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Abstract

We consider the concepts of a t-total vertex cover and a t-total edge cover (t ≥ 1),
which generalise the notions of a vertex cover and an edge cover, respectively. A t-
total vertex (respectively edge) cover of a connected graph G is a vertex (edge) cover
S of G such that each connected component of the subgraph of G induced by S has
at least t vertices (edges). These definitions are motivated by combining the concepts
of clustering and covering in graphs. Moreover they yield a spectrum of parameters
that essentially range from a vertex cover to a connected vertex cover (in the vertex
case) and from an edge cover to a spanning tree (in the edge case). For various values
of t, we present NP-completeness and approximability results (both upper and lower
bounds) and FPT algorithms for problems concerned with finding the minimum size
of a t-total vertex cover, t-total edge cover and connected vertex cover, in particular
improving on a previous FPT algorithm for the latter problem.

1 Introduction

In graph theory, the notion of covering vertices or edges of graphs by other vertices or
edges has been extensively studied (see [35] for a survey). For instance, covering vertices
by other vertices leads to parameters concerned with vertex domination [30, 31]. When
edges are to be covered by vertices we obtain parameters connected with the classical
vertex covering problem [29, p.94]. Covering vertices by edges, i.e., finding edge covers,
was first considered by Norman and Rabin [44]. Finally, when edges are to cover other
edges, we obtain parameters associated with edge domination (introduced by Mitchell and
Hedetniemi [36]). These problems have long been a testbed for the design of parameterised
algorithms (or for showing the limitations of that approach) [17]. In particular, whilst
variants of vertex cover problems have been considered with respect to parameterised
complexity for a number of years (see, e.g., [9, 20]), only more recently has a systematic
study of such problems been initiated from the point of view of parameterised complexity
[28, 43].

Clustering in graphs is another fundamental concept with a large range of practical
applications [24]. Connectedness can be seen as one of the weakest notions of clustering:
it is reasonable to assert that a vertex set can be termed a cluster only if it is connected.
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When being used for classification purposes, there is rarely only one cluster, but rather
a number of them, each representing some concept, i.e., one is looking for connected
components. In order to exclude trivial cases and to define meaningful concepts, it may
often be appropriate to bound on the number of elements per cluster.

In this paper we consider a synergy of the notion of clustering with each of the concepts
of vertex and edge covering. Throughout we assume that G = (V,E) is a connected graph,
where n = |V | and m = |E| ≥ 1. For 1 ≤ t ≤ n, a t-total vertex cover (henceforth a t-tvc)
in G is a vertex cover S in G such that each connected component of G[S], the subgraph
of G induced by S, has at least t vertices. Similarly, for 1 ≤ t ≤ m, a t-total edge cover
(henceforth a t-tec) in G is an edge cover S of G (i.e., each vertex of G is incident to an
edge in S) such that each connected component of G[S], the subgraph of G induced by
(the vertices covered by) S, has at least t edges. Hence, if S is a t-tvc or t-tec, then S is a
vertex cover or edge cover respectively such that each member of S belongs to a “cluster”
containing at least t elements of S.

The concept of a total dominating set in a graph, first defined and studied by Cockayne
et al. [11], illustrates one case where the notions of clustering and covering (vertices by
vertices) have already been brought together. A set of vertices S is a total dominating set
of G if (i) S is a dominating set (i.e., every vertex in V \S is adjacent to a vertex in S),
and (ii) each connected component of G[S] has at least two vertices.

The notion of a 2-tvc was first defined by Jean Blair [4] using the terminology total
vertex cover (by analogy to the term total dominating set). It is straightforward to present
relationships between the minimum size of a t-tvc (respectively t-tec) for various values of t
and established parameters concerned with vertex covering (respectively edge covering) in
G. Throughout this paper, our notation follows and extends that of Harary [29]. Let α0(G)
denote the minimum size of a vertex cover in G. A connected vertex cover (henceforth
a cvc) in G is a vertex cover S in G such that G[S] is connected. Let αc

0(G) denote the
minimum size of a cvc in G. It follows that a 1-tvc is simply a vertex cover (recall that
m ≥ 1), whilst a cvc of size t is a t-tvc. For t ≥ 1, let α0,t(G) denote the minimum size of
a t-tvc in G. Then α0,1(G) = α0(G). The parameters α0,t(G) for t ≥ 2 do not appear to
have been studied in the literature previously. In Section 2, we present some additional
relationships involving the parameters α0(G), α0,t(G) and αc

0(G).
Now let 1 ≤ t ≤ m – we turn to the concept of a t-tec. It follows that a 1-tec is simply

an edge cover (again recall that m ≥ 1), whilst a minimum (n − 1)-tec is a minimum
connected edge cover, i.e., a spanning tree. Let α1,t(G) denote the minimum size of a t-tec
of G, and let α1(G) denote the minimum size of an edge cover of G. Then α1,1(G) = α1(G).
The parameters α1,t(G) for t ≥ 2 do not appear to have been studied in the literature
previously. In Section 2, we present some additional relationships between the parameters
α1(G) and α1,t(G).

