van Dongen, is defined as in Equation (4.10).

D(C1, C2) := 1− 1

2 |V |

(
k∑

i=1

max
j∈{1,...,`}

mij +
∑̀
j=1

max
i∈{1,...,k}

mij

)
(4.10)
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Note the following equality D(C1, C2) = (MH(C1, C2) + MH(C2, C1))/2. The corre-
sponding version of Fowlkes-Mallows is the F-Measure given in Equation (4.11).
Note that the term 2mij/(|Ci|+

∣∣C ′
j

∣∣) is the harmonic mean of mij/ |Ci| and mij/
∣∣C ′

j

∣∣.
These corresponds to recall and precision under the assumption that clustering C1
is topic-related and C2 is an arbitrary clustering.

F(C1, C2) := 1− 1

|V |

k∑
i=1

|Ci| max
j∈{1,...,`}

2mij

|Ci|+
∣∣C ′

j

∣∣ (4.11)

4.1.3. Information-Theoretic Comparators
The last group of comparators is based on information-theoretic concepts, namely
entropy and mutual information. The entropy of the clustering C1 measures the
uncertainty of the corresponding cluster to which a uniformly at random picked
node belongs; it is given in Equation (4.12).

H (C1) := −
k∑

i=1

|Ci|
|V |
· log2

|Ci|
|V |

(4.12)

This can be extended to the mutual information of two clusterings shown in Equa-
tion (4.13). Note that 0 · log 0 is set to zero by convention.

I (C1, C2) :=
∑̀
j=1

k∑
i=1

mij

|V |
· log2

mij · |V |
|Ci| ·

∣∣C ′
j

∣∣ (4.13)

Mutual information describes the average reduction of the entropy of C1 when know-
ing clustering C2.

Two comparators directly use mutual information with different normalization,
i. e., Strehl-Ghosh uses the geometric mean of the entropies of the individual clus-
terings, while Fred-Jain considers the arithmetic mean. The formulas are given in
Equations (4.14) and (4.15).

SG(C1, C2) :=


1− I (C1, C2)√

H (C1) ·H (C2)
, if |C1| 6= |V | ∧ |C2| 6= |V |∣∣ |C1| − |C2| ∣∣

|V | − 1
, otherwise

(4.14)

FJ(C1, C2) :=

0 , if |C1| = |C2| = |V |

1− 2 · I (C1, C2)
H (C1) + H (C2)

, otherwise
(4.15)

A related comparator is Variation of Information given in Equation (4.16); in-
formally, it measures the loss of information with respect to C1 and the gain of
information with respect to C2 when switching from C1 to C2.

VI(C1, C2) :=
H (C1) + H (C2)− 2 · I (C1, C2)

log2 |V |
(4.16)
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4.2. Graph-Structural Approaches

As indicated by the example in Figure 4.1, lattice-driven approaches suffer certain
drawbacks. A self-evident way is to combine a comparator with a quality index.
However this may introduce other artefacts. In the following, we present some
extensions for pair-counting comparators as well as new ideas to incorporate the
graph structure. More details can be found in [31].

4.2.1. Extended Pair Comparators
The presented extensions are true extensions, i. e., if the underlying graph is com-
plete then both—the extended and the original—versions of the comparator yield
the same value. Pair comparators presented in Section 4.1.1 are founded on the
classification of pairs of nodes. The basis of our extensions is to define a weighed
matrix that assign to each pair of nodes a weight representing the relevance of that
pair for the comparator, as given in Definition 4.2.

Definition 4.2. Let G = (V, E) be an undirected and unweighted graph. A pair
weighting M is a symmetric |V | × |V |–matrix over [0, 1] such that

∀ u, v ∈ V : {u, v} ∈ E =⇒M [u, v] = 1 .

The accumulated weights of the sets Sab for a, b ∈ {0, 1} are denoted as nM
ab , i. e.,

nM
ab :=

∑
{u,v}∈Sab

M [u, v] .

Note that in the case of complete graphs, off-diagonal elements in M have to
be one, thus nab = nM

ab for a, b ∈ {0, 1} and arbitrary pair weightings. The short-
cut M(V ′) for V ′ ⊆ V denotes the sum of weights over all pairs of nodes in V ′.
Replacing nab with nM

ab in the formula given in Section 4.1.1, we obtain the Equa-
tions (4.17)–(4.20).

RM(C1, C2) := 1− nM
11 + nM

00

M(V )
(4.17)

RM
adj(C1, C2) := 1− nM

11 − t3
1
2
(t1 + t2)− t3

, with (4.18)

t1 :=
k∑

i=1

M(Ci), t2 :=
∑̀
k=1

M(C ′
j), and t3 :=

t1t2
M(V )

FMM(C1, C2) :=


1− nM

11√
(nM

11 + nM
10)(n

M
11 + nM

01)
, if |C1| 6= |V | ∧ |C2| 6= |V |∣∣ |C1| − |C2| ∣∣

|V | − 1
, otherwise

(4.19)

JM(C1, C2) :=


1− nM

11

nM
11 + nM

10 + nM
01

, if |C1| 6= |V | ∧ |C2| 6= |V |

0 , otherwise

(4.20)
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The adjacency matrix A, i. e., the |V | × |V |-matrix over {0, 1} where A[u, v] = 1
if and only if {u, v} ∈ E, is a pair weighting. The resulting values nA

ab are then just
the sizes of Sab∩E for a, b ∈ {0, 1}. Another pair weighting is the truncated inverse
distance matrix Dk with k ∈ N defined as

Dk[u, v] :=

{
1

dist(u,v)
, if dist(u, v) ≤ k

0 , otherwise
, (4.21)

where dist(u, v) denotes the graph-theoretical distance between the nodes u and v.
Note for k = 1 we obtain the adjacency matrix, i. e., A = D1.

4.2.2. Editing-Set Comparators
Although the above presented extended pair comparators are true extensions, their
current definition does not allow the comparison of two clusterings of two graphs
with the same nodeset but different edgeset. The original pair comparators could
handle such cases, since they solely depended on the nodeset. In the following, we
present a first approach for a graph-structural measure that is based on editing sets
and can deal with different edgesets. Further comparators and a more complete
discussion is given in [31, 33].

The editing set FC of a clustering C is the set of pairs of nodes that have either
to be added or delete in order to obtained disjoint and complete clusters. Infor-
mally, this set describes the errors of C with respect to the ideal case of disjoint
cliques. Note, that the editing set and performance are high related as can be seen
in Equation (4.22):

perf (C) = 1− |FC|
1
2
|V | (|V | − 1)

. (4.22)

The Editing Set Difference (Equation (4.23)) is defined as the normalized cardinality
of the geometric difference of the two editing sets, i. e.,

ESD(C1, C2) :=
|FC ∪ FC′| − |FC ∩ FC′|

|FC ∪ FC′|
= 1− |FC ∩ FC′|

|FC ∪ FC′|
. (4.23)

A potential drawback is its sensitivity to small perturbations. Consider the cases
where |FC ∪ FC′| = 2 and |FC ∩ FC′| = 1, then Editing Set Difference measures always
a distance of 0.5. Thus, we defined also a node-normalized version of Editing Set
Difference as given in Equation (4.24).

ESDn(C1, C2) :=
|FC ∪ FC′| − |FC ∩ FC′|(|V |

2

) . (4.24)
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Chapter 5

Clustering Methods

In this chapter, we present an overview of algorithmic paradigms and approaches
used to calculate clusterings. It is split in three parts: First, some fundamental
techniques are explained. Second, instances that embody these principles are de-
scribed. Third, a detail description of some selected algorithms that have been used
in our experimental evaluation is presented. The first two parts have been published
in [47].

5.1. Generic Paradigms

The description of generic methods is structured into three groups: Greedy and
shifting approaches as well as general optimizing techniques utilized to find near-
optimal clusterings. Commonly, the concepts and algorithms apply a certain number
of reductions to obtain an instance where a solution can easily be computed, and
then extend it to the original input. This is very similar to the standard divide
and conquer techniques, where instances are recursively divided until the problem
is trivially solvable. In contrast to this, the reduction step is more general and
can modify the instance completely. Thus, the reduced instance does not need to
be a subinstance of the original problem. The reduction step is usually composed
of two parts itself. First, significant substructures are identified. These can be
bridges that are likely to separate clusters, or dense groups that indicate parts
of clusters. Such an identification is often formulated as a hypothesis, and the
recognized substructures are considered as evidence for its correctness. After the
recognition phase a proper modification is applied to the current input graph. Such
transformations can be arbitrary graph operations, however, the usual modifications
are: addition and deletion of edges, as well as collapsing subgraphs, i. e., representing
a subgraph by a new meta-node. A sketch of this idea is given in Figure 5.1. The
‘shapes’ of the (sub)instances indicate the knowledge of clustering, i. e., smooth
shapes point to fuzzy information while the rectangles indicate exact knowledge.
In the initial instance (left figure, upper row), no clustering information is present.
During the reduction phases parts of the graph became more and more separated,
which is indicated by the disjoint objects. The right instance in the upper row can
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be easily solved, and the fuzzy information is transformed into exact information
with respect to the given instance. Based upon it, the expansion phase transfers this
knowledge to the original instance (left figure, lower row). An additional difference

reduce−−−→ reduce−−−→

↓ solve

expand←−−−− expand←−−−−

Figure 5.1.: Example of successive reductions. The ‘shapes’ of the (sub)instances
indicate the knowledge of clustering, i. e., smooth shapes point to fuzzy
information while the rectangles indicate exact knowledge. The first
row shows the application of modifications, while the second indicates
the expansion phases

to divide and conquer methods is that the size of the considered graphs can increase
during the reduction phases.

5.1.1. Greedy Concepts
Most greedy methods fit into the following framework: start with a trivial and feasi-
ble solution and use update operations to lower its costs recursively until no further
optimization is possible. This scheme for a greedy approach is shown in Algorithm 1,
where c(L) denotes the cost of solution L and Ng(L) is the set of all solutions that
can be obtained via an update operation starting with solution L. This iterative
scheme can also be expressed for clusterings via hierarchies. A hierarchy represents
an iterative refinement (or coarsening) process. Greedy methods that use either
merge or split operations as updates define a hierarchy in a natural way. The re-
striction to one of these operations guarantees the comparability of clusterings, and
thus leads to a hierarchy. These two concepts will be formalized shortly, before that
some facts of hierarchies are briefly mentioned.

Hierarchies provide an additional degree of freedom over clusterings: the number
of clusters is not fixed. Thus, they represent the group structure independently of its
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Algorithm 1: Scheme for greedy methods

let L0 be a feasible solution
i← 0
while {L : L ∈ Ng(Li) , c(L) < c(Li)} 6= ∅ do

Li+1 ← argminL∈Ng(Li)
c(L)

i← i + 1
return Li

granularity. However, this feature usually increases the space requirement, although
a hierarchy can be implicitly represented by a tree, also called a dendrogram, that
represents the merge/split operations. Algorithms tend to construct it explicitly.
Therefore, their space consumption is often quadratic or larger. For a few special
cases these costs can be reduced with the help of data structures [40].

The Linkage process (Agglomeration) iteratively coarses a given clustering by
merging two clusters until the 1-clustering is reached. The formal description is
shown in Definition 5.1.

Definition 5.1 (Linkage). Given a graph G = (V, E, ω), an initial clustering C1 and
either a global cost function cglobal : A (G) → R+

0 or a cost function clocal : P (V ) ×
P (V )→ R+

0 for merging operations, the Linkage process merges two clusters in the
current clustering Ci := {C1, . . . , Ck} while possible in the following recursive way:

global: let P be the set of all possible clusterings resulting from Ci by merging two
clusters, i. e.,

P :=
{
{C1, . . . , Ck} \ {Cµ, Cν} ∪ {Cµ ∪ Cν} | µ 6= ν

}
,

then the new clustering Ci+1 is defined as an element in P with minimum
cost with respect to cglobal.

local: let µ, ν be those two distinct indices such that clocal has one global minimum
in the pair (Cµ, Cν), then the new clustering Ci+1 is defined by merging Cµ

and Cν, i. e.,

Ci+1 := {C1, . . . , Ck} \ {Cµ, Cν} ∪ {Cµ ∪ Cν} .

Although the definition is very formal, the basic idea is to perform a cheapest
merge operation. The cost of such an operation can be evaluated using two different
view points. A local version charges only the merge itself, which depends only
on the two involved clusters. The opposite view is a global version that considers
the impact of the merge operation. These two concepts imply also the used cost
functions, i. e., a global cost function has the set of clusterings as domain while the
local cost function uses a pair of node subsets as arguments. An example of linkage is
given in Figure 5.2. The process of linkage can be reversed, and, instead of merging
two clusters, one cluster is split into two parts. This dual process is called Splitting
(Diversion). The formal description is given in Definition 5.2.
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(a) initial step (b) 2nd step (c) 3rd step

(d) 4th step (e) 5th step (f) final step

Figure 5.2.: Example of linkage

Definition 5.2 (Splitting). Let a graph G = (V, E, ω), an initial clustering C1, and
one of the following function sets be given:

global: a cost function cglobal : A (G)→ R+
0

semi-global: a cost function cglobal : A (G)→ R+
0 and a proper cut function

Slocal : P (V )→ P (V )

semi-local: a cost function clocal : P (V ) × P (V ) → R+
0 and a proper cut func-

tion Slocal : P (V )→ P (V )

local: a cost function clocal : P (V )× P (V )→ R+
0

The Splitting process splits one cluster in the current clustering Ci := {C1, . . . , Ck}
into two parts. The process ends when no further splitting is possible. The cluster
that is going to be split is chosen in the following way:

global: let P be the set of all possible clusterings resulting from Ci by splitting one
cluster into two non-empty parts, i. e.,

P :=
{
{C1, . . . , Ck} \ {Cµ} ∪ {C ′

µ, Cµ \ C ′
µ} | ∅ 6= C ′

µ ( Cµ

}
,

then the new clustering Ci+1 is defined as an element in P with minimum
cost with respect to cglobal.
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semi-global: let P be the set of all possible clusterings resulting from Ci by splitting
one cluster into two non-empty parts according to Slocal, i. e.,

P :=
{
{C1, . . . , Ck} \ {Cµ} ∪ {Slocal(Cµ) , Cµ \ Slocal(Cµ)}

}
,

then the new clustering Ci+1 is defined as an element in P with minimum
cost with respect to cglobal.

semi-local: let µ be an index such that clocal has one global minimum in the pair
(Slocal(Cµ) , Cµ\Slocal(Cµ)) then the new clustering Ci+1 is defined by splitting
cluster Cµ according to Slocal, i. e.,

Ci+1 := {C1, . . . , Ck} \ {Cµ} ∪ {Slocal(Cµ) , Cµ \ Slocal(Cµ)} .

local: let µ be an index and Cν be a proper subset of cluster Cµ such that clocal has
one global minimum in the pair (Cν , Cµ \ Cν), then the new clustering Ci+1

is defined by splitting cluster Cµ according to Slocal, i. e.,

Ci+1 := {C1, . . . , Ck} \ {Cµ} ∪ {Cµ, Cµ \ Cν} .

Similar to the Linkage process, the definition is rather technical but the basic idea
is to perform the cheapest split operation. In contrast to the Linkage method, the
cost model has an additional degree of freedom because clusters can be cut in several
ways. Again, there is a global and a local version that charge the impact of the split
and the split itself, respectively. Both correspond to the views in the Linkage process.
However, rating every possible non-trivial cut of the clusters is very time consuming
and usually requires sophisticated knowledge of the involved cost functions. One way
to reduce the set of possible splittings is to introduce an additional cut function Slocal.
It serves as an ‘oracle’ to produce useful candidates for splitting operations. The
semi-global and semi-local versions have the same principles as the global and the
local version, however, their candidate set is dramatically reduced. Therefore, they
are often quite efficiently computable, and no sophisticated knowledge about the
cost function is required. However, the choice of the cut function has usually a large
impact on the quality.

Both, the Linkage and the Splitting process, are considered to be greedy for sev-
eral reasons. One is the construction of the successive clusterings, i. e., an update
operation chooses always the cheapest clustering. These can produce total or com-
plete hierarchies quite easily. Total hierarchies can be achieved by simply adding
the trivial clusterings to the resulting hierarchy. They are comparable to all other
clusterings, therefore preserving the hierarchy property. Recall that complete hier-
archies are hierarchies such that a clustering with k clusters is included for every
integer k ∈ [1, n]. Both processes lead to a complete hierarchy when initialized with
the trivial clusterings, i. e., singletons for Linkage and the 1-clustering for Splitting.
Note that in the case of the Splitting process, it is essential that the cut functions
are proper. Therefore, it is guaranteed that every cluster will be split until each
cluster contains only one node. Although the cost can be measured with respect to
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the result or the operation itself, clairvoyance or projection of information into the
future, i. e., accepting momentarily higher cost for a later benefit, is never possible.

Because of their simple structure, especially in the local versions, both concepts
are frequently used and are also the foundation of clustering algorithms in general.
The general local versions can be very efficiently implemented. For the Linkage
process, a matrix containing all cluster pairs and their merging cost is stored. When
an update operation takes place, only the cost of merging the new resulting cluster
with another is recalculated. For certain cost functions this scheme can even be
implemented with less than quadratic space and runtime consumption [40]. In the
case of the Splitting process, only the cut information needs to be stored for each
cluster. Whenever a cluster gets split, one has to recompute the cut information
only for the two new parts. This is not true for any global version in general.

5.1.2. Shifting Concept
In contrast to the global action of the previous greedy strategies, the shifting ap-
proaches work more locally. They choose an initial clustering and iteratively modify
it until a local optimum is found. Usually three operations are permitted: first,
a node moves from one cluster to another existing cluster, second, a node moves
from one cluster to create a new cluster, and, third, two nodes exchange their clus-
ter assignments. Sometimes more complex operations, like instant removal of one
cluster and reassigning nodes to already existing clusters, are allowed. However,
these complex operations are usually only used for speed-up, or to avoid artifical
situations, therefore they will not be discussed here. Note that one can typically
simulate them by a sequence of simple operations. Regarding algorithmic aspects,
shifting concepts are relatively close to the greedy ones. Algorithm 2 shows the
general procedure where Ns(L) denotes the set of all clusterings that can be ob-
tained by applying the modifications to the clustering L. Step 2 can be based on

Algorithm 2: Scheme for shifting methods

let L0 be an initial solution
i← 0
while Ns(Li) 6= ∅ do

choose Li+1 ∈ Ns(Li)1

i← i + 1
return Li

cost or potential functions, random selecting, or on the applicational background.
The technical definition of the shifting concept is given in Definition 5.3, and uses a
potential function as selection criteria.

Definition 5.3. Given a graph G = (V, E, ω), an initial clustering C1 and a potential
function Φ : A (G) ×A (G) → R, the Shifting process is defined as performing any
operation on the current clustering Ci that results in a new clustering Ci+1 such
that Φ(Ci, Ci+1) > 0.
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Shifting concepts have many degrees of freedom. The choice of potential func-
tions is critical. There are two common subtypes of potentials: type-based and
compressed. Type-based potentials are functions that heavily depend on the type of
operations. They are often used to preserve certain properties. In the case that cre-
ating a new cluster via a node movement is very expensive in contrast to the other
node movements, it is very likely that the number of clusters in the final cluster-
ing is roughly the same as in the initial clustering. Compressed or sequenced shifts
collapse a series of operations into one meta-operation, and rate only the output of
this operation with its argument. Thus, a certain number of operations are free of
charge. These functions are often used in combination with a standard potential
function that has many local optima. By ignoring a number of intermediate steps,
it may be easier to reach a global optimum.

Owing to their contingent iterative nature, shifting approaches are rarely used
on their own. There can be sequences of shifting operations where the initial and
final clustering are the same, so-called loops. Also, bounds on the runtime are more
difficult to establish than for greedy approaches. Nonetheless, they are a common
postprocessing step for local improvements. An example of shifting is given in
Figure 5.3.

(a) initial step (b) 2. step (c) 3. step

Figure 5.3.: Example of shifting

5.1.3. General Optimization Concepts for Clustering
The two previous concepts, the greedy and the shifting framework, were fairly
adapted. Both defined precisely the permitted operations and constraints, and the
conditions of their application. The following concepts can be used for arbitrary
optimization approaches. They are based on the idea that clusterings can be for-
mulated as the result of a generic optimization process. The input data may be
generated in a certain way with an implicit clustering structure. The optimization
problem is to extract a clustering that is relatively close to the hidden one. Alterna-
tively, the contained clustering is the result of an unknown optimization process. It
is only known that this process respects certain paradigms, like intra-cluster density,
inter-cluster sparsity, or both. The related problem is again to extract a cluster-
ing that is relatively close to the hidden one. The variety of techniques to solve
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optimization problems is gigantic, therefore only the following are considered here:
parameter estimation, evolutionary and search-based approaches.

Parameter estimation is based on the assumption that the input data was created
by a (random) sampling process: There is a hidden graph with a certain clustering,
then a sample of the (whole) graph is drawn that will be the input graph. The
approach then tries to estimate the parameters of this sampling process. These
parameters will be used to reconstruct the clustering of the hidden graph. Originally,
these methods were introduced to find clusterings for data embedded in metric
spaces [66, Section 5.3]. There are clusterings that may be represented by a union
of distributions, and the goal is to estimate the number of distributions and their
parameters (mean, deviation, etc.). The Expectation Maximization (EM) is the most
commonly used method. In general, it is only applied to data that is embedded in a
metric space. Although graphs are typically not embedded, one can think of many
processes that involve an implicit (metric) topology. An example is the following:
let a finite space with a topology, a set of points, referred to as cluster centers, and
a probability distribution for each cluster center be given; then n nodes/points are
introduced by choosing one cluster center and a free spot around it that respects
both the topology and its distribution. Two nodes will be connected by edges if
their distance (with respect to the topology) is smaller than or equal to a given
parameter. An example of this process is shown in Figure 5.4. Thus, the graph

(a) initial topology (b) 2 cluster centers (dia-
monds) and 6 nodes (circles)

(c) resulting graph with dis-
tance threshold 3

Figure 5.4.: Example of generating a graph and its clustering using distributions.

(Figure 5.4(c)) would be the input graph, and the estimation approach would try
to estimate the number of cluster centers as well as the assignment of each node to
a cluster center. In the EM case, the resulting clustering should have the largest
expectation to be the original hidden clustering, i. e., the same number of cluster
points and the correct node cluster-point assignment. A similar technique as given
in the example is used to generate embedded graphs with a known clustering which
will be introduced in Section 6.2.2.

Evolutionary approaches such as genetic algorithms (GA), evolution strategies
(ES) and evolutionary programming (EP) iteratively modify a population of solution
candidates by applying certain operations. ‘Crossover’ and ‘mutation’ are the most
common ones. The first creates a new candidate by recombining two existing ones,
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whilst the second modifies one candidate. To each candidate a fitness value is
associated, usually the optimization function evaluated on the candidate. After a
number of basic operations, a new population is generated based on the existing one,
where candidates are selected according to their fitness value. A common problem
is to guarantee the feasibility of modified solutions. Usually this is accomplished
by the model specification. In the context of clustering, the model can either use
partitions or equivalence relations.

Search-based approaches use a given (implicit) topology of the candidate space and
perform a random walk starting at an arbitrary candidate. Similar to evolutionary
approaches, the neighborhood of a candidate can be defined by the result of simple
operations like the mutations. The neighborhood of a clustering usually is the set
of clusterings that result from node shifting, cluster merging, or cluster splitting.
The selection of a neighborhood is also based on some fitness value, usually the
optimization function evaluated on the candidate. The search usually stops after
a certain number of iterations, after finding a local optimum, or a combination of
both.

5.2. Implementation of the Paradigms

Clustering methods have been developed in many different fields. They were usually
very adapted, either for specific tasks or under certain conditions. The reduction of
algorithms to their fundamental ideas, and constructing a framework on top, started
not that long ago. Thus, this part can only give a short synopsis about commonly
used methods.

Instances of Linkage

The different instances of the Linkage framework were originally designed for dis-
tance edge weights. Distances are the ‘dual’ version of similarities. Historically, the
input data for clusterings algorithms was metrically embedded and complete (the
similarity/dissimilarity of every pair is known). In these scenarios, it is possible to
find clusterings using distance functions instead of similarities, i. e., one has to search
for spatially dense groups that are well-separated from each other. If the distance
function is only partially known, it is no longer possible to derive information about
the similarity of two objects from their distance to other objects.

However, the use of distance functions had certain advantages that can be carried
over to similarity weights. One reason was that distances can be easily combined
to estimate the distance of a path. The most common way is the summation of the
edge weights along the path. The standard local cost functions are defined as:

clocal(Ci, Cj) :=
⊙
{d(u, v) : u ∈ Ci, v ∈ Cj} , (5.1)

where d(u, v) is the length of the shortest path connecting u and v, and
⊙

is a
function that evaluates sets, like minimum, average, or maximum. Indeed these
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three versions are called Single Linkage, Average Linkage, and Complete Linkage.
A possible explanation of the name Single Linkage is that the cheapest, shortest
path will be just an edge with minimum weight inside of E(Ci, Cj). Note that
the cost function can be asymmetric and have infinity as its value. Also, note
that it is necessary to use the length of the shortest paths because not every node
pair (u, v) ∈ Ci×Cj will be connected by an edge. In fact, the set E(Ci, Cj) will be
empty in the ideal case.

When dealing with similarities instead of distances one has to define a meaningful
path ‘length’. A simple way is to ignore it totally and define the cost function as

clocal(Ci, Cj) :=
⊙
{M − ω(e) : e ∈ E(Ci, Cj)} , (5.2)

where M is the maximum edge weight in the graph. Alternatively, one can define
the similarity of a path P : v1, . . . , v` by:

ω(P ) :=

(
`−1∑
i=1

1

ω(vi, vi+1)

)−1

. (5.3)

Although this definition is compatible with the triangle inequality, the meaning of
the original range can be lost along with other properties. Similar to cost defi-
nition in Equation (5.2), the distance value (in Equation(5.1)) would be replaced
by (n − 1)M − ω(P ). These ‘inversions’ are necessary to be compatible with our
interpretation of range of cost functions. Another definition that is often used in
the context of probabilities is

ω(P ) :=
`−1∏
i=1

ω(vi, vi+1) . (5.4)

If ω(vi, vi+1) is the probability that the edge (vi, vi+1) is present and these proba-
bilities are independent of each other, then ω(P ) is the probability that the whole
path exists.

Lemma 5.4. Given a undirected, weighted graph G = (V, E, ω), where ω measures
the distance or dissimilarity, then the dendrogram of Single Linkage corresponds to
a Minimum Spanning Tree (MST) of G.

Only a sketch of the proof will be given. A complete proof can be found in [65].
The idea is the following: consider the algorithm of Kruskal where edges are in-
serted in non-decreasing order, and only those that do not create a cycle. From the
clustering perspective of Single Linkage, an edge that would create a cycle connects
two nodes belonging to the same cluster, thus that edge cannot be an inter-cluster
edge, and thus would have never been selected.

The Linkage framework is often applied in the context of sparse networks and
networks where the expected number of inter-cluster edges is rather low. This is
based on the observation that many Linkage versions tend to produce chains of
clusters. In the case where either few total edges or few inter-cluster edges are
present, these effects occur less often.
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S(V ) := min
∅6=V ′⊂V

ω(E(V ′, V \ V ′)) (5.5)

Sratio(V ) := min
∅6=V ′⊂V

ω(E(V ′, V \ V ′))

|V ′| · (|V | − |V ′|)
(5.6)

Sbalanced(V ) := min
∅6=V ′⊂V

ω(E(V ′, V \ V ′))

min(|V ′|, (|V | − |V ′|))
(5.7)

Sconductance(V ) := min
∅6=V ′⊂V

δ(V ′) (5.8)

S2–sector(V ) := min
V ′⊂V,

b|V |/2c≤|V ′|≤d|V |/2e

ω(E(V ′, V \ V ′)) (5.9)

Table 5.1.: Definition of various cut functions

Instances of Splitting

Although arbitrary cut functions are permitted for Splitting, the idea of sparse cuts
that separate different clusters from each other has been the most common one.
Among these are: standard cuts (Equation (5.5)), Ratio Cuts (Equation (5.6)),
balanced cuts (Equation (5.7)), Conductance Cuts (Equation (5.8)), and Bisectors
(Equation (5.9)). Table 5.2 contains all the requisite formulae.

Ratio Cuts, balanced cuts, and Bisectors (and their generalization, the k–Sectors)
are usually applied when the uniformity of cluster size is an important constraint.
These measures are NP-hard to compute in general, expect for the standard cut.
Therefore, approximation algorithms or heuristics are used as replacement. Note
that balanced cuts and Conductance Cuts are based on the same fundamental ideas:
rating the size/weight of the cut in relation to the size/weight of the smaller induced
cut side. Both are related to node and edge expanders as well as isoperimetric
problems. These problems focus on the intuitive notion of bottlenecks and their
formalizations (see Section 3.3 for more information about bottlenecks). Some rela-
tion to spectral properties are covered in [27]. Beside these problems, the two cut
measures have more in common. There are algorithms ([101]) that can be used to
simultaneously approximate both cuts. However, the resulting approximation factor
differs.

Splitting is often applied to dense networks or networks where the expected num-
ber of intra-cluster edges is extremely high. An example for dense graphs are net-
works that model gene expressions [58]. A common observation is that Splitting
methods tend to produce small and very dense clusters.

Non-standard Instances of Linkage and Splitting

There are several algorithms that perform similar operations to ‘linkage’ or ‘split-
ting’, but do not fit into the above framework. In order to avoid application-specific
details, only some general ideas will be given without the claim of completeness.

The Identification of Bridge Elements is a common Splitting variant, where cuts
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are replaced by edge or node subsets that should help to uncover individual clus-
ters. One removal step can lead to further connected components, however it is not
required. Figure 5.5 shows such an example. Most of the techniques that are used

Figure 5.5.: Example for the removal of bridge elements. Removed elements are
drawn differently: edges are dotted and nodes are reduced to their out-
line

to identify bridge elements are based on structural indices, or properties derived
from shortest path or flow computations. Also centralities can be utilized for the
identification [78].

Multi-Level Approaches are generalizations of the Linkage framework, where sub-
sets of nodes are collapsed into a single element until the instance becomes solvable.
Afterwards, the solution has to be transformed into a solution for the original input
graph. During these steps the previously formed groups need not be preserved, i. e., a
group can be split and each part can be assigned to individual clusters. In contrast
to the original Linkage framework, here it is possible to tear an already formed clus-
ter apart. Furthermore, the identified subsets of nodes that are collapsed are relative
small. For example maximum matchings or cliques of constant sizes. Multi-level
approaches are more often used in the context of equi-partitioning, where k groups
of roughly the same size should be found that have very few edges connecting them.
In this scenario, they have been successfully applied in combination with shiftings.
Figure 5.6 shows an example. See also [69, 70] for further examples.

5.3. Algorithms for Closer Examinations

In the following, we present some algorithms in detail that are part of our experi-
mental evaluation given in Section 6. The selection includes both greedy and shifting
algorithms. Some algorithms employ the normalized adjacency matrix of G, i. e.,
M(G) := D(G)−1A(G) where A(G) is the weighted adjacency matrix and D(G) the
diagonal matrix of the weighted node degrees. In order to define D(G)−1, we require
that G contains no isolated nodes.
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(a) input graph (b) identifying groups

(c) collapsing groups (d) solving the instance

(e) expanding internal groups (f) locally optimizing groups

Figure 5.6.: Example of a multi-level approach

5.3.1. Markov Clustering (MCL)
The key intuition behind Markov Clustering (MCL) [100, p. 6] is that a “random
walk that visits a dense cluster will likely not leave the cluster until many of its
vertices have been visited.” Rather than actually simulating random walks, MCL
iteratively modifies a matrix of transition probabilities. Starting from M = M(G)
(which corresponds to random walks of a length of at most one), the following two
operations are iteratively applied:

• expansion, in which M is taken to the power e ∈ N>1 thus simulating e steps
of a random walk with the current transition matrix (Algorithm 3, Step 1)

• inflation, in which M is re-normalized after taking every entry to its rth power,
r ∈ R+. (Algorithm 3, Steps 2–4)

Note that for r > 1, inflation emphasizes the heterogeneity of probabilities within
a row, while for r < 1, homogeneity is emphasized. The iteration is halted upon
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reaching a recurrent state or a fixed point. A recurrent state of period k ∈ N is
a matrix that is invariant under k expansions and inflations, and a fixed point is
a recurrent state of period 1. It is argued that MCL is most likely to end up in a
fixed point [100]. The clustering is induced by connected components of the graph
underlying the final matrix. Pseudo-code for MCL is given in Algorithm 3. Except
for the stop criteria, MCL is deterministic, and its complexity is dominated by the
expansion operation which essentially consists of matrix multiplication. Note that

Algorithm 3: Markov Clustering (MCL)

Input: G = (V, E, ω), expansion parameter e, inflation parameter r

M ←M(G)
while M is not fixed point do

// expansion

M ←M e
1

// inflation

forall u ∈ V do2

forall v ∈ V do Muv ←M r
uv3

forall v ∈ V do Muv ←Muv/
∑

w∈V

Muw
4

H ← graph induced by non-zero entries of M
C ← clustering induced by connected components of H

MCL demonstrates the reduction phase initially described in Section 5.1 quite well.
The updated matrix M can be interpreted as weighted graph, i. e., every non-zero
entry corresponds to an appropriated weighted edge. During the process, clusters
become more and more isolated and also sparser; in the graph corresponding to a
fixed point, the cluster are almost always stars. However, the number of non-zero
entries during the first few iterations increases drastically. In a straight forward
implementation, one expansion step requires cubic runtime (with respect to the
number of nodes) and one inflation step needs quadratic runtime. As suggested by
the author, one can reduce the runtime and the space consumption drastically by
applying a heuristic which keeps only the k largest value per row. In this way the
matrix M is kept sparse.

5.3.2. Iterative Conductance Cutting (ICC)

The basis of Iterative Conductance Cutting (ICC) [101] is to iteratively split clus-
ters using minimum conductance cuts. Finding a cut with minimum conductance
is NP–hard, therefore the following poly-logarithmic approximation algorithm is
used. Consider the node ordering implied by an eigenvector to the second largest
eigenvalue of M(G). Among all cuts that split this ordering into two parts, one of
minimum conductance is chosen. Splitting of a cluster ends when the approximation
value of the conductance exceeds an input threshold α∗ first. Pseudo-code for ICC
is given in Algorithm 4. Except for the eigenvector computations, ICC is deter-
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ministic. While the overall running time depends on the number of iterations, the
running time of the conductance cut approximation is dominated by the eigenvector
computation which needs to be performed in each iteration. The runtime of such
an eigenvector computation heavily depends on the structure of subgraph and can
take time O ((|V |+ |E|) log |V |) in the worst case.

Algorithm 4: Iterative Conductance Cutting (ICC)

Input: G = (V, E, ω), conductance threshold 0 < α∗ < 1
C ← {V }
while there is a C ∈ C with φ (G[C]) < α∗ do

x← eigenvector of M(G[C]) associated with second largest eigenvalue

S ←
{

S ⊂ C | max
v∈S
{xv} < min

w∈C\S
{xw}

}
C ′ ← arg min

S∈S
{φ (S)}

C ← (C \ {C}) ∪ {C ′, C \ C ′}

5.3.3. Geometric MST Clustering (GMC)
Geometric MST Clustering (GMC) is a graph clustering algorithm combining spec-
tral partitioning with a geometric clustering technique introduced by us in [46, 24].
A geometric embedding of G is constructed from d distinct eigenvectors x1, . . . , xd of
M(G) associated with the largest eigenvalues less than 1. The edges of G are then
weighted by a distance function induced by the embedding and a minimum spanning
tree (MST) of the weighted graph is determined. A MST T implies a sequence of
clusterings as follows: For a threshold value τ let F (T, τ) be the forest induced by
all edges of T with weight at most τ . For each threshold τ , the connected compo-
nents of F (T, τ) induce a clustering. Note that there are at most |V | − 1 thresholds
resulting in different forests. The resulting clustering of F (T, τ) does not depend
on the actual MST T (see Lemma 5.8), therefore we denote it with C(τ). In order
to verify this statement, we prove the following three lemmas, which handle locality
in the connected components (Lemma 5.5), very similar MSTs (Lemma 5.6), and
sequences of MSTs (Lemma 5.7).

Lemma 5.5. Let G = (V, E, ω) be an undirected weighted graph with ω : E → R+.
Let T = (V, E ′) be a spanning tree and V ′ the node set of a connected subtree T ′

in T . Then the following equation holds for every threshold τ :

F (T, τ) � V ′ = F (T ′, τ) . (5.10)

Proof. The clustering F (T, τ) � V ′ of V ′ can be rewritten as

F (T, τ) � V ′ = {C ∩ V ′ | C ∈ F (T, τ) ∧ C ∩ V ′ 6= ∅} .

We prove equation 5.10 by using mutual inclusion. First, we show that the left
side is included in the right one. Let C ′ ∈ F (T, τ) � V ′ and C ∈ F (T, τ) such
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that ∅ 6= C ′ = C ∩ V ′. Then for every pair of nodes contained in C ′ there exists
an unique path p in T such that each edge has a weight less than τ . Since T ′

is connected and spans V ′, every path in T connecting two nodes in V ′ is totally
contained in T ′. Thus, there exists a C ′′ ∈ F (T ′, τ) such that C ′ ⊆ C ′′. For every
node pair in C ′′ there exists an unique path in T ′ such that each edge has a weight
less than τ . This path is also a path in T with the same property, therefore C ′ = C ′′.

Second, we show that the right side is included in the left one. Let C ∈ F (T ′, τ),
then there exists a unique path in T ′ between every pair in C such that each edge
has weight less than τ . This path is also a path in T with the same property, thus
there exists a cluster C ′ ∈ F (T, τ) with C ⊆ C ′. Moreover the following inclusion
holds:

C = C ∩ V ′ ⊆ C ′ ∩ V ′ .

Thus, it is sufficient to show that C ′ ∩ V ′ = C. Suppose otherwise and let u be
a node in C and v a node in (C ′ ∩ V ′) \ C. Then there exists a unique path p
connecting u and v in T such that every edge in p has weight less than τ . Since T ′

is connected and u, v ∈ V ′, the path p has to be contained in T ′ as well. However,
every path connecting u and v in T ′ contains an edge weight greater or equal to τ ,
otherwise v would be in C. This contradicts C ( C ′ ∩ V ′.

Lemma 5.6. Let G = (V, E, ω) be an undirected weighted graph with ω : E → R+.
Let T = (V, E ′) and T ′ = (V, E ′′) be two MSTs such that E ′′ = E ′ \ {e′} ∪ {e′′}.
Then the clusterings F (T, τ) and F (T ′, τ) are the same.

Proof. Since both trees T and T ′ are minimum spanning trees, both edges e′ and e′′

have the same weight. Furthermore, let C = (V ′, EC) denote the cycle formed
by e′′ and the path (in T ) connecting its end-nodes. This cycle also contains e′.
The subgraph (V ′, EC \ {e′′}) is the unique path in T connecting the two end-nodes
of e′′. Suppose this path does not contain e′, then it is also a path in T ′. Thus C is
contained in T ′ which contracts T ′ being a tree.

Using Lemma 5.5, it is sufficient to show the following equality

F (T, τ) � C = F (T ′, τ) � C .

In the case that ω(e′) < τ , both clusterings equal {V ′} and are thus the same.
Therefore, let us assume that ω(e′) ≥ τ . We divide the cycle into subpaths pi such
that each edge in the paths has weight less than τ . Since this division is independent
of e′ and e′′, we obtain the following equation:

F (T, τ) � C = {Vi | Vi is the node set of path pi} = F (T ′, τ) � C ,

which concludes the lemma.

Lemma 5.7. Let G = (V, E, ω) be an undirected weighted graph with ω : E →
R+, T = (V, E ′) and T ′ = (V, E ′′) be two different MSTs. Then there exists an

MST T̃ = (V, Ẽ) such that

∃ e′′ ∈ E ′′ \ E ′, e′ ∈ E ′ : Ẽ = E ′ \ {e′} ∪ {e′′} .
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Proof. Let ∆E ′ := E ′′ \ E ′ be the set of tree-edges (in T ′) that are not contained

in T . If |∆E ′| = 1 then T̃ = T ′ suffices. Otherwise, let e′ ∈ ∆E ′. This edge splits T ′

and thus partitions V into two non-empty parts V1 and V2. Since T is a spanning
tree that does not contain e′, there exists an edge e that connects V1 and V2. Both
edges e′ and e have the same weight, otherwise not both trees T and T ′ could have
minimum weight. We define T̃ := (V, E ′ \ {e} ∪ {e′}), it is still spanning and has
the same weight as T , therefore it is an MST.

Lemma 5.8. The clustering induced by the connected components of F (T, τ) is
independent of the particular MST T .

Proof. Let T and T ′ be two different MSTs. By Lemma 5.7, we can construct a
sequence of MSTs such that every two consecutive MSTs differ in exactly one edge.
Using Lemma 5.6, the clusterings induced by such a pair are the same, therefore the
clustering of T and T ′ are the same.

Among the C(τ) we choose one optimizing some measure of quality. Potential
measures of quality are, e. g., the indices defined in Section 3 or combinations thereof.
This universality allows to target different properties of a clustering. Pseudo-code
for GMC is given in Algorithm 5. Except for the eigenvector computations, GMC is
deterministic. Note that, opposite to ICC, they form a preprocessing step with their
number bounded by a (typically small) input parameter. Assuming that the quality
measure can be computed fast, the asymptotic time and space complexity of the
main algorithm is dominated by the MST computation. GMC combines two proven
concepts from geometric clustering and graph partitioning. The idea of using a MST
that way has been considered before [107]. However, to our knowledge the MST
decomposition was only used for geometric data before, not for graphs. In our case,
general graphs without additional geometric information are considered. Instead,
spectral graph theory [27] is used to obtain a geometric embedding that already
incorporates insight about dense subgraphs. This induces a canonical distance on
the edges which is taken for the MST computation.

Algorithm 5: Geometric MST Clustering (GMC)

Input: G = (V, E, ω), embedding dimension d, clustering valuation quality

(1, λ1, . . . , λd)← d + 1 largest eigenvalues of M(G)
d′ ← max {i | 1 ≤ i ≤ d, λi > 0}
x(1), . . . , x(d′) ← eigenvectors of M(G) associated with λ1, . . . , λd′

forall e = (u, v) ∈ E do w(e)←
d′∑

i=1

∣∣x(i)
u − x(i)

v

∣∣
T ← MST of G with respect to w
C ← C(τ) for which quality(C(τ)) is maximum over all τ ∈ {w(e) | e ∈ T}
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5.3.4. Greedy Algorithm for Modularity
Modularity was originally introduced as a selection criteria for a divisive hierarchical
clustering algorithm [79] and later used to define a greedy, agglomerative clustering
algorithm [28]. The greedy algorithm starts with the singleton clustering and itera-

Algorithm 6: Greedy Algorithm for Maximizing Modularity

Input: graph G = (V, E, ω)
Output: clustering C of G
C ← singletons
initialize matrix ∆
while |C| > 1 do

find {i, j} with ∆i,j is the maximum entry in the matrix ∆
merge clusters i and j
update ∆

return clustering with highest modularity

tively merges those two clusters that yield a clustering with the best modularity, i. e.,
the largest increase or the smallest decrease is chosen. After n− 1 merges the clus-
tering that achieved the highest modularity is returned. The algorithm maintains a
symmetric matrix ∆ with entries ∆i,j := q (Ci,j)− q (C), where C is the current clus-
tering and Ci,j is obtained from C by merging clusters Ci and Cj. The pseudo-code
for the greedy algorithm is given in Algorithm 6. An efficient implementation using
sophisticated data-structures requires O (n2 log n) runtime. Note that, n − 1 itera-
tions is an upper bound and one can terminate the algorithms when the matrix ∆
contains only non-positive entries. This property is called uni-modularity and is
proven in [28]. As shown in Section 3.5.1, it is NP-hard to maximize modularity in
general graphs. Thus the greedy approach cannot be optimal. More precisely, we
show that its approximation factor is greater or equal to 2. In order to prove this
statement, we introduce a general construction scheme given in Definition 5.9.

Definition 5.9. Let G = (V, E) and H = (V ′, E ′) be two non-empty, simple, undi-
rected, and unweighted graphs and let u ∈ V ′ be a node. The product G ?u His
defined as the graph (V ′′, E ′′) with

• the nodeset V ′′ := V ∪ V × V ′ and

• the edgeset E ′′ := E ∪ E ′′
c ∪ E ′′

H where

E ′′
c := { {v, (v, u)} | v ∈ V } and

E ′′
H := { {(v, v′), (v, w′)} | v ∈ V, v′, w′ ∈ V ′′, {v′, w′} ∈ E} .

An example is given in Figure 5.7. Informally speaking, the product G ?u H
consists of G and for each node in G a copy of H which is connected by one edge. In
the following, we consider only a special case: Let n ≥ 2 be an integer, H = (V ′, E ′)
be an undirected and connected graph with at least two nodes, and u ∈ V ′ an
arbitrary but fixed node. Furthermore let Cg

k be the clustering obtained with the
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Figure 5.7.: Example of the product K4 ?u P3, where u is one of the endnode of
the P3.

greedy algorithm applied to Kn ?u H starting from singletons and performing at
most k steps that all have a positive increase in modularity and m the number of
edges in Kn ?u H. Next, we present three lemmas that state possible and impossible
merges of the greedy algorithm.

Lemma 5.10. If 2 · |E ′| < n and Cg
k has two clusters Ci and Cj such that both belong

to the same copy of H and E(Ci, Cj) 6= ∅, then merging Ci and Cj increases the
modularity.

Proof. The difference of modularity before and after the merge is

∆q (Ci, Cj) :=
|E(Ci, Cj)|

m
−
∑

u∈Ci
deg u ·

∑
u′∈Cj

deg u′

2m2
.

Since |E(Ci, Cj)| ≥ 1 and
∑

u∈Ci∪Cj
deg u ≤ 2|E ′| + 1, we obtain the following

inequalities:

∆q (Ci, Cj) ≥
1

m
−
∑

u∈Ci
deg u ·

∑
u′∈Cj

deg u′

2m2

≥ 1

m
− 1

m2

(
2|E ′|+ 1

2

)2

.

Due to the fact that 2|E ′| < n, we can conclude

m ·∆q (Ci, Cj) ≥ 1− n2 + 2n + 1

2n + 2
(

n
2

)
+ 2n

≥ 0 .

Lemma 5.11. If 2 · |E ′| + 1 < n and Cg
k has the cluster C := {v} and a cluster Ci

containing only nodes of the v-copy of H and u ∈ Ci, then merging Ci and C
increases the modularity. Furthermore such a merge increases the modularity more
than a merge of two clusters {w} , {w′} for w,w′ ∈ V .

Proof. First note that
∑

w∈Ci
deg w ≤ 2|E ′|+ 1. Thus the increase of modularity is

m ·∆q (Ci, C) ≥ 1− n · (n− 1)

n2 + 3n
≥ 0

Since n(n− 1)/m < n2/m, we conclude ∆q (Ci, C) ≥ ∆q ({v} , {w}) ≥ 0.
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Lemma 5.12. If 2 · |E ′|+ 1 < n and Cg
k has two clusters Ci and Cj each containing

at least two nodes where (exactly) one belongs to V , then the merge of Ci and Cj is
never executed.

Proof. Let v ∈ V be the node of Ci. First, if {v} × V ′ is not completely contained
in Ci, then let C be a cluster of Cg

k such that C∩{v}×V ′ 6= ∅ and C 6= Ci. Since the
greedy algorithm only merges connected clusters C ⊂ {v} × V ′. Then merging Ci

and C increases the modularity more than the merge of Ci and Cj:

m ·∆q (Ci, C) ≥ 1− (n + d) · d′

2m

m ·∆q (Ci, Cj) = 1− (n + d) · (n + d̃)

2m
,

where d is the sum of degrees of nodes in Ci without v, d′ is the sum of degrees
of nodes in C, and d̃ is the sum of degrees of nodes in Cj without those belonging

to V . Since d′ ≤ 2|E ′| ≤ n and d̃ ≥ 1 the merge of Ci and C is performed before
the merge of Ci and Cj.

Second, if Ci = {v} ∪ {v} × V ′ and Ci = {w} ∪ {w} × V ′, then the merge of the
two clusters decreases the modularity:

m ·∆q (Ci, Cj) = 1− (n + 2|E ′|+ 1)2

n2 + (3 + |E ′|)n
.

Since |E ′| ≥ 1, the change of modularity ∆q is negative. Thus the merge will not
be executed.

Thus, we can now characterize the final clustering Cg
n.