We remark that, for a t-tvc (respectively t-tec) to exist, G need not be connected; it
is sufficient that each connected component of G has at least t vertices (edges), and the
results in this paper also hold in such a setting. However for ease of exposition, and due to
the correspondence between t-tvcs and t-tecs with connected vertex covers and spanning
trees respectively, we choose to assert throughout that G is connected.

Given t ≥ 1, let vc, t-tvc, t-tec and cvc denote the problems of computing α0(G),
α0,t(G), α1,t(G) and αc

0(G) respectively, given a connected graph G where n = |V | and
m = |E| ≥ 1 (additionally n ≥ t in the case of t-tvc and m ≥ t in the case of t-tec). Let
vc-d, t-tvc-d, t-tec-d and cvc-d denote the decision versions of vc, t-tvc, t-tec and
cvc, respectively. Hence, the question is, given a graph G and a parameter k, whether
there is a cover C (with the additional properties specified by the problem) such that
|C| ≤ k. Note that, in the case of t-tvc-d and t-tec-d, we lose no generality in assuming

2



that t ≤ k, for otherwise the decision problem instance trivially has a NO answer.
For each t ≥ 2, we show in Section 3 that t-tvc is NP-hard and not approximable

within an asymptotic performance ratio of 10
√

5−21− δ (> 1.3606), for any δ > 0, unless
P=NP. However on the other hand we prove that t-tvc is approximable within 2. We
also prove that t-tvc-d is NP-complete, even for planar bipartite graphs of maximum
degree 3. Moreover we show that there exists a constant δt > 1 such that t-tvc in bipartite
graphs of maximum degree 3 is not approximable within δt unless P = NP. However, for
each t ≥ 2, we show that t-tvc-d belongs to FPT . In particular, we give a parameterised
algorithm for 2-tvc-d with complexity O∗(2.3655k). Here the parameter is the size of the
2-tvc.

cvc is NP-hard, even for planar graphs of maximum degree 4 [26], though polynomial-
time solvable for graphs of maximum degree 3 [47]. The problem is also solvable in linear
time for chordal graphs [15]. For a tree T , finding a minimum cvc is trivial (if T = K2, one
vertex will suffice, otherwise the set of non-leaf nodes is a minimum cvc in T ). It is known
that cvc is approximable within 2 [46, 2] and within 5

3 for any class of graphs in which
vc is solvable in polynomial time [15]. Approximation algorithms for cvc giving rise to
performance guarantees based on density parameters of a graph have also been proposed
[6]. Furthermore, cvc admits a polynomial-time approximation scheme for planar graphs
[15] and unit disk graphs [48]. In Section 4, we show that cvc is not approximable within
an asymptotic performance ratio of 10

√
5 − 21 − δ, for any δ > 0, unless P=NP.

Until recently, it appeared that the complexity of cvc in bipartite graphs had not
been considered in the literature. We show that cvc-d is NP-complete, even for planar
bipartite graphs G = (V1, V2, E), where each vertex in V1 has degree at most 3, and each
vertex in V2 has degree at most 4. This result was proved independently by Escoffier et
al. [15], who also showed that cvc is solvable in polynomial time, given a bipartite graph
G = (V1, V2, E) where each vertex in V1 has degree at most 2, and there is no upper bound
on the degree of a vertex in V2.

In this paper we also consider the parameterised complexity of cvc. We present a
parameterised algorithm for cvc-d with complexity O∗(2.9316k), improving on a previous
algorithm due to Guo et al. [28], having complexity O∗(6k). Here the parameter is the
size of the cvc. We remark that Mölle et al. [37] presented a parameterised algorithm for
cvc-d with complexity O∗(3.2361k). Furthermore, subsequently to the acceptance of the
original version of this paper [19], Mölle et al. [38, 40] presented (independently and by
using different techniques) an improved algorithm for the same problem, having complexity
O∗(2.7606k). Finally, Moser [41] describes a parameterised algorithm for cvc-d where the
parameter is the treewidth of the input graph.