Theorem 5.13. Let n ≥ 2 be an integer and H = (V ′, E ′) be a undirected and
connected graph with at least two nodes. If 2|E ′| + 1 < n then the greedy algorithm
returns the clustering Cg with

Cg := {{v} ∪ {v} × V ′ | v ∈ V }

for Kn ?u H (for any fixed u ∈ H). This clustering has a modularity score of

4m2 · q (Cg) = 4m ((|E ′|+ 1) · n)− n (2|E ′|+ 1 + n)
2

.

Proof. Since the greedy algorithm only merges two clusters, if they are connected,
the above Lemmas 5.10, 5.11 and 5.12 ensure that Cg = Cg

k for some sufficient large k.
According to Lemma 5.12, no further merge can occur.

Next we show that the clustering where G and each copy of H form individ-
ual clusters has a greater modularity score. First note, the explicit expression for
modularity.
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Corollary 5.14. The clustering Cs defined as

Cs := {V } ∪ {{v} × V ′ | v ∈ V }

and its modularity is

4m2 · q (Cs) = 4m

(
|E ′|n +

(
n

2

))
− n (2|E ′|+ 1)

2 − (n · (n− 1 + 1))2 .

If n ≥ 2 and 2|E ′|+ 1 < n, then clustering Cs has higher modularity than Cg.

Theorem 5.15. The approximation factor of the greedy algorithm for finding clus-
terings with maximum modularity is at least 2.

Proof. We prove this statement by showing that the quotient q (Cs) /q (Cg) is asymp-
totically two for a certain graph family. Therefore, we simplify the modularity scores
with respect to their dominant terms. Note that 4m = 2n2 + 4n |E ′|+ o (n1.5),

4m ((|E ′|+ 1) · n)− n (2|E ′|+ 1 + n)
2

= 4m · n · |E ′|+ o
(
n3.5
)

(5.11)

and

4m

(
|E ′|n +

(
n

2

))
−n (2|E ′|+ 1)

2 − (n · (n− 1 + 1))2

= 4m · n · |E ′|+ 2mn2 − n4 + o
(
n3.5
)

= 4m · n · |E ′|+ 2n3 |E ′|+ o
(
n3.5
) (5.12)

Thus, we obtain the following equation:

Rg :=
q (Cs)

q (Cg)
= 1 +

2n3 |E ′|+ o (n3.5)

4mn |E ′|+ o (n3.5)

and for sufficiently large n we can omit the additional terms which are contain
in o (n3.5):

2n2

2n2 + 4n |E ′|+ o (n1.5)
=

1

1 + 2|E′|
n

+ o (1/
√

n)

By selecting paths with 1/2
√

n edges as graphs H, we obtain that Rg ≥ 2 − ε for
every positive ε.
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Chapter 6

Experimental Evaluation

The designing and engineering of systematical benchmarks and evaluations suits are
discussed in this chapter. The first two sections give an overview of requirements,
goals and potential pit-falls. The following sections introduce our experimental
study as wells as gained insights.

6.1. General Description and Goals

All quality indices and comparators that have been introduced and studied in the
literature suffer from drawbacks or artifical behavior, nevertheless they are used
as optimization functions for finding good clusterings or for quality assessment in
general. A frequently given justification is that only very specific circumstances
cause these drawbacks and artefacts and that such cases seldomly occur in real-
world applications.

Our goal is to provide an experimental setup for benchmarking and evaluating
clustering algorithms, quality indices, comparators, and other clustering-related
techniques. More precisely, the evaluation framework consists of (simple) unit tests
that function as building blocks. The concept of unit tests was originally intro-
duced in the field of software engineering and programming as an independent code
module that ensures the correct functionality of a component. For example, such
a test ensures that the associated methods of a data structure operate properly.
They are frequently used when the implementation of a component is changed due
to optimization, yet the functionality should remain. In our case, the provided ex-
periments indicate the usability of a clustering technique. Similar to the tests in
software engineering, our tests are only indicators, i. e., a meaningless technique can
still successfully pass all test, while a failed test reveals its impracticality. In ad-
dition, the results of the tests themselves can be used to compare techniques and
deepen the understanding.

Since we focus on an experimental evaluation which requires certain degrees of
(statistical) significance, an essential part is the large availability of pre-clustered
graphs, i. e., graphs with a significant clustering. In the following section, we intro-
duce some generators for pre-clustered graphs and discuss potential drawbacks and
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circular dependencies.

6.2. Generators For Pre-Clustered Graphs

Most research has been focused on finding the decomposition of a given graph into
natural clusters and on evaluating the corresponding quality. In the following, the
dual problem is considered, namely generating a graph such that a given partition
is significantly represented by the graph structure. Although, we restricted our-
selves to the basic paradigm of intra-cluster density versus inter-cluster sparsity,
the quantification of the significance essentially depends on the formalization and
implementation. Most realizations of the paradigm favor different ideal situations
(see Chapter 3) and generally agree only when the graph consists of disjoint and
complete subgraphs.

Before introducing several implemented generators that have been heavily used
in our experimental setup, a formal yet abstract description of the above duality
is given. Consider the simplified view where clustering algorithms, quality indices,
and pre-clustered graph generators are all interpreted as mappings: a clustering
algorithm assigns to the each graph G and significance threshold τ a clustering C
which has a significance score larger or equal to τ ; a quality index maps a pair
consisting of a graph G and a clustering C to a significance score τ ; a pre-clustered
graph generators assigns to each clustering C and significance score τ a graph G such
that C has at least significance τ with respect to G. A pictorial overview is given in
Figure 6.1. Although comparators are not explicitly itemized, they are part of the
threefold interdependency, e. g., as structural quality measure or an optimization
criteria in algorithms. As mentioned this view is simplified, since algorithms and

G

  

τ

~~
clustering algorithm

��
C

G

��

C

��
quality index

��
τ

C

��

τ

��
generator

��
G

Figure 6.1.: Pictorial overview of input and output for clustering algorithms, quality
indices, and generators.
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generators usually do not use an explicit significance threshold as input. However,
the input parameter for algorithms or generators can usually be tune in order to
obtain various significance levels. For example, one can restrict the number of
clusters or the number of edges to generate. The duality is reflected by the fact,
that an quality index or clustering algorithm can be used to define a generator
and vice versa. For example, let index be an arbitrary quality index. Then a the
corresponding generator maps a partition C of the (node-)set V and quality threshold
to a graph, where the edgeset is chosen from

{
E ⊆

(
V
2

)
| index((V, E), C) ≥ τ

}
. Note,

that a necessary condition is that for every partition of V there is an edgeset that has
significance 1, since otherwise the set of possible edgesets can be empty for some τs.
Similar, a generator generator defines a index by mapping the pair (G, C) to that τ
such that G has the maximum probability to be generated by generator(C, τ). A
necessary condition is that every graph is generated with positive probability for
every clustering. Similar correspondings can be made for clustering techniques,
however we omit them since this is only an illustrating example and other more
suitable realizations may exists.

We introduce two simple generator types: first, an extension of the Erdős–Rényi
random graph model G(n, p) and, second, a geometric generators based on Voronoi
Diagrams. In contrast to the above simplified view, they will not have one parameter
defining the significance that has to be achieved, but several parameters controlling
the perturbation of the ideal case of disjoint cliques.

6.2.1. Random Generators

The random pre-clustered graph generator uses an integer array representing the
cluster sizes and two probabilities pin and pout for the existence of intra-cluster
edges and inter-cluster edges as input. The graph is created by first assigning nodes
randomly into clusters respecting the given clusters sizes and then inserting an edge
between pairs of nodes in the same cluster with probability pin and between other
pairs with probability pout. The generator extends the random graph model G(n, p),
introduced in [41], with a group structure.

The Gaussian generator is a restriction of the random pre-clustered graph gen-
erator using a Gaussian distribution for the cluster sizes. More precisely, let n be
the number of nodes the graph should contain. Then the number of clusters k is
uniformly at random selected from the interval [log10(n),

√
n]. The cluster sizes are

chosen from the Gaussian distribution defined by the mean bn/kc and the devia-
tion bn/(4k)c. Due to the random selection of cluster sizes, the number of nodes
is only approximated. One can insert additional nodes or delete nodes in order to
obtain exactly n nodes, however this can introduce artifacts which affect quality in-
dices. This phenomena was observed by us for the measure inter-cluster conductance
in [24].

For increasing n and a fixed pair (pin, pout) the growth of inter-cluster edges exceeds
the growth of intra-cluster edges. Thus, we refine the Gaussian generator to the
significant Gaussian generator that substitutes the parameter pout by the parameter
ρ defined as the ratio of expected inter-cluster edges and expected intra-cluster edges.
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Note that ρ is highly dependent on the number of clusters. The generator initially
creates a Gaussian partition as described for the Gaussian generator, dynamically
calculates pout according to Equation (6.1) and calls the same procedure as the
Gaussian generator for building the edgeset.

ρ =
pout(n− n/k)

pin(n/k − 1)
(6.1)

6.2.2. Geometric Generators
The attractor generator uses geometric properties to generate a significant clustering
based on the following idea: k cluster centers, so called attractor nodes, are placed
uniformly at random with a certain minimum distance t in the plane. The remaining
n− k satellite nodes are assigned to the attractors and their corresponding clusters
using the following policy. At a random position a satellite node u is inserted with
probability d(u, a)/t, where d(u, a) is the Euclidean distance from u to the nearest
attractor node a. If u is inserted, the edge {u, a} is inserted as well. The parameter
ρ sets the threshold for connecting nodes with a certain distance. Note, that the
attractor nodes represent the point sites of a Voronoi Diagram and the satellite
nodes are assigned to the clusters according to the Voronoi cells.

Our implementation uses the unit square for modeling the plane and t =
√

2/(πk)

as threshold for the minimum distance between attractor nodes and ρ ·
√

πk/2 as
maximum distance between two satellite nodes in order to insert an edge. Global
connectivity of the graph is ensured by connecting two attractor nodes if their dis-
tance is below 2.5 · t.

6.2.3. Drawbacks and Circular Dependencies
The presented generators are defined to be mostly independent from the quality
indices, since they are solely based on perturbation of disjoint cliques. Thus they
can be used to evaluate quality indices. However, hidden dependencies may ex-
ist and, even more severely, their perturbation parameters may be counterintuitive
for humans. As mentioned, for increasing values of n and a fixed pair of param-
eters (pin, pout) the growth of the share of the inter-cluster edges exceed that of
the intra-cluster edges when using the Gaussian generator. Thus, larger instances
require a rescaling of pout in order to obtain graphs with similar degrees of perturba-
tion. Some of these drawbacks can be fixed by intelligent adjustments of parameters,
e. g., Gaussian generator versus significant Gaussian generator. On the other hand
one can exploit them to reveal drawbacks in other techniques such as quality indices
or clustering algorithms.

As briefly mentioned at the beginning of Section 6.2, generators, quality measures,
comparators, and clustering algorithms are different aspects of the one and the same
problem, i. e., formalizing the term natural groups. Thus, there is a threefold in-
terdependence between these concepts that implies certain pitfalls for meaningful
benchmarking. Since generators, algorithms, comparators, and quality indices ap-
pear at different stages of the benchmarks, they have to be properly selected. As a
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simple example, consider an algorithm based on minimum cuts. Its evaluation may
not only rely on coverage in order to maintain comparability with other techniques.
Similarly, clustering algorithms that produce balanced clustering with respect to
cluster sizes, should not be solely evaluated on graphs with screw cluster size distri-
bution. More general, a too strongly correlated selection of generator, algorithms,
comparators, and quality indices will only imply the high usability of the technique,
while in the opposite case of un- or anti-correlated concepts, the obtained results
are more or less random. Thus the design of meaningful benchmarks does not only
require a deepened comprehension of each individual component such as generators,
quality measures, comparators, or clustering techniques, but also of their mutual
interdependencies. In principle, there is a theoretical and an experimental approach
to improve this understanding. Although, theoretical examinations provide general
characterizations, they are often hard to perform or tend to be highly specialized.
On the other hand, the feasibility of experimental evaluations mainly depends on
efficient implementations. Moreover, they often reveal additional intrinsic patterns
and provide guidances for theoretical analyses. Our experimental benchmarking is
founded on several basic and intuitive unit tests that are described in the next sec-
tion. These tests provide a rough guideline for the behavior of clustering techniques.

6.3. Engineering Experiments

In general, our evaluation framework is based on the repeated execution of experi-
ments with fixed parameters. Each experiment consists of the following three stages:
(1) generation of preclustered graphs, (2) execution of clustering algorithms, and,
finally, (3) evaluation of obtained clusterings using quality indices and comparators.
Due to the randomness inherent in the generators for preclustered graphs, each
experiment has to be executed until (statistical) significance has been achieved.

Regardless of the concept to test, a general strategy would be to start with very
basic and intuitive instances and then gradually increase the complexity of the test-
ing methods. Our tests are accordingly divided into simple and advanced ones.
Note, that the complexity level is mainly defined by the needed requirements, i. e.,
an advanced unit test relies on already tested components. In the following, we
present our unit tests in their general form. Although, we speak of succeeded and
failed unit tests, this always referees to the result on a large number of experiments
and not to a single instance. Note that adapted tests for specific concepts are not
included, but could be derived from the given ones.

6.3.1. Simple Strategies
The most basic quality measure is coverage. Although it has drawbacks due to its
simplicity, we can derive an initial unit test for generators and clustering algorithms
based on it.

Unit-Test 1 (Basic Generators/Algorithms). For fixed generator and number of



80 Chapter 6: Experimental Evaluation

nodes, an increase (decrease) in the perturbation must not cause an increase (de-
crease) in coverage of the clustering used by the generator or obtained with an algo-
rithm.

Suitable generators have to fulfill Unit Test 1 as a necessary condition. How-
ever, for algorithms the situation is more complex. First note, that an algorithm
may produce clusterings with a significantly different number of clusters as a result
of varying the perturbation of the generator. On the other hand, coverage highly
depends on number of clusters, for example the 1–clustering always has maximum
coverage. Thus a failed Unit Test 1 does not necessarily imply a defect in the algo-
rithm. We illustrate such a case in Figure 6.12(b), where an increase in perturbation
also lead to an increase in coverage. The case is discussed in Section 6.4.3. Unit
Test 1 can be reengineered in order to test quality indices as given in Unit Test 2.

Unit-Test 2 (Basic Quality Index). For a fixed quality measure and fixed cluster
sizes, an increase (decrease) in the perturbation of a random pre-clustered graph
generator must not cause an increase (decrease) in quality of the reference clustering.

Unlike the previous unit test, we are not aware of a violation of Unit Test 2 for any
suitable index. However, special attention has to be paid to worst-case indices that
can have big jump discontinuities. For example, consider intra-cluster conductance,
which rates star graphs with a maximum score of 1, but inserting an arbitrary edge
in such a graph drastically decreases the scores.

The quality index coverage and random pre-clustered graph generators are reliably
simple and thus suffice as a first indicator. In order to reveal additional drawbacks of
the concepts to be tested and in order to reduce any potential correlations between
the considered concepts in the experiments, each can be replaced by a related or
more sophisticated one, such as modularity or geometric generators. On the one
hand, this provides more meaningful insights, on the other hand, more complex
artifacts can arise (see Section 6.4.2). An adaptation of Unit Test 2 for structural
similarity is given in Unit Test 3.

Unit-Test 3 (Basic Comparators). For a random pre-clustered graph generator, the
distance between the reference clustering and a clustering that is obtained from the
reference clustering by randomly exchanging nodes, may not increase with increasing
perturbation. Additionally, it has to be greater than or equal to the distance between
two clusterings that were both obtained by randomly exchanging nodes of the reference
clustering.

The founding intuition is that first the distance between clusterings with similar
structural properties should depend on the significance of the clusterings. More pre-
cisely, comparing a high-quality clustering with a random one should yield a larger
distance than comparing two random clusterings, although their size distributions
are similar. Second, the test also ensures, that if the quality score decreases and
thus the high-quality clustering becomes random as well, then the distance does
not increase. Obviously, a comparator that considers clusterings only as partitions
passes Unit Test 3, since the partitions have similar structural properties, such as
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(almost) matching sizes of clusters, and the comparator will be more or less constant
and be independent of the significance of the clusterings.

Besides replacing fundamental concepts in the basic unit tests, each can be re-
fined in order to focus on individual properties of generators, algorithms, indices, or
comparators.

6.3.2. Advanced Strategies

Recalling our clustering paradigm of intra-cluster density and inter-cluster sparsity,
an extension of the Unit Tests 1 and 2 distinguishes between the two aspects of
the paradigm. More precisely, quality measures should exhibit appropriate behavior
with respect to both aspects.

Unit-Test 4 (Comprehensive Sensitivity of the Paradigm’s Aspects).
Keeping inter-cluster sparsity roughly constant, for a fixed quality index and fixed
cluster sizes, an increase (decrease) in the intra-cluster density of the random pre-
clustered graph generator must not cause a decrease (increase) in quality of the
reference clustering. Analogously, keeping intra-cluster density roughly constant, an
increase (decrease) in the inter-cluster sparsity must not cause a decrease (increase)
in quality of the reference clustering.

The founding motivation is that quality indices should react accordingly to each
parameter of the perturbation, ruling out one-sided dependencies. On the other
hand, a failure of this unit test can either imply such a defect or suggest a reduction
of the parameter set. The evaluation of quality indices is a necessary foundation for
benchmarking algorithms. One corresponding unit test is given in Unit Test 5.

Unit-Test 5 (Algorithm). Let G be a generator passing Unit-Test 1 and index be
an index passing Unit-Test 2. For small perturbation, the quality of the clustering
calculated by an algorithm has to be close to the quality of the clustering used by the
generator. Analogously, large perturbation must result in greater quality than the
reference clustering of the generator.

For small perturbation, the initial clustering used by the generator should be
highly significant and thus it is very unlikely that a much better clustering exists.
Therefore, a decent clustering algorithm has to find a clustering with similar quality.
In the case of large perturbation, the algorithm should find a better clustering due to
the fact that the generated graph structure does not significantly represent the initial
clustering. A failure of Unit Test 5 for small perturbations indicates a potential
defect in the algorithm. However, detecting the reason for a failed test for large
perturbations is quite challenging. Potentially each of the three components or yet
unknown interdependencies may cause the failure. For example, if the perturbation
exceeds a certain level, the generated graph likely contains no significant clustering
and thus the algorithm cannot extract one. We detail a more specific example in
Section 6.4.3. Similar to the duality of Unit Test 1 and 2, Unit Test 5 can be
reengineered in order to obtain a stronger test for generators.
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Unit-Test 6 (Generator). Let A be an algorithm passing Unit Test 5 and index be
the corresponding index used in that unit test. The expected behavior of generators
should be the following: The initial clustering used by a generator has to be at least
as significant as the clustering calculated by A.

Note, that Unit Test 5 and 6 can be alternately executed in order to find and
evaluate improvements of algorithms and generators. The adaption for comparators
is given in Unit Test 7.

Unit-Test 7 (Quality versus comparators). Let G be a generator passing Unit Test 1
and index be an index passing Unit Test 2. The distance between the reference
clustering and a clustering obtained from the reference clustering by moving nodes
in order to decrease the quality with respect to index, may not increase with increasing
perturbation.

Unit Test 7 tests the dependency between distance and quality as the structural
similarity of the clusterings decreases. If many nodes are moved in order to decrease
the quality, the distance should increase for fixed perturbation. On the other hand,
if the number of moved nodes is fixed and the perturbation is increased, the dis-
tance should decrease or at least not increase due to the loss of significance in the
clusterings.

Since tests have been now defined for generators, algorithm, quality indices, and
comparators, one might be tempted to combine all previous unit tests in one such
as: For a fixed generator, quality index, algorithm, and comparator, all passing
corresponding unit tests, the clustering calculated by the algorithm and the reference
clustering of the generator should exhibit similar quality with respect to the given
index and a small distance with respect to the given comparator at least for small
perturbations. Indeed such a test sounds very intuitive and probably will hold
for many combination. However, consider the following case, where the relation
between two different quality measures is evaluated. For example, performance
and modularity. The generator selects only cycles where the reference clustering
has maximum performance (see Lemma 3.14), the algorithms computes a clustering
with maximum modularity (see Theorem 3.26), the quality index is coverage, and the
comparator is an arbitrary one. Since the reference clustering contains only clusters
of size up to three and the calculated clustering has only clusters of size roughly
square root of the number of nodes, the coverage scores will be fairly different and
the distance will be large. Thus the test fails, however, this is not due to a failure
in one of the component but due to the unrelatedness of the two quality measures
at least on the tested graphs. The given example is very artifical and we strongly
believe that the stated test would properly extend our current unit tests. However,
we explicitly do not include it due to large degree of complexity and interdependency
which it would introduce. In general, all above mentioned unit tests constitute our
benchmark foundation and can be combined in order to develop a sound test suite.
Theoretical and experimental insight should be incorporated in the unit tests to
further deepen the understanding. We present a collection of performed unit tests
including their results and interpretations in the next section.
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6.4. Results and Re-Engineering

We present several evaluations of algorithms, generators, comparators, and quality
indices according to our introduced framework. Many of the results have been
previously published in [24, 34, 33, 23, 32].

Statistical significance is important for evaluating clustering techniques. In our
case, we consider the average of the selected quality indices and repeated each ex-
periment at least 50 times and at most 1000 times, but stopped when the length of
the confidence interval fell below 0.1 with a probability of 0.95.

We selected the Markov Clustering (MCL) and the greedy algorithm for optimiz-
ing modularity, both described in Section 5.3, as illustrating examples for the unit
tests. All four presented algorithms are used for a mutual comparison.

In addition to the quality indices introduced in Section 3, we consider the arith-
metic mean of the average density inside the clusters and the sparsity between
clusters. The formal definition is given in Equation (6.2); we use the convention,
that the fraction in the term intra-cluster density for a singleton is defined to be 1,
and that the inter-cluster sparsity of the 1-clustering is also 1.

density (C) :=
1

2

(
1

|C|
∑
C∈C

|E(C)|(|C|
2

)︸ ︷︷ ︸
intra-cluster density

+ 1−

∣∣∣E(C)
∣∣∣(

n
2

)
−
∑

C∈C
(|C|

2

)︸ ︷︷ ︸
inter-cluster sparsity

)
(6.2)

6.4.1. Generators
Random Generators As a first result, we verify the observation which lead to
the definition of the significant Gaussian generator originally, namely, the fact that
for increasing number of nodes n and a fixed pair (pin, pout), the growth of the inter-
cluster edges exceeds the growth of the intra-cluster edges. Recall that coverage is
just the normalized number of intra-cluster edges (with respect to the total number
of edges). Figure 6.2 exemplarily illustrates this fact for two different numbers of
nodes. By comparing Figures 6.2(a) with 6.2(c), the decrease is roughly 20% of
the edges; while for small perturbation roughly 80% of the edges are intra-cluster
edges for n = 100, only 60% remain in the case of n = 1000. Similarly, in the
“random” case of pin ≈ pout, 20% of the edges are still intra-cluster edges in the case
of n = 100, in contrast to the 10% for n = 1000. Beside this artifical behavior of
Gaussian generator, both generators successfully pass unit test 1.

By replacing coverage with inter-cluster conductance, modularity, or density, the
observation still holds as can be seen in Figure 6.3. First of all, all three indices
could be used in stead of coverage and both generators would successfully pass unit
test 1. Second, modularity and inter-cluster conductance are (almost) independent
of the parameter pin for the significant Gaussian generator. This indicates, that
the significance of the reference clustering is not correlated with the density of the
clusters. Note that such ‘feature’ can be quite useful, when evaluating algorithms
that are specifically designed for sparse graphs. In contrast, density cannot exhibit
the same behavior, since it is explicitly defined by the local densities.
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(d) n = 1000

Figure 6.2.: Comparison of Gaussian generator and significant Gaussian generator
using the quality index coverage.
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(d) inter-cluster conductance
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Figure 6.3.: Evaluation of the quality of the reference clustering for Gaussian gener-
ator and significant Gaussian generator and number of nodes n = 1000.
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More about the behavior of the indices and its implications is given in Sec-
tion 6.4.2.

Geometric Generators The validation of the attractor generator is presented
in Figure 6.4. As can be observed, the quality of the reference clusterings does
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Figure 6.4.: Verification of Unit Test 1 for attractor generator.

not heavily depend on the number of nodes. The generator successfully passes Unit
Test 1, since coverage decreases for increasing ρ ≥ 0.5. In the short interval of [0, 0.5]
coverage slightly increases, but not significantly. This phenomena is due to the fact
that with increasing density value ρ, the distance threshold for connecting to two
nodes decreases and thus the growth of intra-cluster edges briefly exceeds that of
inter-cluster edges for very sparse graphs. Similar to the two random generators,
the attractor generator still passes Unit Test 1, if coverage is replace by modularity
or inter-cluster conductance as can be seed in Figure 6.5.

6.4.2. Indices
As has been already observed in the last section (Figure 6.3), modularity, inter-
cluster conductance, and density pass Unit Test 2 when using Gaussian generator
or significant Gaussian generator as generator. Furthermore all three pass Unit
Test 4 for the Gaussian generator, while only density is sensitive to both parameters
of the significant Gaussian generator. The other two indices do not fail the unit
test, since the quality remains the same for varying the probability of the existence
of intra-cluster edges. As previously mentioned, this need neither be a defect in
the generator nor the quality indices. It also does not indicate a reduction of the
parameter set of significant Gaussian generator, since intra-cluster conductance is
sensitive to pin (Figure 6.6). However, this dependency is rooted in fact, that intra-
cluster conductance considers only the induced subgraph (of clusters) and its density.
Thus, intra-cluster conductance has to change for varying probability pin. As has
been shown in Lemma 3.4, intra-cluster conductance has a maximum, if all clusters
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(a) modularity
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(b) inter-cluster conductance

Figure 6.5.: Quality of the reference clustering of attractor generator evaluated with
modularity and inter-cluster conductance.
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(b) significant Gaussian generator

Figure 6.6.: Evaluating intra-cluster conductance for Gaussian generator and signif-
icant Gaussian generator using n = 1000 nodes.

are stars. Since the attractor generator creates local stars and then depending on
the density score inserts “local” edges, intra-cluster conductance fails Unit Test 2
when using this generator. On the other hand, for suitable density score, all clusters
are cliques, thus intra-cluster conductance will be constant for a sufficiently large
threshold (see Figure 6.7).
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Figure 6.7.: Evaluating intra-cluster conductance for the attractor generator us-
ing n = 1000 nodes.

Another artifact arises for the quality index performance. While it successfully
passes Unit Test 2 and 4 for the Gaussian generator (Figure 6.8(a)), it has very
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Figure 6.8.: Evaluating performance for Gaussian generator and significant Gaussian
generator using n = 1000 nodes.

homogenous scores for the significant Gaussian generator. Still the cases of slightly
perturbed disjoint cliques are rated highest. On the other hand, the generated
graphs with ρ ≈ 2 have only a coverage score of 0.35 and still performance rates the
clustering with a score in the interval [0.84, 0.9]. This ‘defect’ is due to the fact, that
the generated graphs are quite sparse (Figure 6.9) and contain at most 30% of all
possible edges. Summarizing, performance should not be used, when the considered
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Figure 6.9.: (Average) Normalized number of edges of the graphs generated by sig-
nificant Gaussian generator with n = 1000 nodes.

graph is very sparse due to its insensitivity.
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During the evaluation of the generators in the last section and our first obser-
vations in this section, density turned out to be a fairly good index. However, an
evaluation using the attractor generator reveals a pit fall. As can be observed in
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Figure 6.10.: Evaluating density for the attractor generator using n = 1000 nodes.

Figure 6.10, the quality index density increases with increasing density parameter ρ.
Since the attractor generator inserts edges according to the density parameter, the
intra-cluster density increases. Furthermore, the overall density, i. e., the ratio of
realized edges to the total possible number of edges, is still relative small, thus, anal-
ogously to performance, density is dominated by the intra-cluster density. Summa-
rizing, density should not be used, when the perturbation of generator is correlated
with the overall density.

The final example target the worst-case index inter-cluster conductance. The
corresponding average-case index is defined as given in Equation (6.3) and the eval-
uation for the Gaussian generator and significant Gaussian generator is give in Fig-
ure 6.3.

δavg (C) :=


1, if C = {V }

1− 1

k

∑
1≤i≤k

φ ((Ci, V \ Ci)) , otherwise . (6.3)

Comparing theses figures with the ones for inter-cluster conductance (Figure 6.3(c)
and 6.3(d)), we observe that the average-case version exhibits more or less the same
behavior; the two scales are slightly shifted, which is to be expected. The high degree
of similarity is due to the fact, that all clusters are almost equal in size, their density,
and their connectivity to the remaining graph. As we observed in [24], (worst-case)
inter-cluster conductance is heavily affected, if the generators produce a graph with
exactly n nodes. In these cases, the probability that a significant smaller cluster
exists, is very large, and thus this cluster will cause a significant smaller score with
respect to inter-cluster conductance. In the next section, we note a similar artifact
for algorithms.
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Figure 6.11.: Evaluation of an average-case inter-cluster conductance for Gaussian
generator and significant Gaussian generator using n = 1000.

6.4.3. Algorithms

As already pointed out, the interpretation of unit test for algorithms is more com-
plex, since potential defects may be intentional due to application-specific require-
ments. In the following, we consider two algorithms as illustrating examples.

The first observation is that both algorithms successfully pass Unit Test 1 using
the significant Gaussian generator, as can be seen in Figure 6.13. While the achieved
coverage score of the greedy algorithms seems to be independent of pin, MCL exhibits
a threshold phenomena. For pin < 0.4 the coverage of clustering found by MCL
heavily depends on pin and ρ. This potential defect is rooted in the realization of
MCL: Since MCL iteratively squares the matrix of transition probabilities, applies
a ‘rich-get-richer’ shifting, and a renormalization, the input graph may not be too
sparse nor too dense. In the first case, the obtained clustering will surely contain
trivial clusters, while in the later case, the clustering will likely contain on very
large cluster. By tuning the parameters of MCL, one might counteract this feature,
however we did not pursue this possibility.

By comparing these scores with the reference clustering (Figure 6.2(b)) with those
of the calculated clusterings, it is evident that the greedy algorithm also passes Unit
Test 5, while MCL only succeeds for small perturbation (large pin and small ρ).
This is again due density issues, mentioned above. Replacing coverage with density,
both algorithms passes Unit Test 5; although, in the case of MCL and pin < 0.2, the
difference is not significant, which makes the decision a bit ambiguous. Similarly,
the usage of modularity instead of coverage shows that both algorithms fail the
corresponding unit test. Again, the differences for the greedy algorithms are hardly
significant for large perturbations.

Summarizing these first observations, both algorithms have certain defects with
respects to our unit test. Still they find very significant clusterings at least for
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Figure 6.12.: Quality of the calculated clustering (with respect to coverage) using sig-
nificant Gaussian generator with n = 100 (Figures 6.12(a) and 6.12(b))
and n = 500 (Figures 6.12(c) and 6.12(d)).
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Figure 6.13.: Quality of the calculated clustering with respect to density (Fig-
ures 6.13(a) and 6.13(b)) and modularity (Figures 6.13(c) and 6.13(d))
using significant Gaussian generator with n = 100.
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graphs generated with small perturbation. Thus, the applicability of these algo-
rithms remains an issue of the input data, parameter tuning, and desired clustering
features.

As stated in the last section, the (worst-case) inter-cluster conductance is fairly
sensitive to the (in)homogeneity of cluster sizes. The corresponding diagrams are
given in Figure 6.14. In the case of small perturbations, both scores are fairly
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Figure 6.14.: Quality of the MCL clustering with respect to inter-cluster conduc-
tance using significant Gaussian generator with n = 100.

similar, while for large perturbations and sparse graphs (pin < 0.3 and ρ < 1) the
average-case inter-cluster conductance is significantly larger. This verifies that the
calculated clustering has at least one very small cluster.

The final example, uses the greedy algorithm in combination with coverage and
density in order to evaluate the attractor generator using Unit Test 6. As can be
seen in Figure 6.15(a), the attractor generator partially meets the condition of Unit
Test 6 with respect to coverage. More precisely, for small perturbations (ρ < 0.75),
the clustering of the generator and the calculated clustering of the greedy algorithms
are the same (in the statistical sense), while for large perturbations the coverage of
reference clustering is significantly worse than the calculated one. In the case of
density, the attractor generator successfully passes Unit Test 6. Although, this
implies a certain validity of the generator, the result is ambiguous, due to the fact,
that density fails the simple Unit Test 2 when using attractor generator.

Summarizing, the two advanced tests, Unit Test 5 and 6, examine certain intuitive
patterns for the behavior of generators and algorithms. Both may easily fail to the
strict formulations. For example the greedy algorithm would pass Unit Test 5, if
the demanded relation between generated and calculated clustering was relaxed.
Such reformulations could be introduced as general unit test, however, their validity
heavily depends on the corresponding application.
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Figure 6.15.: Quality of the reference clustering and the calculated clusterings (us-
ing greedy algorithm and MCL) of attractor generator evaluated with
coverage and density.
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6.4.4. Comparators

In Section 4 comparators for graph clusterings have been summarized. Although
the summary contained well-known measures such as Rand or Meila-Heckerman as
well as our proposals which respect the graph structure in addition, the usability
for almost all measures remains open. In the following first experimental validation
using our unit tests, we show that lattice-based approaches are independent of the
distribution of the edges and that both the extended pair comparators and the
editing-set comparators still have drawbacks and artifical behavior. Parts of this
evaluation can be found in [31, 33].

As a first result, we verify the already mentioned fact that lattice-based compara-
tors are independent of the edgeset. We use the attractor generator and generate
two clusterings that have the same size distribution as the reference clustering, but
are otherwise random. The results are shown in Figure 6.16. As can be seen, all
comparators are more or less constant and do not distinguish the two cases: reference
clustering versus random clustering and random clustering versus random cluster-
ing. With the exception of Rand, all comparators yield a large distance between
the two clusterings which is an appropriate behavior. The small distance measured
by Rand is due to the fact that the size distributions are the same. The results
for the same test using the graph-structural comparators are given in Figure 6.17.
First note that Rand RA and Editing Set Difference ESDn successfully pass the unit
test. For increasing perturbation ρ, the distance between the reference clustering
and the random clustering decreases which indicates the loss of significance in the
reference clustering. An interpretation of the behavior of Editing Set Difference for
the comparison of two random clusterings is that as the perturbation increases the
graphs become denser and thus the structural difference between the random clus-
terings with respect to the graph structure decreases. Interestingly, both Adjusted
Rand RA

adj and Jaccard JA do not distinguish the two cases. While in the case of
Adjusted Rand, both distances are maximum and thus it passes the unit test, the
situation for Jaccard is more complex. The means are not significantly different for
most parameters ρ and thus one can argue that it also passes the unit test. On
the other hand, the distances are not maximum and an experiment with less nodes
revealed a significant gap between the two cases for small ρ. Thus the indifference
for the experiment with 1000 nodes may be an artifact of the normalization and
the sparsity of the graphs. Summarizing, the graph-structural comparators Rand,
Adjusted Rand, and Editing Set Difference clearly passes Unit Test 3, while Jaccard
remains open.

6.4.5. Quality Assessment of Algorithms

In the final part of the experimental evaluation, we compare the algorithms MCL,
ICC, and GMC with each other. While the above unit tests present indicator,
whether the quality of a clustering calculated with an algorithm can compete with
the reference clustering or not, we focus now on their mutual comparison. Note
that such task could formulated as unit tests as well and that comparators could
provide additional insights. However, we choose not such an approach due to hidden
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(i) Variation of Information

Figure 6.16.: Evaluation of the lattice-based comparators considering Unit Test 3
using the attractor generator with n = 1000 nodes.
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(d) Editing Set Difference ESDn

Figure 6.17.: Evaluation of the graph-structural comparators considering Unit Test 3
using the attractor generator with n = 1000 nodes.
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dependencies. The experiments uses the Gaussian generator and the significant
Gaussian generator with n = 1000. The free parameters of the algorithms are set
to e = 2 and r = 2 in MCL, α∗ = 0.4 and α∗ = 0.2 in ICC, and dimension d = 2 in
GMC. As objective function quality in GMC, coverage, performance, inter-cluster
conductance, as well as their geometric mean are considered.

Running Time All presented clustering algorithms were implemented using so-
phisticated data structure and software engineering techniques. However, there are
certain limitations, especially with respect to runtime measurements in Java which
are very difficult. Since such measurements are rarely significant on small scales,
none of the implementations were especially optimized with respect to running time.
Nevertheless, the following results show certain tendencies.

The experimental study confirms the theoretical statements in Section 5.3 about
the asymptotic worst-case complexity of the algorithms. MCL is significantly slower
than ICC and GMC. Not surprisingly as the running time of ICC depends on the
number of splittings, ICC is faster for α∗ = 0.2 than for α∗ = 0.4. Note the coarse-
ness of the clustering computed by ICC depends on the value of α∗. In contrast, all
version of GMC were equally fast, except those that included intra-cluster conduc-
tance in their quality index. On sparse graphs GMC and ICC require roughly the
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Figure 6.18.: Running time of GMC and ICC where the x-axis represents the inner
probability pin and the y-axis shows the outer probability pout. Time
is measured in milliseconds.

same amount of time, while ICC was up to two times faster on dense graphs. The
complete results are given in Figure 6.18. ICC performs on dense graphs so well
since the approximation of intra-cluster conductance yield large values and thus only
a few number of cuts are calculated. In other words, the divisive structure of the
ICC is more suitable for dense graphs than for sparse ones, while the agglomerative
GMC benefits from a sparse edge set. Not very surprisingly the runtime depends
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much more on the outer probability pout than on the inner probability pin which is
due to the fact that the number of potential inter-cluster edges is much larger than
the number of potential intra-cluster edges (for most values of k).
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(d) inter-cluster conductance

Figure 6.19.: GMC using geometric mean of coverage, performance, and inter-cluster
conductance

Mutual Comparison Figures 6.19–6.22 show the different quality indices for
the different algorithms for the first group of experiments. All diagrams show the
inner probability pin as x-axis and the outer probability pout as y-axis. A significant
observation when comparing the three algorithms with respect to the quality indices
regards their behavior for dense graphs. All algorithms (Figure 6.19(a), 6.21(a),
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Figure 6.20.: ICC with α = 0.2
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Figure 6.21.: ICC with α = 0.4
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Figure 6.22.: MCL
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and 6.22(a)) have a tendency to return trivial or very coarse clusterings containing
only few clusters. As mentioned previously, this is due to the fact that the number
of potential inter-cluster edges is much larger than the number of potential intra-
cluster edges. In contrast for sparse graphs, ICC and MCL only find clusterings with
many clusters. This suggests modifications to at least incorporate bounds for the
number of clusters in order to avoid too coarse clusterings. However, for ICC such
a modification would be a significant deviation from its intended procedure. The
consequences of forcing ICC to split even if the condition for splitting is violated are
not clear at all. On the other hand, the approximation guarantee for intra-cluster
conductance is no longer maintained if ICC is prevented from splitting even if the
condition for splitting is satisfied. For MCL it is not even clear how to incorporate
the restriction to non-trivial clusterings. In contrast, it is easy to modify GMC in
such a way that only clusterings with bounded (from below, above, or both) numbers
of clusters are computed. This is accomplished by limiting the search space of τ .

Both ICC and MCL are comparably good with respect to performance, although
neither of them optimizes it explicitly. While GMC is not as good as them with
respect to performance, it outperforms MCL with respect to inter-cluster conduc-
tance and ICC with respect to cov (C). Still, all three algorithms find clusterings
with acceptable quality. Further more, the calculated clusterings similarly react
to changes in the generation parameters, i. e., the quality drops when approaching
random graphs (diagonal). More precisely, GMC (Figure 6.19(d)) and ICC (Fig-
ure 6.21(d)) are more sensitive (with respect to inter-cluster conductance) than the
initial clustering. The results of the second group of experiments using the sig-
nificant Gaussian generator are shown in Figures 6.23–6.25. All diagrams show the
inner probability pin as x-axis and the parameter ρ as y-axis. Recall that ρ roughly
estimates the ratio of (expected) inter-cluster edges to (expected) intra-cluster edges.
Intuitively speaking, the parameter ρ is inversely proportional to the significance of
the initial clustering. The Figures 6.23-6.25 clearly illustrate that both GMC and
ICC find a clustering that is very similar to the initial one with respect to quality.

Summary The experimental evaluation of the algorithms provided several in-
sights: asymptotic running time bounds are verified as well as generic applicability
of certain paradigms, i. e., splitting performs better on dense graphs, while agglomer-
ation is more suited for sparse graphs. Furthermore individual features and artifacts
of the algorithms and choices of parameters are revealed. For example the relation
between the cutting threshold of the ICC and the coarseness of the resulting clus-
tering. Although the experiments were not founded on explicit unit test, one might
derive specific tests in order to verify or falsify the applicability of improving heuris-
tics with respect to the original algorithms. Thus such test provide a useful tool in
the design and re-engineering of clustering algorithms.
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Figure 6.23.: initial clustering
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Figure 6.24.: GMC using geometric mean of cov (C), perf (C), and inter-cluster con-
ductance
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Figure 6.25.: ICC with α = 0.4
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Chapter 7

Variations of Clustering

So far, clustering has been considered as a partition of the node set of the input
graph. However, this view is insufficient when considering additional information
such as temporal data or when the input graph has strong hierarchical characteris-
tics. In this section, we present some extension of the classical partition model in
order to include temporal aspects or to deal with inhomogeneous densities. In the
first part different dynamic problems, like updating clusterings, are discussed and
modeled. The second part gives an overview of structural variations such as fuzzy
clusterings or hierarchical decompositions.

7.1. Dynamics

Clustering is a frequently used tool in the analysis and evaluation of large and
complex networks, ranging from the Internet, the World Wide Web, networks of
sexual contacts, scientific collaboration networks, to metabolic networks. Most such
networks result from or model dynamic processes, thus clustering techniques need
to be adapted. In the following, we introduce a model for clustering graphs that are
subject to changes. More precisely, we address the update problem, i. e., maintaining
the clustering while nodes and edges can be inserted and deleted, as well as the issue
of clustering graph sequences. Furthermore, we give some illustrating examples and
point out several pitfalls. This is only a first step towards a sound foundation for
clustering on evolving graphs. The results have been published in [48].

7.1.1. Preliminaries

In order to deal with changes in the graph structure, we extend the notation given in
Section 2.1. Let G := {(V, E, ω) |E ⊆

(
V
2

)
, ω : E → R+} be the set of all undirected

weighted graphs. For a given graph G = (V, E, ω), five structural operations are
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defined:

deleteEdge (G) :=
{
(V, E ′, ω′) ∈ G | ∃ e ∈ E : E ′ = E \ {e} , ω′ = ω|E′

}
insertEdge (G) := {G′ ∈ G | G ∈ deleteEdge(G′)}

deleteNode (G) :=

{
(V ′, E ′, ω′) ∈ G

∣∣∣∣∣ ∃ u ∈ V : V ′ = V \ {u} ,

E ′ = E ∩
(

V ′

2

)
, ω′ = ω|E′

}
insertNode (G) := {G′ ∈ G | G ∈ deleteNode(G′)}

changeWeight (G) :=
{
(V, E, ω′) ∈ G | ∃ e ∈ E : ω′

|E\{e} = ω|E\{e}
}

A graph modification is a mapping ∆: G → G. It is called simple, if the modification
can be expressed by one of the above structural operations or the identity function
for all graphs.

Let T ⊆ N be a finite collection of nonnegative integers. For every t ∈ T ,
the immediate predecessor (successor) is naturally defined as the largest (smallest)
integer t′ that is contained in T and smaller (larger) than t, if such an element exists.
Otherwise, we set it to t. A graph sequence is a mapping s : T → G. The sequence
is simple, if there exists a simple graph modifications ∆t for all t ∈ T such that

∀t ∈ T : t 6= succ(t) =⇒ s(succ(t)) = ∆t(s(t)) .

Note that any graph modification can be composed by a sequence of simple graph

v1

v3

v1

v2v2

v3

v4
v2

v4

v1

v3

time

Figure 7.1.: An example of a simple graph sequence. In the second time step, a new
node v4 with neighborhood {v2, v3} is inserted and, in the third time
step, the edge between the nodes v2 and v3 is removed.

modifications. Thus, by replacing each graph modification of a non-simple graph
sequence by an equivalent sequence of simple graph modifications, we can translate
any graph sequence into a, possibly much longer, simple graph sequence. Time-
independent simple graph sequences are simple graph sequences where the modifi-
cation function ∆t is the same for all t ∈ T . Note that the sequence (G, G, H) for
two different graphs G 6= H is a simple graph sequence but not time-independent.
An example of a simple graph sequence is given in Figure 7.1.

Furthermore, we will distinguish between a clustering technique and a clustering
algorithm. A clustering technique is a mapping that maps each graph to a set of
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clusterings. For example, the set of all clusterings having maximum score with
respect to a quality index. In contrast, a clustering algorithm or an implementation
maps each graph to exactly one clustering. A clustering algorithm A is associated
with a clustering technique T , if for every graph G the clustering A(G) is contained
in T (G). Note that the crucial point is that a specific implementation generally
does not find all optimal solutions, while the image of the corresponding technique
consists of all optimal solutions. For example, an implementation resolves degrees
of freedom always in the same manner, thus excluding equivalent solutions.

7.1.2. Dynamic Clustering

The dynamic clustering problem is to update a given clustering with respect to a
clustering technique when the associated graph changes. Since every graph mod-
ification can be modeled as a sequence of simple graph modifications, we restrict
ourselves to Problem 7.1 as follows.

Problem 7.1. Given a graph G, a clustering technique T , a clustering C ∈ T (G)
and a simple graph modification ∆. Calculate a clustering C ′ ∈ T (∆(G)).

Naturally, Problem 7.1 can be solved by applying an implementation of the tech-
nique T to the modified graph ∆(G). However, implementations may be demanding
with respect to running time or space consumption; in addition, this approach does
not take any advantage of the given clustering C.

On the other hand, an update strategy that performs better than every algo-
rithm for the clustering technique T , cannot improve the time complexity by more
than a factor of n, where n is the number of nodes. Otherwise, we could use the
update strategy to define a faster algorithm which incrementally builds the graph
with insertNode–operations.

In some cases, the exact update of a clustering technique may produce undesirable
clusterings. For example, when the clustering technique consists of optimizing a
quality measure, the global optima in G and ∆(G) might differ substantially. Many
applications that are based on dynamic clusterings not only rely on the induced
quality of the clustering but also on structural properties. Thus, it is desirable to
preserve structural properties already obtained. As a consequence, the formulation
of Problem 7.1 needs to be subjected to further constraints. Therefore, Problem 7.1
becomes a bicriterial optimization problem, where one criterion is the quality aspect
(induced by the technique) and the other criterion is the similarity to the given
clustering C. This additional restriction is also called the preservation of the mental
map [75]. Most of the techniques for measuring the similarity of two clusterings are
based on distance functions on partitions. However, these approaches neglect the
edge set entirely, since they have their origin in the data mining community where
pairwise information is available. For current approaches including a generalization
for graph clusterings see [33].
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Heuristic Approaches to Dynamic Clustering

Although the above model reflects all theoretical aspects of dynamic clustering an
implementation is highly non-trivial. Among the problems are that most clustering
algorithms are either heuristics since the associated optimization problem is NP-
hard or defined as an iterative process without optimizing a global quality function.
Examples are the algorithm Iterative Conductance Cutting [101, 24], which is a
heuristic approach to optimize the intra-cluster conductance, or the betweenness
clustering algorithm [79], which iteratively removes an edge with maximum be-
tweenness. On the other hand, there is no obvious way to formalize the mental map
property by distance measures.

Feasible approaches to dynamic clustering in general are local updates or shifting
strategies, see [47] for an overview. For several optimization criteria, the update
can be determined with a low computational cost. By limiting the number of exe-
cuted updates, one naturally obtains a clustering close to the initial clustering, thus
preserving the mental map. In addition the search range for the updates can be
scaled to achieve a trade-off between the obtained quality and the preservation of
the mental map.

Counter-Examples

While the above models for clustering on changing graphs incorporate several im-
portant theoretical aspects, there clearly are situations where attention has to be
paid to counterintuitive behavior. In the following, we give some basic examples
consisting of the insertion of an intra-cluster edge (Figure 7.2(a)) and the deletion
of an inter-cluster edge (Figure 7.2(b)).

7.1.3. Time-Dependent Clustering

The time-dependent clustering problem is to identify structural groups within a
given graph sequence. As a simple example consider the temporal evolution of a
recommendation system for books as used for example by Amazon.com. In particular,
the book ‘The Lord of the Rings’ by J.R.R. Tolkien. Before the major success of the
film adaptation, the book belonged to the community of role playing and fantasy
literature, afterwards it belonged to a much broader community including other
popular bestsellers. Another typical example, which we will illustrate in Figure 7.4
below, are the collaboration dynamics in science. Researchers usually start out
working in a narrow field, then, by interdisciplinary commitment, they enter other
communities, possibly migrating to another field entirely.

A formal definition of the term time-dependent clustering is given in Definition 7.2.

Definition 7.2. Given a graph sequence s : T → G, where T is a finite subset of N.
The node set of graph s(t) is denoted by V (t). A time-dependent clustering C(s) is
a partition of the time-dependent node set V which is defined as

V := {(v, t) | t ∈ T, v ∈ V (t)} . (7.1)
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before insertion after insertion

(a) insertion of an intra-cluster edge

before deletion

after deletion

(b) deletion of an inter-cluster edge

Figure 7.2.: Two examples of counterintuitive splitting and merging resulting from
the insertion and the deletion of a single edge, respectively.

Clustering each graph of the sequence independently yields a sequence of cluster-
ings that naturally form a time-dependent clustering. Since temporal relations are
not taken into account, the clustering cannot be used to identify temporal trends.
However, the sequence of clusterings may serve as a starting point and can be trans-
formed into a ‘real’ time-dependent clustering. One possible transformation could
be to merge temporally neighbored clusters that share a large fraction of nodes.
Another approach to obtain a time-dependent clustering employing static clustering
methods is based on the time-expanded graph. Given a graph sequence s : T → G the
time-expanded graph G(s) = (V , E , ω̃), where the edge set is defined as the union of
the two sets Egraph and Etime.

Egraph := {{(v, t), (w, t)} | v, w ∈ V (t), {v, w} ∈ E(t), t ∈ T}
Etime := {{(v, t), (v, t′)} | v ∈ V (t), t′ = min {t′′ | t′′ > t ∧ v ∈ V (t′′)}} ,

where E(t) denotes the edge set of the graph s(t). The weight of an intra-graph
edge {(v, t), (w, t)} ∈ Egraph is give by the weight of ωt({v, w}), where ωt is the
weighting function of graph s(t). The weights on the inter-time edges, i. e., those
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Figure 7.3.: The time-expanded graph of the sequence given in Figure 7.1.

Figure 7.4.: An excerpt from the collaboration graph of T. Lengauer is shown for
the years 1988, 1992, 1993, 1996, and 1998. Round shapes correspond
to publications in the field of biology, and rectangular shapes to those
in computer science. The time-expanded graph is clustered by the large
boxes and inter-time edges are drawn dashed.

contained in Etime, are an additional degree of freedom which can be tuned in order to
obtain meaningful time-dependent clusterings. As an example, the time-expanded
graph of the sequence given in Figure 7.1 is shown in Figure 7.3. Figure 7.4 shows
an excerpt from the time-expanded graph of collaborations of the scientist Thomas
Lengauer. In the 80’s Lengauer concerned himself with algorithmic graph theory,
focusing on planarity. However, in the early 90’s he began collaborations in the
field of bioinformatics and biology and then became an established scientist of the
bioinformatics community. The clustering of the time-expanded collaboration graph
clearly reveals this development, identifying the community transition in the 90’s.
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7.2. Structural Variations

Clusterings were introduced as partitions of the node set. In the following, we briefly
discuss some extensions that still group the node set.

Fuzzy clustering relaxes the disjoint constraint, thus clusters can overlap each
other. The basic idea is that bridging elements belong to adjacent clusters rather
than build their own one. In order to avoid redundancy, one usually requires that
a cluster is not contained in the union of the remaining clusters. Figure 7.5 shows
such an example where the two groups have the middle node in common. It is

Group 1 Group 2

Figure 7.5.: Example of a fuzzy clustering

seldom used, due to its difficult interpretation. For example, it is very difficult to
judge single nodes or small node subsets that belong to a relatively large number of
(fuzzy) clusters. When the number of clusters is also restricted, then artefacts occur
more frequently. For example, if the number is restricted to a constant k, then a
difficult situation is where more than k cliques of size at least k have a large number
of nodes in common (see Figure 7.6(a)). If the number can scale according to a
node’s degree, then sparse clusters can be torn apart. For example, a star with k
leaves may be decomposed into k fuzzy clusters, each containing one leaf and the
central node (see Figure 7.6(b)).

Another extension is to enhance clusterings with representatives . Each cluster
has a representative. It is very similar to the facility location problems [37, 77, 89],
where a candidate covers a subset of elements. This can be seen as ‘representing’
the group by one element. It is usually a node that is located ‘in the center’ of
the cluster. This form of enhancement can be very effective when the graph is
embedded in a metric or a vector space. In these cases the representative can also
be an element of the space and not of the input. The concept is also used to perform
speed-ups or approximate calculations. For example, if all the similarity/distance
values between the nodes in two clusters are needed, then it can be sufficient to
calculate the similarity/distance values between the representatives of the clusters.

7.2.1. Nested Decompositions

Nested clustering or nested decompositions represents a nested sequence of node
subsets, i. e., a mapping η : N→ P (V ) such that:
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(a) Four cliques of size six that have a com-
mon K4. Each maximum clique is a fuzzy
cluster.

(b) A star with four leaves and each fuzzy
cluster contains the center node and one leaf.

Figure 7.6.: Two examples of fuzzy clusterings where many clusters intersect each
other

1. the subsets are nested, i. e.,

∀ i ∈ N : η(i + 1) ⊆ η(i)

2. and the sequence is finite, i. e.,

∃ k ∈ N : ∀` > k : η(`) = ∅ .

The smallest possible k is also called the size of the sequence, and η(k) the top
element. The level of a node is the maximum index i such that the node is contained
in η(i). The intuition behind this structure is that the top element η(k) consists
of locally maximal dense groups. The density of the subsets η(i) also decreases
with decreasing argument i. Therefore the argument i can be seen as degree of
density. One can distinguish two extreme types: The first one is called hierarchies,
where each η(i) induces a connected graph. The corresponding graphs can be seen as
onions, i. e., having a unique core and multiple layers around it with different density.
The second type is called peaks, and is complementary to hierarchies, i. e., at least
one subset η(i) induces a disconnected graph. An appropriate example may be
boiling water, where several hotspots exist that are separated by cooler parts. If
the graph has a skew density distribution then a hierarchy type can be expected.
In this scenario, it can reveal structural information, unlike standard clustering. If
the graph has a significant clustering, then peaks are more likely to occur. In that
case, the top element consists of the core-parts of the original clusters. Figure 7.7
shows such examples.
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Group 1

Group 2

Group 3

(a) hierarchy

Group 1

Group 2

(b) peaks

Figure 7.7.: Examples of a nested clustering

Core Decomposition

Cores are an often used realization of nested decompositions. The concept was
originally introduced in [91] and generalized in [11]. More precisely, the k-core of an
undirected graph is defined as the unique subgraph obtained by iteratively removing
all nodes of degree less than k. A node has coreness `, if it belongs to the `-core but
not to the (` + 1)-core. The `-shell is the collection of all nodes having coreness `.
The core of a graph is the k-core such that the (k + 1)-core is empty. The core
decomposition can be computed in linear time with respect to the graph size [10].
Informally speaking, the coreness of a node can be seen as a robust version of the
degree, i. e., a node of coreness ` keeps its coreness even after removing an arbitrary
number of nodes of smaller coreness. An example is Figure 7.8.

Since cores are nested, we cannot directly use the notation of abstract graphs
as defined in the preliminaries. However, given a core decomposition η of size k,
we can associate two meaningful partitions in the following way: the level view
uses the clustering Cη := {V ′ | ∃ 1 ≤ i < k : ∅ 6= V ′ = η(i) \ η(i + 1)} and the level-
component view considers the refinement C ′η where each cluster corresponds to a
connected component of a cluster in Cη. Note that, the clusters in Cη group all
elements having the same coreness. The level view and the level-component view of
the example give in Figure 7.8 is just a path having three nodes. In Section 8.4.1
and Chapter 9, cores and the corresponding abstract graph are used visualization
networks.
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Figure 7.8.: Example of a core decomposition. The labels of the nodes represent
their coreness, the boxes mark the individual cores.



Part II.

Applications in Network Analysis and
Visualization
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As previously mentioned, clustering techniques are fairly popular tools in the
analysis and exploration of networks and data that can be modeled as graphs. Since
such tasks naturally arise in many fields—such as project planning, transportation
systems, communication networks, bioinformatics, hypertext and text analysis, in-
formation retrieval, data mining, complex systems, and social networks—the reasons
for applying clustering are versatile. In the following, we briefly summarize the two
main motivations which are the organization of data and the identification of struc-
ture. In our case study, which is presented in Chapter 8, both aspects are used in
order to deepen the understanding of the considered network.

Organization of Data

Clustering was originally introduced in the field of data mining as the unsupervised
classification of patterns into groups [65]. Thus, one of the main motivation for its
application is the organization and reduction of data, i. e., by identifying elements
that behave highly similar, one can abstract these elements into a single one. This
technique is also known as abstraction, since redundant elements are removed and
only few representatives are left. Furthermore, this schema is comparable to the
standard technique of Divide-and-Conquer, which “breaks a problem into several
subproblems that are similar, but smaller in size, solves them recursively, and then
combines the solutions to a solution of the original problem” [30, p. 12].

An illustrating example is the segmentation of (textured) images. Such an image
can be interpreted as a two-dimensional grid of pixels where the similarity between
two neighboring pixels is defined by similarity of their color. Applying clustering
techniques leads to a segmentation where clusters form local patches of almost the
same color. In this way, the original image can be represented by the shape of the
patches as well as their color, which can significantly reduce its size. More detailed
examples can be found in [66, Ch. 5.3], [100, pp. 121], or [94].

Identification of Structures

In contrast to abstraction, the second aspect of clustering focuses on the structures
of the individual clusters. Such a reduction can be useful in order to restrict one’s
attention to the relevant part of the network. For example in a recommendation
system, it is sufficient to consider the items within the cluster that matches the
user’s interest. In addition, the study of the internal structure of a cluster provides
valuable insights in the mutual relation of the contained elements. For example
in the analysis of social networks, the study of clusters (also known as cohesive
subgroups) and their internal structure is an important aspect. As social interaction
often operates through direct ties (edges) and bears certain unreliabilities, clusters
naturally form robust groups of local interaction. More details can be found in [104,
Ch. 7].
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(a) original image (b) after segmentation

Figure 7.9.: Example of the segmentation of an image, which is named Lena and
contained in standard benchmark suits, taken from [8].

For an illustration, consider the following excerpt from the recommendation sys-
tem used by Amazon.com [5] given in Figure 7.10. The network was crawled from
the web pages starting from the product ‘VW Beetle Restoration Handbook’ and
following at most nine links. Inspecting the cluster with the dark blue nodes (in
the middle of the right side and in Figure 7.10) as shown in Figure 7.11, reveals
that it actually consists of two parts that are sparsely connected. When consid-
ering the book titles one observes that the left and bigger part contains technical
books in contrast to the right and smaller part which is build of books covering the
history of Volkswagen and the Bug. Since both parts have highly similar content
(with respect to the whole system), they are unified in a cluster. Summarizing, the
analysis of clusters can reveal additional information that need not be visible at the
macroscopic level of the network.
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Figure 7.10.: Excerpt from the recommendation system used by Amazon.com.
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Figure 7.11.: Close-up of one of clusters of the recommendation system given in
Figure 7.10.



Chapter 8

Case Study: Autonomous Systems

In the late 90s of the last century, Faloutsos et. al. observed in [44] that the Internet
(at the IP level as well as at an abstracted level) does not show characteristics of
a random network, although no (central) organization manages it. Simultaneously,
many other technical as well as natural networks which self-emerged or lacked a
common management were studied, and slowly the interdisciplinary field of complex
systems was born. Summarizing the main results, most unstructured, real-world
networks do not have the characteristics of Erdős–Rényi networks, which are uniform
random networks [41]. Furthermore, many of these networks exhibit power-laws : For
example, Faloutsos et. al. observed that the degree distribution, i. e., node degree d
versus the frequency fd of this degree, follows a power-law such as fd ∝ dc for a
constant c. On the one hand, these results indicated that “unstructured” or self-
emerging networks exhibit an underlying structure that is different from random
networks and need to be better understood. On the other hand, insights gained so
far through random models, both theoretical and experimental in nature, became
obsolete to a certain degree.

In the following, we consider an abstract view of the Internet as a case study for
the analyses of complex networks. This abstraction, also known as the AS Network,
holds several benefits over other networks: Foremost its size, which is comparable
small with at most 20,000 nodes and 45,000 edges, and second, the availability of
collected data through academic institutes.

After a brief summary of technical aspects of the AS Network, we present some
results on filtering using the core decomposition which are required for our visu-
alization technique. An analysis of the Peer-2-Peer (P2P) application Gnutella in
the context of the AS Network concludes our case study. The results have been
published in [49, 14, 3, 4].

8.1. Brief Technical Summary

An Autonomous System (AS) is a collection of routing devices and IP networks under
the control of one entity that presents a common routing policy to the Internet. Each
AS is uniquely identified by a 16-bit number. For further technical information see
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RFC 1930 [82]. The AS Network is defined as a graph G = (V, E) where a node
represents an Autonomous System and two nodes are connected by an edge if the
corresponding ASes directly exchange traffic. It is an abstract version of the physical
Internet, where routing devices are interpreted as nodes and an edges connect two
nodes if the corresponding devices can communicate directly.

Since routing in the Internet is basically established by a distributed and dy-
namic version of a shortest-path algorithm (respecting not only path length, but
also commercial interests), the size of the considered network is an essential issue
in terms of runtime and convergency. More precisely, such a protocol would have a
relatively low convergence rate when run on each router in the Internet individually.
The current implementation (Border Gateway Protocol (BGP) [83]) considers only
the AS Network and ensures that the information about reachability of one AS by
the help of another AS is properly propagated; on the other hand, each AS has to
ensure that this global information is correctly distributed inside its own network.
Such multistage techniques are fairly often used in order to speed-up shortest path
computations, see [62, 61, 86, 87] for examples.

8.1.1. Data Collection

Although the definition of the AS Network is precise and straightforward, the gath-
ering of all traffic exchange agreements is hardly possible. The major reason is the
protection of commercial interests, i. e., many ASes which operate as intermediate
ASes that buy and sell Internet connectivity have to protect their exchange agree-
ments in order to successfully compete in the market. Fortunately, some ASes are
willing to provide their data and this information is collected by the Routeviews
Project at the University of Oregon [85]. We refer to these ASes as (observing)
peers . More precisely, all routing paths of the participating peers are stored. The
union of these paths is used to obtain an estimation of the whole AS Network.
An illustrating example is given in Figure 8.1. Note that this data collection can
be interpreted as the exploration of an unknown network through a collection of
single-source shortest path trees. In reality and due to commercial interests, the
reported paths of an AS need not form a tree, but can contain cycles. A theoretical
investigation of network discovery and verification by the help of shortest path trees
was performed by Erlebach et. al. in [42]. Routeviews collect their data in two hour
intervals and started in spring 2001.

An alternative method to gather data about the AS Network is indirect through
trace routes, i. e., collecting information about the path a packet traverses in the
Internet. Since the quality and quantity of observed data directly depends on the
number of trace routes and the number of pairs of endpoints of packets, it is fairly
difficult to get useful data1. The project DIMES [36] considers an approach similar
to SETI@home (http://setiathome.ssl.berkeley.edu/) where a light-weighted
client should be downloaded by many people and in the idle time of their computers

1Also note technical issues: for example sending too many dummy packets from one source to
many destinations could be interpreted as malicious attack and thus would correspondingly be
blocked.

http://setiathome.ssl.berkeley.edu/
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(a) Extract of a routing table

(b) Partial routing tree of the ASes 1299 and 6453 (c) (Partial) Union of the routing
trees given in Figure 8.1(b)

Figure 8.1.: Example of a routing table, the corresponding union of paths for two
ASes and their union.

the experiments are performed. In this way a large number of different endpoints
should be available.

In the following, we focus on the data of Routeviews due to their availability.
We briefly compare the two data sources in Section 8.4.3. When speaking of the
AS Network without further reference, we always consider the data obtained from
Routeviews.

8.2. Preprocessing

As mentioned at the beginning of this chapter, the AS Network is relatively small
compared with other technical networks such as the WWW. Still, the network grew
from 11,000 nodes and 24,000 edges in 2001 to 21,000 nodes and 45,000 edges in
2005 (Figure 8.2). Intuitively, not all ASes are equally important, i. e., ASes could
be divided according to local, regional, national, and international Internet Service
Providers (ISPs) as well as backbones. There is also a more technical definition,
namely tiers, based on the peering behavior of an AS. Without explaining technical
details, note that this classification heavily depends on the current market situation,
e. g., major ASes may stop peering with each other and thus loose their tier status
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Figure 8.2.: Growth of number of nodes and edges in the AS Network beginning in
April 2001 ending in March 2005. The model (dotted lines) predicts
a linear growth of roughly 2100 nodes and 4800 edges per year; and
matches quite well.

– for example, consider the quarrel between Level3 and Cogent [59].

There are successful attempts to recover the commercial dependencies in the AS
Network based on structural properties. More formally, the undirected AS Network
is transformed into a mixed graph, i. e., containing directed edges starting from
a customer and pointing to its provider and undirected edges indicating a uniform
peering relation. Furthermore, each original path (observed from Routeviews) starts
with a sequence of forward edges, followed by at most one undirected edge, and ends
with a sequence of backward edges. Such paths are also called valley-free and model
the flow according to economic interests, i. e., providers route the traffic and no
customer has to pay for traffic which is not intended for him/her. The associated
decision problem, i. e., can all edges be oriented in such a way that all paths are
valley-free, can be solved in polynomial time, the associated optimization problem,
i. e., find an orientation of the edges such that the number of valley-free paths is
the maximum possible, is NP-hard [12]. Besides the theoretical analysis, many
heuristics are known that compute very good orientations, i. e., more than 90% of
all paths are valley-free, as an example consider [51]. Since most of these heuristics
have many degrees of freedom, many good orientations exists [12], which render
the commercial dependencies more or less useless for a filtering approach. In the
following, we discuss a reduction technique based on density.
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8.2.1. Filtering Based on k-Cores

As introduced in Section 7.2.1, the core decomposition is a reduction technique to
obtain a nested decomposition of a network. Moreover, the coreness of a node only
depends on the coreness in its neighborhood and is related to the degree. Since
the core decomposition can be computed for every (undirected) graph, it can also
be applied to the AS Network. However, due to the special structure, i. e., the
AS Network being the union of paths routing the traffic between the ASes, a good
filtering technique should respect these inherent path properties. Consequently, the
quality of a filtering technique should be measured by the number of paths that
remain connected in the reduced graph. For the k-core filtering, we define µk(i)
to be the fraction of paths that have i connected components in the k-core. This
number depends on the input parameter k. In order to avoid such a dependency and
increase the insight into its compatibility, we will consider lower bounds for µk(1).
Such a bound is given by the fraction of paths that remain connected in all k-
cores and is denoted by µ(1). On the other hand, we also like to judge the degree
of fragmentation. Therefore we count the fraction of paths that are cut into i
components in a k-core for some value k and i > 1. This value, which is denoted
by µ(i), gives an upper bound on µk(i). Intuitively speaking, a filtering technique
is compatible with the path structure of the AS Network, if the paths are only
shortened, but not split. Recall the notion of valley-free paths, if a valley-free path
in the reduced graph is still connected then only customers and low-level providers
are removed. Furthermore, the routing structure between high-level providers would
remain. Thus the dependencies between (structurally) important ASes are still
observable, while less important ASes are removed. As can be seen in Figure 8.3,
more than 90% of all paths remain connected. The majority of the other paths
split in two components and only a very small fraction of the paths fragment into
more than two components. Summarizing, the k-core filtering preserves the intrinsic
structure of the AS Network for the most part and the occurring fragmentation is
very small. Thus, we can use this technique to reduce the size of the network and
filter out irrelevant information. Further investigations about the effectiveness of
the reduction are presented next.

8.2.2. Abstraction Based on k-Cores

As shown in the previous section, cores can be used to filter irrelevant information
and thus reduce the size of the AS Network. In order to further judge the quality
of the k-core reduction, we consider the resulting size distribution as well as con-
nectivity aspects. Both issues provide valuable insight in the structure of the AS
Network and result in a proper visualization technique which will be presented in
Section 8.4.

Size Distribution

The size distribution, i. e., the coreness versus the number of nodes having a certain
coreness, is very skew. In fact over 80% of the nodes have a coreness less or equal
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Figure 8.3.: Fraction of paths that are guaranteed to be connected and are split into
two or three components over time (April 2001 till March 2006). Note
the visible gap around December 2003 is due to data loss.

than three. Further, we observe that during the period of April 2001 to April 2005,
the number of nodes in the AS Network increases by about 2000 nodes per year, the
number of edges increases by 4800 edges per year and the maximum core number
has increased from 18 to 26. Although the network grows in absolute terms and
especially the individual core levels increase in size, their relative sizes remain stable.
Similar to the rings of a tree trunk, Figure 8.4 illustrates the temporal evolution of
the relative proportions of the k-shells, i. e., collection of nodes with coreness k. In
this figure, the thickness of one strip corresponds to the fraction of nodes that have
a given coreness. The lowest strip represents the maximum core while the highest
strip reflects the 1-shell. One can clearly see the stability of k-shells with k ≤ 15.
It is also observable that the size and coreness of the maximum core increases over
time. The growth in the coreness is not monotonic and has big fluctuations. White
vertical strips indicate the absence of data due to technical problems in the external
data collection process.

Connectivity

Beside the size distribution, the connectivity of the k-cores as well as between dif-
ferent shells is another important aspect. As mentioned in Section 7.2.1, a core de-
composition need not yield connected k-cores (for every k) even if the input graph
is connected. Thus it is fairly astonishing that all graphs in the period of April
2001 and April 2005 have core decomposition where each k-core is connected. On
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Figure 8.4.: Relative size of cores.

the other hand, this confirms our intuitive view of the hierarchical structure of the
AS Network. More precisely, the so-called backbone of Internet, i. e., the collection
of major ASes with high-capacity data connections that realize the global traffic
exchange, is contained in the core of the AS Network and all customer ASes have
small coreness.

Another related feature is the distribution of edges with respect to cores. More
precisely, we are interested in structural properties of the graph defined by the
level-view using uniform edge weights (see Section 7.2.1). At a first glance, the
resulting graph is almost complete for all snapshots. After applying the logarithm of
the edge weights and removing edges with very small weights, the global structure
becomes more evident, see Figure 8.5(a). There are two different types of edges
with large weights: edges connecting nodes with small coreness and edges that
act as bridge between low-level shells and high-level shells (transition edges). This
properly reflects the perception of the AS hierarchy, i. e., many small ASes exist and
they need to be connected to the network either by other local providers or directly
through the backbone.

The situation changes again when considering a different edge weighting, namely
the number of paths that uses a certain edge. Again, a filtering is necessary, since
otherwise the graph is almost complete. We use the same reduction as for the case of
the uniform weights. In this case, the transition edges still exist, however, the edges
inside the core contribute a lot of weight (see Figure 8.5(b) - comparing the thickness
of the selfloop of the 17-shell with the other edges). This observation completes
our intuitive view of the AS Network that many links are needed to connect the
customers to their providers and that the links that occur more frequently in paths
are links to or within the backbone and not inside the periphery.
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(b) Edge weight induced by used paths

Figure 8.5.: Level-view of the AS Network (May 1st, 2001 0:00). The area of the
nodes is proportional to the number of nodes having that coreness. The
thickness of the edges is (logarithmically) proportional to their weight.
Edges with very little weight are omitted. Note that the core (17-shell)
is very small compared to the 1- and 2-shell.

8.3. Preliminary Dynamic Analysis

In the following, we present a preliminary study of the dynamic aspects of the
AS Network. The study was performed in autumn 2003 in collaboration with the
research group of Prof. Dr. Giuseppe Di Battista and is published in [49]. We in-
vestigated long-term and short-term features as current baselines, predicting trends,
and analyzing anomalies.

8.3.1. Baselines and Trends

Determining the standard undisturbed behavior of the evolving network is one fun-
damental task of dynamic analysis. As an initial step we investigate the evolution
of static indices. The temporal evolution is shown in Figure 8.6(a) and 8.6(b). The
number of nodes and edges seem to be locally stable over time. In order to verify this
observation, we calculated the standard deviations of time frames of different length.
Both indices seem to be non-constant, therefore a larger time window results in a
larger deviation. In Figure 8.7 the time frame length is plotted versus the average
standard deviation (ASD). As expected, the ASDs are monotonically growing with
the frame length, furthermore their increases can be expressed by a linear function,
thus verifying the local stability. The slope for the number of edges is three times
larger than for the number of nodes. This can be explained by the fact that edges
are subject to more consistent changes and depend on the number of paths which
in turn depend on the number of participating peers. For example, number of edges
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Figure 8.6.: Graph theoretic and domain specific measures. The x-axis represents
time, starting in May 2001 till September 2003.
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Figure 8.7.: Local stability of number of nodes and edges. The time frame length is
plotted versus the average standard deviations.

and paths, as well as number of paths and peers are highly correlated (≈ 0.977
and ≈ 0.897, respectively).

In this special scenario, we can utilize the path structure to normalize the views
by using the commonly observed AS Network of two consecutive points in time. The
size of the nodeset and the edgeset will be denoted by |V ′| and |E ′|. This enables us
to decide whether a change in the number of nodes (or edges) is only due to a change
in the set of observing peers or not. More precisely, we can judge if an increase in
the number of nodes and edges is caused by a real growth of the the network or
is just a fake growth where we would have observed the additional elements in
previous points in time, if we had the additional observing peers. Figure 8.8(a)
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displays the evolution of the number of nodes and edges for the AS Network and the
commonly observed graphs. Utilizing the detailed view of Figure 8.8(b) we conclude
that the first two increases (2am and 10am) of peers led to a larger view (new edges
were added) while the third increase (2pm) did not affect our view of the network
(only redundant information was added). However, we have to be careful judging
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Figure 8.8.: Sizes of AS Network and commonly observed graphs.

decreases, since the absence of vantage points can have many reasons. Some of these
causes are independent of the (global) network status, like internal reorganization
or connection failures during the collection process.

Long-term Patterns

Using these observed phenomena, we recognized two major patterns. The first one
is the linear growth of the number of nodes and edges. Although it seems to be a
trivial observation (Figure 8.6(a)), it is not at all expected. Many researchers have
reported an exponential growth in the time frame of 1997 till 2000. Because both
indices grow in a linear fashion, the ratio of observed edges to the total number of
possible edges decreases. The second pattern is the distribution of growth. ASes
are separated according to their importance in the core graph. By inspecting the
evolution of the filtered graph (Section 8.2.1), we observed that most nodes enter
the graph with a very low coreness score, while edges (in the path-weighted version)
connect low-score nodes with high-score nodes or only high-score nodes with each
other. This verifies the general intuition, that more customers than (high-level)
providers enter the system and that more connections are established to connect the
small providers with the backbone than to enlarge the backbone.

8.3.2. Short-Term Analysis – Anomalies
In this section we describe the results of short-term analysis. Namely, we measure
the impact on our measurements of dramatic short-lived events that occurred in
the network in the last few years. We used the GMC clustering approach on a k-
core of the AS Network to identify potential changes. Due to the inhomogeneous
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density of the AS Network, we choose the minimum k such that the resulting k-
core has at most 200 elements. Note that this choice is based on a rough estimate
of the number of relevant/important ASes. Furthermore, the quality function of

GMC is 4

√
cov (C) · perf (C)3. As already mentioned, events that last very short

are problematic. In these cases a higher granularity of the data would be needed
for better observations, but is often absent. However, our measurements suggest
that events occurring on a small time-window may be effectively classified with our
clustered analysis. In particular, we show that some kind of sporadic phenomena,
like worm attacks or misconfigurations, even if they may have a dramatic effect
from the user’s point of view, do not seem to have a measurable impact on the
overall network structure. On the other hand, some very specific events, notably
DDoS attacks against DNS root servers, happen to cause a significant change of the
structure of the clusters. Thus, this kind of analysis may be a promising tool, to
be used as a litmus-paper to test if one of these specific events is occurring in the
network.

BGP storm due to worm attack. On July 19th 2001, the Code Red II worm
was spreading in the Internet exploiting the indexing service vulnerability in the Mi-
crosoft Internet Information Server MS-IIS ([29]). Although an exponential growth
in the advertisement rate (of routing paths) was observed by [15], we could not assess
a significant change in the number of nodes and edges. In fact, Figure 8.9 shows that
the number of nodes and edges is quite stable while the drop in the number of peers
accounts for the loss of paths. These missing peers - AS715 and AS19092 - usually
contribute with more than 15,000 paths each. Using the clustering technique, we
could not spot any significant changes. In fact, about 75% of all nodes were either
perfectly stable or switched between two clusters, the other nodes blinked in and
out of our observed view or could not be associated to one cluster. The number
and sizes of the clusters were stable. A similar behavior could be observed when on

 23000

 23200

 23400

 23600

 23800

 24000

 24200

 24400

17 18 19 20

2*|V| |E| 2*|V’| 2*|E’|

(a) Number of nodes and edges

 380000

 400000

 420000

 440000

 460000

 480000

 500000

 520000

17 18 19 20

10.000*#peers #paths

(b) Number of peers and paths

Figure 8.9.: Evolution around July 19th 2001

September 18th 2001, a extremely virulent worm, called W32.NIMDA, spread through-
out the Internet using multiple methods to inflect both Windows servers and user
machines ([102]).



136 Chapter 8: Case Study: Autonomous Systems

Shutdown of KPNQwest/Ebone and RIPE NCC Test Traffic measures a 50%
increase of alarms. In July 2002, KPNQwest, one of Europe’s largest Internet
backbone provider had a time-out. The company went offline on the 3rd and re-
turned on the 25th ([74]). At the beginning of this event, the RIPE NCC measured
a 50% increase of alarms on their TTMs (Test Traffic Measurement Boxes, [99]).
We observed a drop in the number of peers, paths and edges. While the former two
lasted only a few days, the latter one was present during the whole period. Fig-
ure 8.10 shows this evolution. The clustering is rather stable when we considered
the three time periods (before, during and after the shutdown) separately. However,
we could observe temporal migrations (small subsets formed new clusters or were
swallowed up), new ASes ’entered’ the system and old ASes ’left’ during the transi-
tions. The few drops in the number of edges of the commonly observed graph (see
Figure 8.10(a)) are probably due to technical issues and do not reflect changes.
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Figure 8.10.: Evolution during July 2002

Misconfiguration in UUNet. UUNet (WorldCom) stopped talking to the rest
of the Internet on October 3rd 2002 between 12am and 9pm (UTC), due to miscon-
figuration in some of their routers. This caused increases of respond times, delays,
and packet losses ([80]). It affected many other ASes, because UUNet carried half
of the world’s Internet traffic. Although the number of edges seems to be affected,
we could not observe a significant change (see Figure 8.11).

DDoS Attacks against 13 Internet Root Servers. On October 21st 2002, a
series of well-coordinated, simultaneous DDoS attacks were launched from various
points around the world, against each of the 13 Root Servers that are used for the
Internet’s Domain Name System (DNS) ([80]). The attack, which disabled nine of
the 13 Root Servers, started at 8:45pm (UTC) and lasted approximately two hours.
We could only partially observe the event, because Oregon Routeviews had a 6-hours
blackout, due to connection time-outs, starting at October 22nd 2am (UTC) and
the peer AS701 disappeared, causing a loss of approximately 17, 600 paths earlier
on the 21st (8am UTC). It never returned as an observing peer. Thus, we can
only analyze the structure of the network before and during the attack, but not
immediately afterwards. Also, the loss of paths limits the viewpoint. Similar to the
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Figure 8.11.: Evolution around October 3rd 2002

previous worm attacks, the number of nodes and edges is stable (see Figure 8.12).
The clusterings are very stable, except for the point in time of 21st 8pm. In that
instant a kind of splitting occurred. A subset of 29 elements and a single node
emerged from the largest cluster and built their own clusters. For simplicity we
denote the remaining part of the largest cluster by 1’ and the other two with 1”
and 1”’ respectively, according to their size. Table 8.1 contains the geographic
distribution of the ASes located in those clusters. Most of the elements in 1” and 1”’
were perfectly stable while belonging to cluster 1 during the other time frames. The
four Asian ASes – AS2518, AS4143, AS4728, and AS4766 – are a kind of exchange
servers. The cluster 1” contains also several well-know ASes like AT&T, Cable
and Wireless, former Genuity, Globalcrossing, Sprintlink, UUnet, Verio, Microsoft
(three times) and Google. A more fascinating fact is that in each cluster 1’ and 1”
an unaffected or a less affected DNS root server (AS297 and AS3557) is present.
This is a strong indicator that the clustering was affected. However, the degree of
interaction remains open. The current granularity is not high enough for a further
and more detailed analysis.

Sapphire worm attack. In the morning of 25th January 2003, the Sapphire

worm (also known as SQL slammer) was released on the Internet. Exploiting a vul-
nerability in Microsoft SQL server, it multiplied itself rapidly and soon spread out
over networks worldwide. From news headlines and activity on mailing lists it was
clear the attack had an impact on the Internet’s performance. Similar to the DDoS
Attack our data source Oregon Routeviews had a blackout from 8am till 12am due
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countries
clusters

1 1’ 1” 1”’

US 74 48 26 -

Europe 9 9 - -

Asia 11 7 3 1

Africa 1 1 - -

Australia 1 1 - -

unknown 1 1 - -

Table 8.1.: The distribution of countries of the cluster and its segmentation.

to connection timeouts. Also two large peers - AS7660 and AS8297 - were absent on
26th. Each contributed with more than 16,000 paths. Thus our view point is very
limited and can hardly be used to distinguish between worm attack and peer loss.

DDoS Attack on the RIPE NCC. Starting from 2pm (UTC) February 27th,
2003, the RIPE NCC network suffered a large DDoS attack (a distributed ICMP echo
attack). Their network structure was affected not only by ICMP traffic. Network
condition returned back to normal the same day at 4:30pm UTC. Shortly before
(2am till 2pm) the peer AS5459 did not contribute, causing a loss of ≈ 7, 100 paths.
Nothing unusual could be observed.

Blackouts. During August and September 2003, several blackouts happened in
different geographic regions. On August 14th, around 6pm (UTC) started the cas-
cading chain of events that lead to a gigantic blackout in the north-eastern part of
America and Canada (refer to [1] for details). A 40-minute blackout took place in
London on August 28th (around 6 pm). The last one struck parts of France, Italy
and Switzerland on September 28th. It started around 2:30 am and power returned
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during the afternoon. The event in London could not be observed, since it was too
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Figure 8.13.: Evolution of different blackouts

short. The other two exhibited a similar pattern: a large drop in the number of
paths occurred at the start of the event. This drop also caused a drop in the static
indices (number of nodes and number of edges). The recovery phase was very short
and the indices quickly got back to their old scores. The drops in the number of
nodes and edges of the commonly observed graph (Figure 8.13(a)) is not due to the
blackout itself. They are results of the disruption in the collection process. The
reduced data set was relatively stable. Most nodes were present more than 80% of
the time. Only a small set (≈ 20 nodes) appeared only once or twice. The clus-
tering itself is relatively stable. Figure 8.14 shows the temporal development of the
sizes of the clusters. Smaller migrations, splittings or merging phenomena could
be observed. Although there is no clear pattern or regularity apparent, it is a fact
that these changes occurred more frequently during the recovery phase, thus giving
a good indicator that clustering reflects aspects of the event. Similar observations
could be made during the blackout in Europe. However, the impact on the structure
was not comparable with respect to size and the recovery time much shorter.

8.4. Visualizations

After extensively studying structural properties of the AS Network, we present a vi-
sualization technique that emphasizes the hierarchical nature and provides further
insight in the evolution. Standard visualization techniques, which include force-
directed approaches [17] and spectral embeddings, usually capture the essential
structure of a network quite well without the requirement of a priori knowledge.
Unfortunately, these methods fail in the case of the AS Network and result only
in ‘hairy balls’ as can be seen in Figure 8.15. The major reason for this behavior
is the inhomogeneous connectivity pattern. The core of the network is dense but
relative small and many edges link low-level shells with the core. As observed in
the Section 8.2.2 about the abstraction, the AS Network can (very) roughly be seen
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Figure 8.14.: Sizes of the different clusters during the blackout in the US and Canada

as a star. The standard techniques reflect this fact properly. In order to judge this
artifical behavior further, we study Laplacian embeddings of the individual k-cores.
See Figures 8.16 and 8.17 for an example. Note, that we used spectral embeddings
since these layouts are deterministic and independent from initialization steps. As
can be observed from the figures, the utilization of the drawing area improves with
increasing the core level. In other words, the star-like structure is mainly caused by
nodes having low coreness. Based on the hierarchy induced by the cores, we defined
an incremental layout.

8.4.1. Layout for Hierarchies
We present an incremental algorithm to obtain a two and a half dimensional layout
obeying the following criteria:

• All nodes and edges are displayed.

• The levels of hierarchy are highlighted.

• Inter- and intra-level edges are emphasized.

Two and a half dimensional visualizations have been proposed frequently for network
data from various applications. Related methods use the third dimension to display
a graph hierarchy [16, 38] or graphs that evolve over time [18]. In our layouts, the
third dimension will also correspond to the hierarchy, i. e., nodes with the same level
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(a) force-directed approach (with node over-
laps)

(b) force-directed approach (without node
overlaps)

(c) standard Laplacian embedding

Figure 8.15.: Standard visualization techniques applied to an instance of the AS
Network (January 1st, 2003).
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(a) 1-core (b) 2-core (c) 3-core (d) 4-core

(e) 5-core (f) 6-core (g) 7-core (h) 8-core

(i) 9-core (j) 10-core (k) 11-core (l) 12-core

Figure 8.16.: Spectral Layouts of the cores of the AS Network (01/01/2003)
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(a) 13-core (b) 14-core (c) 15-core (d) 16-core

(e) 17-core (f) 18-core (g) 19-core (h) 20-core

Figure 8.17.: Spectral Layouts of the cores of the AS Network (01/01/2003)

(in the hierarchy) will have the same z–coordinate. The remaining two-dimensional
layout is incrementally created by first initializing the top element of the hierarchy
with a spectral embedding and then iteratively placing nodes in lower levels using
force-directed techniques.

More detailed, the algorithm for the two-dimensional layout is divided into two
phases. In the first part, the top element of the hierarchy has to be properly lay-
outed. The characteristics of this initialization will essentially influence the whole
layout. We chose a spectral embedding due to several reasons. The main benefits
are its deterministic nature and the relation between the distances in the embedding
and graph-theoretical distances [56, 27]. In the second phase, the lower levels are
added using a combination of barycentric and force-directed placement. More pre-
cisely, when a new level of the hierarchy, e. g., η(i)\η(i+1) for some i, is added, the
barycentric layout assigns preliminary coordinates to nodes with level i considering
only neighbors in the same or in higher levels. Note that this assignment is deter-
ministic, since there is only one connected component and some nodes are already
fixed. Unfortunately, barycentric layouts also have a number of drawbacks. First,
nodes that are structurally equivalent in the subgraph induced by η(i) are assigned
to the same position. Second, all nodes are placed inside the convex hull of the
already positioned nodes. In particular, this means that the outermost nodes are
those belonging to the top level of the hierarchy which is clearly contradictory to
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the intuition of the importance. To overcome these difficulties, we use the barycen-
tric layout as an initial placement for a subsequent force-directed refinement step,
where only newly added nodes are displaced. In addition, a force-directed approach
is applied for all nodes in order to relax the whole layout. However, the number of
iterations and the maximum movement of the nodes is carefully restricted not to
destroy the previously computed layout. A special feature of this relaxation step is
the use of non-uniform natural spring lengths l(u, v), where l(u, v) scales with the
smaller level of the two incident nodes u and v. Thus, the effect of a barycentric
layout is modeled, since edges between nodes of high coreness are longer than edges
between nodes of low coreness. Accordingly, these springs prevent nodes with high
coreness from drifting into the center of the layout. The pseudo code is given in
Algorithm 7. Beside the choice of the underlying hierarchical decomposition, the

Algorithm 7: Generic hierarchy layout algorithm

Input: graph G = (V, E), hierarchy η
Output: two-dimensional layout for G

k ← size of hierarchy η
for `← 1, . . . , k do

V` ← η(`) \ η(` + 1)
G` ← G[V`]

calculate spectral layout for Gk

for `← k − 1, . . . , 1 do
calculate barycentric layout for V` in G`, keeping G`+1 fixed
calculate force-directed layout for V` in G`, keeping G`+1 fixed
calculate force-directed layout for G`

algorithm offers a few more degrees of freedom that allow an adjustment to a broad
range of applications. In the next section, we fix these degrees in order to obtain a
suitable layout for the AS Network.

8.4.2. Fitting the Parameters
As extensively discuss in Section 8.2.2 for example, the core decomposition is a
natural candidate for the hierarchy. For the spectral layout we propose a modified
Laplacian matrix L′ = 1/4 · D − A already considered in [19]. Our experiments
showed that the application of the normalized adjacency matrix results in compara-
bly good layouts while the standard Laplacian matrix performs significantly worse.
An example is given in Figure 8.18, where the Laplacian, the modified Laplacian,
and the normalized adjacency matrix is used for the spectral embedding of the core
of the AS Network at three different points in time. The force-directed placement
is performed by a variant of the algorithm from [45]. Unlike the original algorithm,
we calculate the displacement only for one vertex at a time and update its position
immediately. Furthermore, we use the original forces but with non-uniform natural
edge lengths l(u, v) proportional to min{level(u), level(v)}2. For the refinement step



8.4 Visualizations 145

(a) normalized
adjacency matrix
(2001)

(b) Laplacian ma-
trix (2001)

(c) modified Lapla-
cian matrix (2001)

(d) normalized
adjacency matrix
(2002)

(e) Laplacian ma-
trix (2002)

(f) modified Lapla-
cian matrix (2002)

(g) normalized
adjacency matrix
(2003)

(h) Laplacian ma-
trix (2003)

(i) modified Lapla-
cian matrix (2003)

Figure 8.18.: Different spectral layouts for the core of the AS Network taken at
different points in time (always June 1st).
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where only new nodes are displaced using forces, we perform at most 50 iterations.
The second application of forces to relax the whole layout is already stopped after
20 iterations.

8.4.3. Result and Evaluation

Examples of the final layout for different points in time are given in Figure 8.19. On
the left hand side, Figures 8.19(a), 8.19(c), and 8.19(e), show the two-dimensional
layout, i. e., the x-y–projection, while the right, Figures 8.19(b), 8.19(d), and 8.19(f),
display a level projection, in our case the projection is done into the x-z–plane. A
‘full’ three-dimensional view is given in Figure 8.20. Due to the prominent form
induced by the network, we refer to it as volcano-like shape.

While techniques like force-directed or spectral methods [35, 17] place the majority
of the nodes at a central position, here only 6-10% of the nodes are placed close to
the center, constituting a peak (as in Figure 8.21). Interestingly, the nodes with
coreness two or three, which are the majority of nodes, are placed in a concentric
annulus around the peak. A closer examination reveals three almost separated radial
areas around the center. The first one mainly contains the 3-core shell, while the
2-core shell forms the second and third area that are distinguished by their density.
Figures 8.24(a)-8.22(c) show the corresponding nodes in the lower shells. Using
several snapshots over time, we found a positive correlation of 0.67− 0.78 between
the distance from the center and the coreness. The significance of this correlation
is increased by the following facts that conceptually inhibit it: first, nodes in the
1-core shell are placed very close to their anchor nodes in higher core-levels which
can be quite scattered or close to the center (see Figure 8.24(a) as an example),
and second, nodes with coreness two or three constitute the majority of nodes and
occupy a broad annulus rather than a ring. Especially for the 2- and 3-core shell, we
can further identify two classes of nodes. In both cases there is a relatively uniform
class of nodes drawn towards the center and a second class of nodes in the periphery.
Nodes of medium and large coreness (greater than five) are contained in the convex
hull of the core which documents the relation between importance and coreness.
These properties can be observed over a time period of four years. The well-known
growth of the AS Network hardly affects the layout, although we observed a slight
decreasing spatial distance between the 2- and the 3-core shell. In order to further
evaluate our technique, we consider the DIMES data set and artifically generated
networks.

Generated Graphs

We used INET 3.0 [67] to generate artifical graphs that should exhibit a similar
AS Network topology. The example we will explicitly discuss is a simulation of
the AS Network of June, 1st 2001, which contained 11,211 nodes, 23,689 edges and
has maximum coreness of 19. However, the generated graph with 11,211 nodes has
almost 12,000 edges more than the original network, but the maximum coreness is
only eight. Similar discrepancies were observed for instances taken at other points in
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(a) 2D layout (2001) (b) level projection (2001)

(c) 2D layout (2002) (d) level projection (2002)

(e) 2D layout (2003) (f) level projection (2003)

Figure 8.19.: Two-dimensional layout and level projection of the AS Network. The
instances are always taken on June 1st.
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Figure 8.20.: Final layout of the AS Network (June 1st, 2001)
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Figure 8.21.: Two-dimensional histogram of the nodes in the AS Network (January
1st, 2005) in a final layout.
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(a) restricted to 1-core
shell

(b) restricted to 2-core
shell

(c) restricted to 3-core
shell

Figure 8.22.: Two-dimensional layout where only nodes in certain cores are drawn
(06/01/02).

time. An obvious difference of the generated graph induced by this fact is the more

(a) 2D layout (b) level projection

Figure 8.23.: Figures of the generated graph with 11,211 nodes

uniform distribution of cardinalities of the core shells. Accordingly, in the layouts
the separation of the different core shells is less significant. However, the 2D layouts
are still satisfactory with respect to the illustration of the core hierarchy. Also the
characteristic annulus-shapes of the 2- and 3-core shell are also present, as can be
seen in Figure 8.24.

DIMES

The data sets correspond to the period of March to June 2005. We obtain 48, 073
edges (corresponding to 20, 406 ASes) from Routeviews and 38, 928 edges (corre-
sponding to 14, 154 ASes) from DIMES. Of these, 21, 725 edges exclusively belong
to Routeviews, and 12, 580 edges exclusively belong to DIMES. The rest of the edges
are common to both data sets. The union of the two data sets thus results in 60, 653
unique edges (corresponding to 20, 612 ASes). Figure 8.25 visualizes the networks
obtained from Routeviews and DIMES data sets. In order to highlight structural
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(a) restricted to 2-core shell (b) restricted to 3-core shell

Figure 8.24.: Two-dimensional layout where only nodes in certain cores are drawn.

properties, we color edges that are obtained only from Routeviews as cyan, edges
that are obtained only from DIMES as yellow, and edges that are present in both
data sets as black.

A first glance shows that while the visualizations are very similar, the DIMES
data set is slightly smaller and the geometric difference of the set of collected edges
of Routeviews and DIMES is surprisingly large (about 42% overlap). In other words,
58% of the edges appear in only one data set. An interesting observation is that
many edges that are only discovered by DIMES are incident to the core. Figure 8.26
shows the plots of the coreness of the end-nodes of the edges versus their rank, i. e.,
positioned in the non-decreasing sorted sequence. The coreness is calculated in the
graph that consists of the union of the two data samples. This enables us to set up a
less biased comparison. The Routeviews data sample is plotted as a solid line, while
the DIMES sample is dotted. Figure 8.26(a) plots a data point for each edge be-
longing to Routeviews or DIMES using the maximum coreness of the end-nodes (as
y-axis), while Figure 8.26(b) shows the same scenario using the minimum coreness.
A similar comparison is made in Figures 8.26(c) and 8.26(d) where the common
edges are omitted. Thus the solid lines represent the distribution of edges that are
exclusively observed by Routeviews, and the dotted lines correspond to the exclu-
sive part of the DIMES sample. In principle, the distributions of Routeviews and
DIMES are very similar, except for the broad tail of the Routeviews distribution
observed in Figure 8.26(c), which is an interesting observation requiring further in-
vestigation. However the overall similarity of the plots together with the resembling
visualizations reveal that our visualization technique is not only applicable to Ore-
gon Routeviews data and that data obtain from DIMES or Routeviews both contain
similar intrinsic patterns. A deeper analysis of the difference of the two extraction
methods was not possible due to a lack of data from DIMES.

This concludes our structural investigation of the AS Network. The remaining
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(a) Routeviews (b) DIMES

(c) Union of Routeviews and DIMES (d) Intersection of Routeviews and DIMES

Figure 8.25.: Two and a half dimensional layouts of the AS Network obtained from
Routeviews and DIMES. Color code: cyan-Routeviews, yellow-DIMES,
black-both Routeviews and DIMES
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Figure 8.26.: Comparison of coreness distributions of the edges. Figure (a) and (b)
compare Routeviews (solid) with DIMES (dotted), while Figure (c)
and (d) compare the exclusive sets. The x-axis denotes the number of
edges, and y-axis the minimum or maximum coreness.
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part of the is chapter focuses of the relation between the AS Network and an overlay
generated by the popular file sharing application Gnutella.

8.5. Analysis of Overlay-Underlay Topology
Correlations

The recent growth of Peer-2-Peer (P2P) file sharing applications with respect to
total Internet traffic [92, 68] has led to an unprecedented interest in their anal-
ysis [26, 2]. The P2P file sharing applications create overlay networks on top of
the Internet underlay. In other words, the P2P file sharing systems create overlay
topologies on top of the AS Network. When constructing their topology by forming
neighborhoods, most structured and unstructured P2P protocols do not explicitly
take the underlay routing into account. Yet as the underlay connectivity determines
the overlay performance, understanding the correlation between routing in the over-
lay and underlay layers is crucial. There have been some investigations on such
correlations recently. Using game theoretic models, Liu et.al. study the interaction
between overlay routing and traffic engineering within an AS [76]. Ratnasamy et.al.
present in [81] a node-partitioning scheme that allows overlay nodes to choose peers
that are relatively close in terms of network latency. An analysis of routing around
link failures [90] finds that tuning underlay routing parameters improves overlay
performance. Most investigations tend to point out that the overlay topology does
not appear to be correlated with the underlay, e. g., [2], but the routing dynamics
of the underlay do affect the overlay in ways not yet well understood.

In the following, we analyze the correlation between overlay and underlay topolo-
gies of the Gnutella [55] network using the above visualization technique.

8.5.1. Formalization
Before presenting our approach, we give a formal description of the problem.

Definition 8.1. An overlay is given by a four-tuple O := (G, G′, ϕ, π), where

• G = (V, E, ω) and G′ = (V ′, E ′, ω′) are two weighted networks with ω : E → R

and ω′ : E ′ → R,

• ϕ : V → V ′ is a mapping of the nodes of G in the nodeset of G′, and

• π : E → {p | p is a (un-/directed) path in G′} is a mapping of edges in G to
paths in G′ such that

source(π({u, v})) = ϕ(u) and target(π({u, v})) = ϕ(v) or vice versa .

The interpretation of Definition 8.1 is that G models the overlay itself, the net-
work G′ corresponds to the underlay, and the two mappings establish the connection
between the two networks, i. e., map nodes to their correspondings and overlay edges
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(a) Both networks G and G′ with the map-
ping ϕ.

(b) Highlighting one edge e in G and the
corresponding path π(e) in G′.

Figure 8.27.: Example of an overlay O := (G, G′, ϕ, π). The mapping ϕ is repre-
sented by dash lines between nodes in G and G′.

which coincides with direct communication in the overlay to the actual path which
realizes the communication. Thus the problem of analyzing the correlation of two
overlays is reduced to find matching matters between G and G′. Since the underlay
networks for two different overlays need not be the same, e. g., sampled at different
points in time or location, four graphs have to be related to each other. Our ap-
proach provides a potential solution by mixing information of the overlay and the
corresponding underlay. More precisely, the overlay is reduced to a composition of
elements in the underlay, see Definition 8.2.

Definition 8.2. Given an overlay O := (G = (V, E, ω), G′ = (V ′, E ′, ω′), ϕ, π). The

induced overlay Õ := H := (V ′′, E ′′, ω′′) is a weighted network, where

• V ′′ := {v ∈ V ′ | ∃ e ∈ E : π(e) contains v},

• E ′′ := {e′ ∈ E ′ | ∃ e ∈ E : π(e) contains e}, and

• ω′′(e′) :=
∑
e∈E

ω(e) · [e′ contained in π(e)].

The weight function ω′′ is also called appearance weight.

In other words, the induced overlay corresponds to the subgraph of the underlay
that is required to establish the communication in the overlay. Note that the defined
weight can be interpreted as the load caused by the communication and thus is
independent of a weighting in the underlying network. The problem of analyzing
the correlation is now reduced to find the patterns between a subgraph and its
parenting graph that occur in both induced overlays.
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8.5.2. Case Study: Gnutella

The following case study has been performed in collaboration with the group of
Prof. Dr. Anja Feldmann at the Technische Universität München (TUM) who pro-
vided the technique to crawl the Gnutella network and a data set. The results are
also published [3, 4]. Our aim is verify or falsify if Gnutella has a random topology.
We briefly summarize the required technical aspects.

Crawling Data Sets

Gnutella is a popular file-sharing network with 2 million users [96], and has attracted
a healthy interest from researchers [97, 84, 88]. The Gnutella [54] network comprises
of agents called servents, who can initiate as well as serve requests for resources.
When launched, a servent searches for other peers to connect to by sending Hello-like
Ping messages. The Pings are answered by Pong messages, which contain address
and shared resource information. Search queries are flooded within the Gnutella
network using Query messages, and answered by Query Hits. To limit flooding
Gnutella uses TTL and message IDs. Each answer message (Query Hit/Pong) tra-
verses the reverse path of the corresponding trigger message. While the negotiation
traffic is carried within the set of connected Gnutella nodes, the actual data ex-
change of resources takes place outside the Gnutella network, using the standard
HTTP protocol. Due to scalability problems, later versions of Gnutella [55] intro-
duced a hierarchy which elevates some servents to ultrapeers, while others become
leaf nodes. Each leaf node connects to a small number of ultrapeers while each ul-
trapeer maintains a large number of neighbors, both ultrapeers and leafs. To further
improve performance and to discourage abuse, the Ping/Pong protocol underwent
semantic changes. Answers to Pings are cached and too frequent Pings or repeated
Querys may cause termination of connection.

In order to analyze overlay structure, a representative set of edges in the P2P
network need to be identify. An edge means a direct P2P connection between two
overlay nodes. The most obvious way of finding edges in a P2P network is to create
some by participating. Yet these are not representative as they are highly biased
by the location and software of the participant. Rather, we wish to identify edges
in the P2P network where neither of the two nodes is controlled by us. We refer to
such nodes are remote neighbor servents.

Due to the introduction of Pong caching scheme and the rapid fluctuation in
Gnutella networks (we measured the median incoming/outgoing connection dura-
tion to be 0.75/0.98 seconds), the simple crawling approach used in [88] is no longer
sufficient. One cannot assume that answers to Pings with TTL 2 (namely crawler
Pings) contain still active servents. They should, however, have been remote neigh-
bor servents at some point.

To cope with these complications, we deploy a combination of active and passive
techniques to explore the Gnutella network. Our passive approach consists of an
ultrapeer based on the GTK-Gnutella [57] program. The goal is to have an ultrapeer
that behaves like a normal node in the network, yet worthwhile to connect to. It
shares 100 randomly generated music files (totaling 300 MB in size) and maintains 60
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simultaneous connections to other servents. To derive various statistics the servent
is instrumented to log per-connection information augmented with a packet level
trace. The passive approach gives us a list of active servents.

The active approach consists of a multiple-client crawler that uses Pings with
TTL 2 to obtain a list of candidate servents. Using Querys with TTL 2 allows
us to get a set of remote neighbor servents. These servents are then contacted
actively to further advance the network exploration. This approach allows us to
discover Gnutella edges that existed at a very recent point of time. When interacting
with other servents, our crawler pretends to be a long- running ultrapeer with an
acceptable querying scheme. It processes incoming messages and has a non-intrusive
Ping/Pong behavior. For instance, the servent issues Query/crawler Pings only to
those peers that have already responded with a Pong, Pings are issued only to those
servents that send one themselves. This pragmatic behavior seems to avoid bans.
The client uses Query messages with catchwords like mp3, avi, rar. One can expect
Querys to yield only a subset of neighbors due to the presence of free-riders [88].

Our combined active/passive approach integrates the crawler into the ultrapeer.
Experiments with the unmodified and modified ultrapeer confirm that the changes
did not alter the characteristics of incoming connections.

Evaluation

We collected Gnutella logs for one week in April 2005, and map the IP addresses
of Gnutella nodes to ASes using the BGP table dumps offered by Routeviews [85]
during the week of April 14, 2005. This results in 2964 unique AS edges involving
754 ASes, after duplicate elimination and ignoring P2P edges inside an AS. For
the random network, we pick end-points at the IP level by randomly choosing two
IP addresses from the whole IP space. These edges are then mapped to ASes in
the same manner as for the Gnutella edge. The considered instance which we use
for the visualization and the diagrams has 4975 unique edges involving 2095 ASes.
The different size of the graphs are a result of the generation process: we generated
the same number of IP pairs for the random networks as observed in the Gnutella
sample, and applied the same mapping technique to both sets. This way, the char-
acteristics of Gnutella are better reflected than by directly generating a random AS
network of the same size as the induced overlay of Gnutella. Using the visualization
techniques for the AS Network presented in Section 8.4.1, we create a visualization
for the induced overlays by first applying the layout to the corresponding underly-
ing network and then draw only those edges contained in the induced overlay. The
results are shown in Figure 8.28. We can observe that while both networks have
many nodes with large degrees in the center, the random network possesses several
nodes with large degree in the periphery. Gnutella, on the other hand, has almost
no such nodes.

This visualization indicates that Gnutella may differ from random topologies. To
verify this claim, we analyze structural dependencies between the induced overlay
and the underlying AS Network. Edges in the underlay network are not equally
loaded as some edges appear in more communication paths than other. As it is not
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(a) Gnutella (b) random network

Figure 8.28.: Visualization of the induced overlay where the node positions are cal-
culated with the above layout technique for the AS Network and only
edges present in the induced overlay are drawn. Node color codes the
coreness of the ASes in the underlay.

possible to measure the actual traffic on the individual edges (the edge weight ω),
we consider a simplified model where a single communication causes one unit of
traffic to be routed. Thus, the appearance weight of an edge corresponds to its load.
The real load of an edge in the underlay network (including all the traffic caused by
other applications) naturally is larger. Comparing these two loads reveals whether
the P2P communication has characteristics similar to the accumulated load. This
helps understanding and enhancing the underlay network topology and application
level routing techniques. However, measuring the traffic load in the underlay net-
work is not trivial. Even in a simplified model where we consider the load to be
equal to the number of appearances in router-path announcements, the measure-
ment heavily depends on the collection of routers and the collection process and is
thus biased. Hence, we compare the appearance weight with node-structural prop-
erties of the corresponding end-nodes in the original underlying network. We focus
on the properties degree and coreness, as both have been successfully applied for
the extraction of customer-provider relationship as well as visualization [98, 49], as
these properties reflect the importance of ASes. We establish the relation between
the edge weight and the node structural measurements by systematically comparing
the weight with both the smaller and the larger value of end-nodes. Figure 8.29
(upper four) shows the plots of the weights versus the degree. From the plots
it is apparent that the appearance of an edge and its end-nodes’ degrees are not
correlated in both the Gnutella and the random network, as no pattern is observ-
able. Also, the distributions are similar as the majority of edges are located in the
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Gnutella random network
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Figure 8.29.: Comparing appearance weight with minimum and maximum degree
and coreness of the corresponding end-nodes in Gnutella and the ran-
dom network. Each data point represents an edge, the x-axis denotes
the appearance weight and the y-axis reflects the degrees (coreness) of
the end-nodes. All axes use logarithmic scale.
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periphery of the network where the maximum degree of the end-nodes is small. We
thus hypothesize that the relation of load in the P2P network and node degree in
the underlying network is the same in both the Gnutella and the random network.

However, the situation changes when considering the coreness instead of the de-
gree. From Figure 8.29 (lower four), we can observe that although there is no
correlation in any of the two networks, the distributions are different. In the ran-
dom network the distributions are very uniform, which reflects its random nature.
In the case of Gnutella almost no heavy edge is incident to a node with small core-
ness, as can be seen in the minimum-coreness diagram. Positively speaking, most
edges with large weights are incident to nodes with large minimum coreness. Inter-
preting coreness as importance of an AS, these edges are located in the backbone
of the Internet. The same diagram for the random network does not yield a simi-
lar significant distribution, thus denying a comparable interpretation. For instance,
in the random network, there exist edges located in the periphery that are heavily
loaded. As an aside, backbone edges need not necessarily be heavily loaded in either
network.

These observations lead us to conclude that the Gnutella network differs from ran-
dom networks and appears to be correlated to the underlay network. We are not the
first researchers, who discovered that Gnutella differs from a random topology [90, 2].
However, we illustrated that the analysis of correlation between overlay and under-
lay can be significantly supported by applying a proper visualization technique to
the underlay and study the layout for the induced overlay. Although, our technique
may not replace a sound mathematical investigation, it can provide suitable visual
indicators and properties to search for.

8.6. Summary

We presented an extensive case-study of applying clusterings techniques and visu-
alization in the analysis of the AS Network: In the first part, we used the aspect
of data reduction of clustering in order to obtain a filtering technique. We exper-
imentally verified its compatibility with the special graph structure. Based on the
removal of irrelevant information, we extracted baselines, long- and short-term pat-
terns. In the second part, we focused on a proper visualization. We developed a
new technique that incorporates the notion of importance defined by the previous
filtering technique. The combination lead to analytic layouts that could be used
to distinguish between the real networks and artifically generated networks having
similar properties. The final part contained the analysis of the embedded applica-
tion Gnutella. Although Gnutella operates as an independent service, it relies on
the routing properties of the Internet. We introduced a novel technique to analyze
such underlay-overlay relations. As a main result, we were able to show that the
network of Gnutella and randomly generated networks share some properties, but
are otherwise not (linearly) correlated. Furthermore, we observed that Gnutella and
the underlying AS Network are sightly correlated.
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Chapter 9

Landscape Like Visualization
Techniques

In the previous chapter, we introduced a visualization technique for the AS Network
(Section 8.4.1, Algorithm 7). The method does not explicitly utilize any special
properties of the AS Network, such as the fact that it is the union of paths, and
only relies on the fact that the core decomposition is a hierarchy (as defined in
Section 7.2.1). In the following, we sketch and discuss our first approaches to extend
the visualization technique. The goal is to obtain methods which can draw arbitrary
arbitrary nested decompositions. We keep the focus on large networks.

9.1. Founding Paradigm

Visualizations of large networks, i. e., those with more than 10,000 nodes or edges,
usually have a trade-off between the details of visually shown elements and the
amount of represented information. For example, drawing all nodes and edges can
lead to crowded layouts, while restricting to subgroups of nodes or edges is normally
accompanied by loss of information. In contrast to previous attempts, our goal is
to emphasize global structural dependencies with respect to a given nested decom-
position, while representing all nodes and edges. More precisely, important parts of
the decomposition and their mutual relations should be visually highlighted.

Commonly, layered drawings are handled by a Sugiyama approach, for an overview
see [35, 9]. Such layouts are typically two-dimensional and the layer information is
represented in the y–coordinate of the nodes. Optimization goals include crossing
reduction and width, i. e., maximum difference of x–coordinates. Motivated by the
size issues of large networks, a two-dimensional layout will probably not suffice.
For example, in the AS Network more than 60% of the nodes have coreness two,
thus more than 7,000 nodes would be placed on a single line implying a bad resolu-
tion. More over, in such a one and a half dimensional layout, certain details could
not be hidden. Thus, we used a corresponding three-dimensional layout, where
the z–coordinate reflects the layer index which corresponds in our scenario to the
importance of nodes. Features such as perspective and the fact that the interior of



162 Chapter 9: Landscape Like Visualization Techniques

three-dimensional objects are not visible now enable us the masking of irrelevant
details. More precisely, a suitable placement in the x-y–plane can then be inter-
preted as a landscape of mountains, i. e., each group of high importance is a clearly
visible peak and different peaks are separated by valleys. Note, that a large absolute
value of importance of a node is not sufficient to be visible, since it may be covered
inside a peak of higher importance in its neighborhood. On the other hand, in a
valley, nodes of small absolute importance can be visible due to the fact that they
connect different groups and thus are located on the surface. An example is given

(a) input (b) side view

Figure 9.1.: Input network and a side view of the importance landscape.

in Figure 9.1; the color and the shape of the nodes correspond to the importance.
The triangular nodes in the middle are clearly visible, while some nodes of higher
importance (octagonal and circular) cover other triangular nodes in the right peak.

Such landscape-metaphor paradigms are frequently used for visualizing biblio-
graphic networks [106, 25]. In general the landscape is produced simply by overlay-
ing a triangulated grid, where grid points are elevated according to the density of
data points in their vicinity. This can be seen as a histogram for two dimensional
data. In our scenario, the height of the points/nodes is already fixed. The landscape
is induced by the structural important elements, which will automatically conceal
inferior parts. The layout models this effect by placing nodes and edges accordingly.
Furthermore, it binds the landscape to the global shape of the network. In contrast
to the original landscape metaphor, no explicit surface is added. If the edge set is
sufficiently large, then it forms an implicit landscape surface as has been observed
in the case of the AS Network.

9.2. Multi-Peak Layouts

As mentioned in Section 8.4.1, Algorithm 7 is not suitable to handle arbitrary nested
decompositions. The problem are disconnected layers, i. e., layers in which a con-
nected component has only neighbors in layers with smaller index. Since no anchor
points are known for such components, they will be placed randomly. However, this
can significantly influence the overall quality of the final layout. In the following,
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we discuss two potential approaches: The first one is a more or less straightforward
extension that uses a pre-computation. In contrast, the second method recursively
identifies and layouts peaks and their mutual dependencies. Both techniques pro-
duce proper visualizations and work as a proof of concept that the original (land-
scape) paradigm can be extended to handle arbitrary nested decompositions. A
disadvantage is the loss of simplicity as both methods require a certain degree of
parameter tuning.

9.2.1. Extension using Pre-Computation
As mentioned above, disconnected layers are problematic to handle, since no anchors
are placed beforehand. Thus, it would be sufficient to know a rough estimate of the
position of anchorless components. Recall the definition of the level-component view
as defined in Section 7.2.1 and the corresponding abstracted graph (Section 2.1),
then a suitable two and a half dimensional layout of this abstracted graph can be
used as a schematic layout of the original graph. More precisely, we can use the cal-
culated coordinates for the abstracted nodes as reference coordinates for initializing
an anchorless component. The pseudo-code is given in Algorithm 8.

Algorithm 8: Layout algorithm for (general) nested decompositions

Input: graph G = (V, E),
nested decomposition η = (V =: V0 ) V1 ) · · · ) Vk ) ∅)
Output: 2.5D layout of G
calculate connected components in the individual layers, i. e., Vi =

⊎pi

j=1 V j
i

calculate 2.5D layout L for level-component abstraction Gη

calculate initial layout for each G(V j
k ) with j = 1, . . . , pk

and place the components according to L
for `← k − 1, . . . , 0 do

for j ← 1, . . . , p` do

if V j
` is anchorless then

calculate initial layout for each G(V j
` ) and place it according to L

else

calculate barycentric layout for V j
` \ V`+1 relative to L in G,

keeping G(V`+1) fixed
calculate force-directed layout for V j

` \ V`+1 relative to L in G,
keeping G(V`+1) fixed

calculate force-directed layout for G(V`)

We evaluated our technique using the recommendation network of Amazon [5].
Amazon offers for each product a list of similar items that have been frequently
purchased together. This list usually contains four items, and the recommendation
property is asymmetric. We express this relation by weights on undirected edges.
An edge between product A and B has weight two, if A recommends B and vice
versa, and weight one, if only one recommendation exists between them.
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We crawled several samples of this network in 2003. In the following, we discuss
one of them, which started with the product ‘VW Beetle Restoration Handbook’
and has a depth of nine. The resulting network contains 468 products and 1702
recommendations. The part of the network that contains the initial node and its
neighborhood is given in Figure 9.2. The boxes indicate the disconnected compo-
nents in the core layers. The upper-most large box contains the initial product

Figure 9.2.: Example of recommendation network of Amazon.com

together with other VW related books, the two other large components are about
repairing and tuning vehicles, i. e., cars and motorcycles. Thus related topics about
car and restorations are spatially close to the product ‘VW Beetle Restoration Hand-
book’. The level-component abstraction of our sample (Figure 9.3(a)) indicates the
existence of further components. More precisely, neither the initial node nor one of
its related topics form the maximum core. The 2.5D layout is given in Figure 9.3(c)
and 9.3(d) and shows that at least three other independent groups of products exist
with topics: food, history, industrial welfare and novels. Indeed, the top layer is
formed by the following novels: Austerlitz, After Nature, On the Natural History of
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(a) abstracted graph

(b) abstracted graph after removing tree-like appendices

(c) side view (d) top view

Figure 9.3.: Example of recommendation network of Amazon.com
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Destruction, The Emigrants, The Rings of Saturn and Vertigo. One explanation for
the unrelated top layer is the crawl depth of nine. However, even a more limited
crawl could have lead to unrelated topics. Popular items, like novels or guidebooks,
are commonly purchased with other products and thus induce recommendations.
In the top layer of this network, the books are all written by the same author
(W.G. Sebald) and are well-known.

In our layout (Figure 9.3(d)) the different topics are spatially separated and
the components occupy areas corresponding to their size. Only nodes of low de-
gree/coreness are detached from their group if they act as bridging elements be-
tween two topics. One example of such an element is ‘High and Mighty: SUVs
– The World’s Most Dangerous Vehicles and How They Got That Way’, which
links the car topic to cyber-culture via a recommendation to ‘Cybertypes: Races,
Ethnicity, and Identity on the Internet’.

Summarizing, the presented extension (Algorithm 8) is able to produce suitable
layouts, i. e., different peaks are clearly separated and their low-level interdependen-
cies are highlighted. However, the size of the (level-component) abstraction is often
correlated with the size of the input graph. Thus, this approach seems to work only
for small graphs or graphs where the abstraction graph is small. In our sample, the
original abstracted graph has 150 nodes and 180 edges. After removing tree-like
appendices that do not influences the initial pre-computed layout, the remaining
graph (Figure 9.3(b)) had only 53 nodes and 83 edges. Note that such a drastic
reduction may not always be possible. Another issue is the local and global relax-
ation: On the one hand, repulsive forces are needed to ensure a certain distribution
of the nodes and thus a high utilization of the available drawing area. On the other
hand, the repulsive forces may not interfere with the pre-computed scheme of the
level-component abstraction. Since the repulsive forces have such a big influence,
it might be hard to find suitable settings without further knowledge. The given
layout of our sample (Figure 9.3) still exhibits a high similarity with the layout of
the abstraction, although the forces have been tuned. Next, we present an extension
that further reduces the abstraction graph and defines a recursive approach.

9.2.2. Extension using Refactoring

The previous approach requires a suitable layout of the level-component abstrac-
tion. Thus the quality and computational time highly depends on the size of the
abstraction graph and the quality of the pre-computed layout. Recall the above
example. The removal of tree-like appendices drastically decreased the size of the
abstraction. Furthermore, not all of the remaining nodes are required to estimate
the relative positions of the peaks. More precisely, all nodes that can be uniquely
associated to a single peak, can be omitted.

More formally, we interprete the level-component abstraction as a directed acyclic
graph, where the source of an edge is always in the lower layer. Thus the top-element
of every peak corresponds to a sink in the graph. Furthermore, a node is uniquely
assigned to a peak, if every directed path starting at that node leads to the same
peak. A node is a connector , if there are at leat two directed paths starting at that
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node and leading to different peaks. Consider the example given in Figure 9.4. The

Figure 9.4.: An example of a (level-component) abstraction. The y–coordinate rep-
resents the layer level. The labels are arbitrary.

nodes 1 and 2 are the top-elements of the two peaks. Node 3 and 4 are uniquely
assigned with peak 1, node 9 is uniquely attached to peak 2 and all other nodes are
connectors. Note that node 7 and 8 inherit their status as connectors from node 6.
Thus, in order to determine the relative positions of the peaks, only node 5 and 6
are necessary.

Definition 9.1. An essential connector of the peaks u and v is a connector with the
following property: there exists at least one path to one of the peaks u or v such that
all internal nodes can only reach one of the nodes u or v.

In the previously given example (Figure 9.4) only node 5 and 6 are essential con-
nectors. The two nodes 7 and 8 are not, since all paths to one of the peak 1 or 2 con-
tain node 6. Informally speaking, essential connectors form the hull of the connectors
of two peaks. Note that this intuition is very imprecise and counter-intuitive situa-
tions may easily arise as given in Figure 9.5. Node 1, 2, and 3 are peaks and node 4
and 5 are essential connectors with respect to the pairs of peaks (1, 2) and (2, 3). In
addition, node 6 is also an essential connector for the pair of peaks (1, 3). This is
simply due to the fact that neither node 4 nor 5 can reach both peaks 1 and 3.

We use the concept of essential connectors to further reduce the size of the level-
component abstraction. The formal definition is given in Definition 9.2.

Definition 9.2. Given a directed acyclic graph G = (V, A). Let P be the set
of all sinks (peaks) and C be the set of all essential connectors for every pair of
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Figure 9.5.: An example with counter-intuitive essential connectors. The y–
coordinate represents the layer level. The labels are arbitrary.

nodes contained in P . Then the essential peak graph is defined as the undirected
graph H := (P ∪ C, A′), where two nodes are connected, if there is a directed path
that connected the two nodes in G.

A proper layout of such an essential peak graph provides relative positions of
the peaks and an estimate of the essential connectors. In contrast to the previous
approach, information about other connectors and uniquely assignable nodes is not
available. Note that additional size constraints are needed to obtain a suitable lay-
out in order to guarantee that peaks are well separated. Since such a layout contains
sufficient information to roughly place anchorless components, we could directly use
Algorithm 7 with the enriched information. On the other hand, sinks and essential
connectors may be only the ‘top’ element of a more complex structure. Due to our
initial goal of revealing structural dependencies, we further extend a layout for an es-
sential peak graph using recursion and refactoring, respectively. Consider Figure 9.6
as an example. Nodes 1 and 2 are the top elements of peaks, nodes 3 and 5− 8 are
uniquely assignable, nodes 4 and 9 are essential connectors, and all other nodes are
connectors. Further, the essential connector 9 tops two disjoint parts (nodes 10, 12
and 11, 13, respectively), while the essential connector 4 has none. Similarly, both
peaks have one node 8 and 5, respectively, that links them with essential connec-
tors, while the peak associated with node 1 has a additional independent component
(nodes 3, 6, 7). Our basic idea is to refactor the graph into smaller pieces, namely the
components that were topped by peaks and essential connectors. These components
either form a hierarchy, i. e., they are uniquely assigned to their top element and
are connected, or again have several disjoint components that need to be properly
placed.

We propose the following procedure in order to obtain a proper layout for the
essential peak graph and the level-component abstraction: estimate for each peak
and essential connectors the space it requires. Such an estimate could be the square-
root of the maximum numbers of nodes in a level and being associated with it. Use
a force-directed layout to establish first relative coordinates such that peak nodes
are not overlapping and peak nodes and essential connectors only touch each other,
if they are related to each other. Due to the size- and overlapping-constraints, each
node can be placed inside a cone that has its top at the peak and its basis at that
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Figure 9.6.: An example of a level-component abstraction, where peaks and essential
connectors ‘hide’ internal structural dependencies. The y–coordinate
represents the layer level. The labels are arbitrary.

level which defined the size. If the component has more nodes in lower levels (as
the one which defined the size), the cone is extended by a cylinder. The layout of
the essential peak graph enriched with the geometric object is then expanded into a
layout for the level-component abstract. More precisely, all nodes other than peaks
and essential connectors can be uniquely assigned to one of the peaks or essential
connectors. If the collection of nodes associated with one peak or essential connector
is connected after removing the peak or essential connector, then the collection can
be layouted using our original layouter for hierarchies. On the other hand, if the
collection has multiple components, we identify local peaks and essential connectors
and iterate this process until only hierarchies are found. In this way, our new
extension just finds the ‘building’ hierarchies, layouts them, and merges the local
layouts into a global one.

The decomposition of the example given in Figure 9.6 is shown in Figure 9.7. In
contrast to the previous pre-computation-based approach, this expansion operates
locally. On the other hand, this locality can introduce certain drawbacks such as
the global layout potentially appearing too schematic. To our current experience
and knowledge, the achieved esthetics and usability of the produced layouts heavily
depend on the chosen parameters.

The final layout for the level-component abstraction for the ‘VW Beetle Restora-
tion Handbook’ previously used is shown in Figure 9.8(a) and the final expanded
layout for the whole network is given in Figure 9.8(b). As can be seen, the indi-
vidual peaks are clearly visible in both visualizations. Furthermore, their occupied
volumes are well separated and the interconnection realized by (essential) connectors
are emphasized. On the negative side, the final layout has still many characteristics
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Figure 9.7.: Decomposition of the example given in Figure 9.6. The boxes show the
different groups. The y–coordinate represents the layer level. The labels
are arbitrary.

in common with the level-component abstraction. Although, this might improved
the readability and reveal certain dependencies at a glance, it also decreases the
recognizability of the interior of the peaks. In our example, this might be due to
size issues, i. e., some nodes in the level-component abstraction represents lots of
nodes in the original graph, while others corresponds to just a few, and the fact that
our implementation of the hierarchical approach favors compacts peaks. Comparing
the visualization with the pre-computational approach, the degree of abstraction in
the final layout is smaller. More precisely, comparing Figure 9.3(d) and 9.8(b), the
distribution of nodes associated with a peaks has improved. Another benefit of the
refactoring method is its fast computation, we observed a speed-up of two to six on
various instances.

9.3. Outlook

Summarizing, we presented two ideas on generalizing the visualization technique
for the AS Network to arbitrary nested decompositions. Both proposed algorithms
fully incorporated the original ideas and produced (almost) the same results for hi-
erarchies. While the obtained results are satisfactory both with respect to esthetic
criteria such as utilization of drawing area, and to analytic properties such as the
readability of the decomposition, the techniques have some drawbacks: First, the
version using a pre-computation can require a significant amount of time calculating
the initial sketch due to the size of the level-component abstraction. Furthermore,
the final layout can still look like an abstraction, i. e., nodes represented by the same
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(a) final layout of the level-component abstraction

(b) final layout of the whole graph

Figure 9.8.: Layout of the level-component abstraction and the whole graph using
the refactoring method applied to the ‘VW Beetle Restoration Hand-
book’ example. Colors code layers, i. e., red is top, while green corre-
sponds to bottom layer.

node in the level-component graph can be distributed in a very small area. Although
this artifact emphasizes the interdependencies of the components in the decompo-
sition, the internal structure is obstructed due to the small resolution. Second, the
technique built on refactorization is fairly sensitive to the methods placing the inner
components and their expansion. Although the presented techniques have draw-
backs and may require a fair amount of fine tuning of the parameters, the obtained
results are a proof of concept, that the underlying idea is appropriate.

We conclude this part about landscape-like visualization techniques with a brief
summary about further extensions. First of all, note that the founding paradigm
does not rely on the fact, that the input (nested) decomposition is associated with
the graph. More precisely, every pre-defined decomposition would suffice as well;
the only important aspect is, that the visualization clarifies the given structure with
respect to the network. Thus, the obtained layout can only be as meaningful as the
decomposition is. Such pre-defined decompositions can be meta-information that is
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not expressed in the graph structure. Consider the case of collaboration networks,
where nodes model authors and edges represent common publications. In order to
study the mutual relations of a set S of author, one can consider the direct neigh-
borhood of S in the collaboration network and define the decomposition accordingly
to the numbers of connection to authors in the given input set S. More precisely,
the set of authors form the top shell of the decomposition and let k be the index;
the (k − i)th shell contains all those nodes having edges to k − i + 1 nodes in the
top shell1. Thus the different layers separate the coauthors of the authors in the
given set with respect to their interaction with them. Note that such information
is not available through the network structure itself. An example is given in Fig-

Figure 9.9.: The collaborations of the five heads of the MPII’s departments in
Saarbrücken. Data were collected in mid 2004.

ure 9.9, where the five heads (H. Ganzinger, T. Lengauer, K. Mehlhorn, H. Seidel,
G. Weikum) of the departments of the Max-Planck-Institut für Informatik (MPII)
Saarbrücken form the initial set. It is immediately recognizable that most of the
people collaborated with only one head. Although the hierarchy is very flat, the
layout is not crowded while the relative size of each neighborhood and their inter-
action is clearly obtainable. Another natural nested decomposition in this context
is the earliest collaboration decomposition. Again, the initial node set forms the top
layer. The depth of a node corresponds to the age of the earliest collaboration with
a member of the initial set. This layout focuses on the evolution of recent collabo-
rations, therefore the significant part of the network is formed by nodes placed in
intermediate layers and nodes representing well established or former collaborations
are situated in lower layers. An example is given in Figures 9.10 and 9.11, where
the heads of the computer science department of the Universität Karlsruhe (TH)
form the initial set. The time hierarchy spans a period of 35 years, i. e., between
1970 and 2004, and the network consists of 20 heads, 580 coauthors and over 1700
collaborations. Our method therefore exhibits that most of the collaboration within
the department is well established and only few new interactions appeared recently.

1empty shells will be removed
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(a) 2004 (top view and clipped)

Figure 9.10.: Collaborations within a computer science department.

The second direction is the integration of temporal data. In the example of the
earliest collaboration decomposition, the layers corresponded to different points in
time. In [50], we introduced a similar paradigm for drawing evolving and dynamic
graphs. The temporal evolution of the graph is usually given as a sequence of graphs,
each representing a snapshot at a particular point in time. While the visualization of
individual points in time helps to understand the current situation, a visualization
of the whole sequence can reveal information about the evolution in general. So far
most visual representations either use a static cumulative view of the sequence or
a dynamic animation. By layouting the time-expanded graph (as defined in Sec-
tion 7.1.3) where the decomposition is defined by time, both aspects are unified,
i. e., a suitable layout for each snapshot is still available and, in addition, their com-
bination shows the ongoing evolution in the network. Since time-expanded graphs
tend to be fairly large, the resulting layouts may easily look crowded. An example is
given in Figure 9.12 and shows the evolution in collaboration network over 15 years.
The colors of nodes and edges code time, while the size represents the amount of
(shared) publication in a particular year for edges and an accumulated count of
publication for nodes. It can be observed, first, that nodes either remain constant
in size or growth over time, and second, that those fat nodes roughly keep their
positions. In addition, the top view reveals that most collaborations are repeated.

Concluding, our paradigm of landscape-like visualization offers an interesting per-
spective for analytically layouting graphs. More precisely, the given decomposition,
either defined by the graph structure or given by the user, is emphasized and de-
pendencies between individual layers and components are revealed. Although, the
current implementation has certain drawbacks, it illustrated the usefulness.
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(a) 1994 (side view)

(b) 1999 (side view)

Figure 9.11.: Collaborations within a computer science department (continued).
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(a) top view

(b) side view

Figure 9.12.: Evolution in a collaboration network over 15 years (clipped). Color
codes the time, i. e., red nodes are in the newest time frame and green
in the oldest, while blue edges connect red nodes and yellow edges the
green ones. Green edges connect different time-copies of the same node
and edges
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Chapter 10

Conclusion

We conclude this thesis by summarizing the achieved results and give some remarks
about open problems.

10.1. Theory and Experimental Evaluation

In the first part, we focused on various algorithmic aspects of density-based cluster-
ings techniques. More precisely, we introduced several methods for measuring the
quality of clusterings, comparing different clusterings with each other, generating
graphs with a known, significant clustering, and finding clusterings.

Beside the presentation of a general framework for expressing quality measures
based on the paradigm of intra-cluster density versus inter-cluster sparsity, we stud-
ied five measures in detail. These were coverage, performance, intra-cluster con-
ductance, inter-cluster conductance, and modularity. We gave a characterization of
clusterings having maximum score with respect to these indices in general and for
some special graph families, respectively. In addition, we pointed out artifacts and
counter-intuitive behavior. A brief summary of measures for comparing two cluster-
ings concluded the part about quality and structural measures for clusterings. For
the comparison, we presented lattice-based approaches that have been established
in literature as well as some extensions that generalize the underlying ideas in order
to incorporate the graph structure.

A discussion about general concepts for finding clusterings preluded the main
topic of this first part, namely the design and evaluation of clustering techniques.
First, fundamental concepts and potential realizations were presented in a uniform
way. We focused on well-known concepts such as greedy and local searches. Second,
four implementations were introduced that were the main target in the following
experimental evaluation. Since our evaluation was based on artifically generated
data, we introduced several concepts for generating graphs with known, significant
clustering. Our experiments were composed of small unit tests which are comparable
to those from software engineering. These tests formalize basic ideas and intuitions
of clustering techniques. In this way, we could easily reduce biases and incorporate
application-specific requirements. In the experimental study, we verified the usabil-
ity of our presented techniques for graphs containing a highly significant clustering
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and highlighted artifacts for very sparse and dense graphs.
The first part was concluded with an overview of variations of clusterings. We

modeled two problems concerning dynamic graphs. The first one was the update
problem, where one wishes to maintain features of a clustering when the underlying
graph changes. The second problem was the clustering of a sequence of graphs in
order to identify stable groups over time. Furthermore, some structural extensions
were stated such as fuzzy or hierarchical clustering.

Open Questions
Beside the obvious hunt for better measures and algorithms, there are two gen-
eral and opposing directions: first, specified clustering and, second, an axiomatic
approach.

As it is very unlikely that a “perfect” and general clustering technique will ever
exist, a feasible solution is to specify a certain set of properties or features as input
for the clustering technique which would then self-adapt to the selection. For exam-
ple, in our experimental evaluation we considered only graphs having a significant
clustering where the cluster sizes are distributed homogeneously. Our results regard-
ing the usability need not carry over to graphs where the distribution of cluster sizes
is very skew. Partially, such an approach has been considered before, for example,
when the number of clusters or bounds on the number of nodes inside a cluster were
given. However, these approaches failed when the “intuitive” or desired clustering
did not meet these constraints. A possibility to avoid such a pitfall is to consider
the additional information as advice or soft-constraints which should be met, but a
violation may be tolerated. In this way, partition-based clustering could be able to
handle networks with hierarchical structure by allowing dense connections between
some clusters.

The opposite way to prespecify desired features is an axiomatic approach, where
one defines a set of properties every clustering technique has to fulfill. Kleinberg pre-
sented in [72] that a selection of three intuitive axioms already denies the existence of
corresponding clustering algorithms. On the other hand, Single Linkage, which is a
greedy agglomerative approach, with different stopping criteria meet every selection
of two axioms and a basic relaxation of the original axioms as well. Although such
an approach sounds promising, it would be fairly difficult to select proper axioms
that lead to useful clustering techniques and, up to now, nobody proposed a promis-
ing approach. Nevertheless it is an interesting idea and would certainly remove a
lot of the vagueness associated with clustering, that is still present.

10.2. Applications in Network Analysis and
Visualization

The second part contained an extensive case study of the network of the Autonomous
Systems which is an abstract view of the physical Internet. The study was struc-
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tured into three sections: First, we performed a conditioning of the collected data.
More precisely, we defined and evaluated a filtering technique to remove structurally
unimportant elements. In addition, as the network is evolving over time, we gave
a preliminary analysis of long- and short-term features such as baselines, predict-
ing trends, and analyzing anomalies. After this preparation of the data and our
deepened knowledge of the network, we designed, implemented, and evaluated a
visualization technique that emphasizes the intrinsic structure of the network in
the second section. This layout approach combines the gained insight of the filter-
ing technique with standard concepts from graph drawing. In the evaluation, we
were able to show that a standard generator that should produce networks having
a similar topology to the AS Network failed to match essential features. Albeit this
structural incompatibility, the resulting visualizations of generated networks and
the original one had the same global appearance, which indicated the applicability
of the generator to some extent. In the final section, we focused on the application
Gnutella, which is a Peer-2-Peer file sharing application operating on top of the
Internet. Since it utilizes the ability of the Internet to route traffic, the analysis of
its performance should take the Internet into consideration. We presented a basic
method founded on projections and visualization to study such overlay-underlay re-
lations. As a result, we verified that the topology of Gnutella is not random and
found a certain kind of correlation with the topology of the Internet (at the AS
level).

In the final section of this part, we discussed several possibilities to extend our
visualization technique to arbitrary networks and arbitrary hierarchical decompo-
sitions. We briefly evaluated these extension using various (real-world) networks
such as recommendation systems for books and collaboration data. The part was
concluded with an outlook how to handle dynamic networks using a highly similar
concept.

Open Questions

As we improved our understanding of the AS Network by applying various cluster-
ing techniques, for some issues we just scratched the surface. For example in the
preliminary analysis of dynamic features, we observed stability in terms of static
measurements such as the number of nodes, edges, and peers and in a microscopic
part of the network, namely its core. In this context, it would be interesting to
extend this analysis and to include dynamic clustering in order to identify stable
groups over time in the major part of the network. Also, the study of long- and
short-term phenomena could benefit from a broader view of the network. For ex-
ample, how does the connectivity of a small customer change during a global virus
spread that causes tremendous load in the Internet or how does general competition
affect a customer’s choice of his/her providers.

On the other hand and independent of application-specific context of ASes, there
are two interesting problems that originate from the presented visualization tech-
nique. First, the extension of the landscape-like visualization techniques remains
open. Our presented approaches are fairly promising, yet they are sometimes sen-
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sitive with respect to choices of the parameters. The second problem is the de-
velopment of a suitable visualization technique for the analysis of overlay-underlay
relations. In our case study, we profited from a proper interpretation of the positions
of nodes. Furthermore, it would be beneficial to include knowledge of the structure
of the (induced) overlay in the computation of the layout. In graph drawing, the
problem is known as simultaneous embeddings and so far has only been considered
for sparse graphs such as trees or planar graphs, see [43] for an example.
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Zusammenfassung

Der Themenkomplex Clusterung und Clusteranalyse beschäftigt sich mit dem Ein-
teilen von Daten in natürliche Gruppen. Die Eingabedaten bestehen aus einer
Menge von Objekten und einer Gewichtsfunktion, die die (Un-)ähnlichkeit von
Paaren dieser Objekten bewertet. Ursprünglich entstammt das zugrunde liegende
Problem den Gebieten der Klassifikation und Mustererkennung; im Laufe der Zeit
wurden Clusterungstechniken in eine Vielzahl von weiteren Bereichen integriert.
Heute ist Clusteranalyse ein essentieller Bestandteil der Erforschung, Bearbeitung
und Analyse von großen und komplexen Daten, wie sie sich etwa in den Gebieten
Verkehrs- und Transportplanung, Biologie, Geologie, Ökonomie und Kommunika-
tionswissenschaften finden. Gerade durch den vielseitigen Einsatz von Clusterungen
in sehr unterschiedlichen Szenarien konnte sich keine einheitliche Terminologie en-
twickeln. Hinzu kommt, dass viele Gebiete einen eigenen formalen Rahmen geschaf-
fen haben und bestehende Techniken neu erfunden haben. Selbst der definierende
Begriff der natürlichen Gruppe wird in (fast) jedem Bereich unterschiedlich aus-
gelegt.

In meiner Dissertation betrachte ich den Spezialfall des Graphenclusterns mit dem
Fokus auf dessen algorithmischen Aspekten. Beim Clustern von Graphen stellen die
Knoten die Objekte dar und die Gewichtsfunktion wird durch (gewichtete) Kanten
modelliert. In vielen verschiedenen Anwendungsgebieten liegen die Eingabedaten
als Netzwerk vor, etwa bei der Analyse von sozialen Interaktionen oder der Visu-
alisierung von großen Graphen. Im Unterschied zu Eingabedaten, die in Gebieten
wie Klassifikation, Mustererkennung und Data-Mining betrachtet werden, enthalten
die Netzwerke wenige Kanten und lassen sich oft nicht vervollständigen. Als weitere
Einschränkung werden dichtebasierte Techniken untersucht, d. h. die Gruppen in-
nerhalb der Clusterungen sollen dichten Subgraphen entsprechen, die durch dünne
Schnitte voneinander getrennt werden können.

Im ersten Teil der Arbeit werden theoretische Grundlagen und eine ausführliche
experimentelle Auswertung für folgende Aspekte präsentiert: das qualitative Bew-
erten von Clusterungen, Ansätze für das Vergleichen von Paaren von Clusterungen,
das Generieren von Graphen mit vorgegebener (signifikanter) Clusterung sowie das
effiziente Berechnen von Clusterungen. Das Messen der Qualität einer Clusterung
ist sehr eng an die (informelle) Definition einer Clusterung geknüpft, und so verwun-
dert es nicht, dass kaum eine einheitliche und weitverbreitete Messmethode dafür
existiert. Neben der Einführung einer Formalisierung, die viele existierende Bewer-
tungsfunktionen abdeckt, werden fünf konkrete Maße bezüglich Komplexitätsstatus
sowie charakteristischen Eigenschaften untersucht. Vergleichsmaße wurden bisher
nur vereinzelt in der Literatur betrachtet. Es wird ein Überblick über verschiedene
Ansätze und deren Erweiterungsmöglichkeiten für Graphclusterungen vorgestellt
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und diskutiert. Des Weiteren werden grundlegende Prinzipien für Clusterungsal-
gorithmen vorgestellt und ihre Vor- und Nachteile beleuchtet. Neben der abstrak-
ten Beschreibung von allgemeinen Techniken werden verschiedene Algorithmen aus
der Praxis vorgestellt, die Teil einer ausführlichen Studie zur Auswertung von Clus-
terungstechniken sind. Für diese Studie wurden auch Generatoren entwickelt, die
Graphen mit bekannter (signifikanter) Clusterung erzeugen. Diese experimentelle
Auswertung gliedert sich grob wie folgt: Zuerst werden einfache Tests entwickelt,
die die Nutzbarkeit einer Technik überprüfen. Diese Tests sind in Analogie der
Unit-Tests aus der Softwareentwicklung einfach und allgemein gehalten, lassen sich
aber an spezielle Situationen und Anwendungen anpassen. Anschließend werden die
Algorithmen qualitativ evaluiert. Dabei werden die zuvor gewonnenen Ergebnisse
integriert. Den Abschluss bildet eine Zusammenfassung über mögliche Erweiterun-
gen für Clusterungen, etwa das dynamische Problem, Clusterungen nach änderungen
zu aktualisieren, oder die Erweiterung der repräsentierenden Datenstruktur.

Der zweite Teil der Arbeit untersucht die praktische Anwendbarkeit von Clus-
terungstechniken. In meinem Fall dient die Visualisierung von hierarchischen Net-
zwerken als Grundmotivation. Es wird eine Fallstudie an Hand des Netzwerks der
Autonomen Systeme, einer Abstraktion des physikalischen Internets, durchgeführt.
Das Netzwerk hat eine moderate Größe mit 10.000–21.000 Knoten und 25.000–
45.000 Kanten, enthält aber einige ”‘irrelevante”’ Elemente, welche die Analyse
von zentralen und strukturell wichtigen Teilen behindern. Die Studie verläuft grob
in drei Phasen: Als erstes wird Clusterung zur Datenreduktion eingesetzt. An-
schließend wird die Visualisierungstechnik entwickelt und an realen und generierten
Instanzen getestet. Als ein Nebenergebnis konnte gezeigt werden, dass ein weitver-
breiteter Generator die Netzwerkstruktur homogener erzeugt, als sie in der Realität
vorliegt. Im Anschluss daran wird die Visualisierungstechnik bei der Analyse der
Dateitauschbörse Gnutella eingesetzt. Gnutella ist eine Anwendung, die bestehende
Kommunikationsnetzwerke wie das Internet ausnutzt, um ihren eigenen Service
anzubieten. Als Ergebnis konnte gezeigt werden, dass Gnutella einige Eigenschaften
mit zufälligen (Overlay-)Netzwerken gemeinsam hat, allerdings in anderen abweicht.
Des Weiteren konnte eine gewisse Korrelation zu dem zugrunde liegenden Internet
(hier auf der Ebene der Autonomen Systeme) nachgewiesen werden. Eine Diskus-
sion über die Erweiterbarkeit der Visualisierungstechnik beendet den zweiten Teil
der Arbeit.

Zusammenfassend wird in meiner Dissertation der Dialog zwischen theoretischen
und praktischen Aspekten des Graphenclusterns untersucht. Auf der einen Seite
werden verschiedene Werkzeuge wie Qualitätsmessung, Generierung und Berech-
nung, systematisch dargestellt, ausgewertet und ihre wechselseitigen Abhängigkeiten
beleuchtet. Auf der anderen Seite werden dieselben Techniken eingesetzt, um das
Verständnis von realen Netzwerken zu verbessern. Ein Beispiel der Visualisierung
des Netzwerkes der Autonomen Systeme ist in Abbildung 11.1 zu sehen. Die promi-
nente vulkanartige Form läßt schon auf die hierarchische Struktur schliessen.
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Figure 11.1.: Visualisierung des Netzwerks der Autonomen Systeme zum Zeitpunkt
01.06.2001. Die Höhe eines Knotens spiegelt seine Wichtigkeit wieder:
wichtige oben und unwichtige unten.
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