1-tec, i.e., the problem of finding a minimum edge cover, is polynomial-time solvable
[44]. In Section 5, we give a Gallai identity involving α1,t(G) for each t ≥ 1. We use
this to prove that t-tec-d is NP-complete for each t ≥ 2. We also show that t-tec is
approximable within 2 for each t ≥ 2, though there exists some δ > 1 such that 2-tec

is not approximable within δ unless P=NP . Finally we show that t-tec-d is in FPT
for each t ≥ 2 (where the parameter is the size of the t-tec) and the parametric dual of
2-tec-d is also in FPT . This gives one of the few examples where both a problem and
its dual belong to FPT .

2 Preliminary observations involving α0,t(G) and α1,t(G)

We begin this section by presenting some relationships involving the parameters α0(G),
α0,t(G) and αc

0(G).
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Proposition 1. Let G = (V,E) be a connected graph where n = |V |, m = |E| ≥ 1, and
let 1 ≤ t ≤ n. Then:

1. α0(G) ≤ α0,t(G), and for t < n, α0,t(G) ≤ α0,t+1(G);

2. α0,t(G) ≥ t;

3. for αc
0(G)/2 < t ≤ αc

0(G), α0,t(G) = αc
0(G);

4. for t ≥ αc
0(G), α0,t(G) = t;

5. the minimum t such that α0,t(G) = t satisfies t = αc
0(G).

Proof. 1. If S is a (t + 1)-tvc then clearly S is a t-tvc. Moreover clearly any t-tvc is a
vertex cover.

2. If S is any t-tvc, then as m ≥ 1, it follows that G[S] has at least one connected
component, which contains at least t vertices.

3. Let S be a minimum t-tvc and let C be a minimum cvc. Then C is a t-tvc, so
that |S| ≤ |C| = αc

0(G). Now suppose that G[S] contains at least two connected
components. Then |S| ≥ 2t > αc

0(G), a contradiction. Hence S is a cvc, so that
|C| ≤ |S|. Hence α0,t(G) = αc

0(G).

4. Let C be a minimum cvc and let t′ = t − |C|. As G is connected we may construct
a t-tvc S by adding t′ vertices to C. Then |S| = t, so that α0,t(G) ≤ t. Hence
α0,t(G) = t by Part 2.

5. Let t = αc
0(G). By Part 4, α0,t(G) = t. Now suppose that t′ < t and α0,t′(G) = t′.

Let S be a t′-tvc such that |S| = t′. Then G[S] contains one connected component,
for otherwise |S| ≥ 2t′, a contradiction. Hence S is a cvc such that |S| = t′ < αc

0(G),
a contradiction.

We next present some relationships involving the parameters α1(G) and α1,t(G).

Proposition 2. Let G = (V,E) be a connected graph where n = |V |, m = |E| ≥ 1, and
let 1 ≤ t ≤ m. Then:

1. α1(G) ≤ α1,t(G), and for t < m − 1, α1,t(G) ≤ α1,t+1(G);

2. α1,t(G) ≥ t;

3. for n−1
2 < t ≤ n − 1, α1,t(G) = n − 1;

4. for t ≥ n − 1, α1,t(G) = t.

5. the minimum t such that α1,t(G) = t satisfies t = n − 1.

Proof. 1. If S is a (t + 1)-tec then clearly S is a t-tec. Moreover clearly any t-tec is an
edge cover.

2. If S is any t-tec, then as m ≥ 1, it follows that G[S] has at least one connected
component, which contains at least t edges.

3. Let S be a minimum t-tec and let T be a spanning tree of G. Then T is a t-tec,
so that |S| ≤ |T | = n − 1. Now suppose that G[S] contains at least two connected
components. Then |S| ≥ 2t > n − 1, a contradiction. Hence G[S] is connected, so
that |S| ≥ n − 1. Thus α1,t(G) = n − 1.
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4. Let T be a spanning tree of G and let t′ = t − (n − 1). As G is connected we may
construct a t-tec S by adding t′ edges to T . Then |S| = t, so that α1,t(G) ≤ t. Hence
α1,t(G) = t by Part 2.

5. Let t = n − 1. By Part 4, α1,t(G) = t. Now suppose that t′ < t and α1,t′(G) = t′.
Let S be a t′-tec such that |S| = t′. Then G[S] contains one connected component,
for otherwise |S| ≥ 2t′, a contradiction. Hence S is a spanning tree such that
|S| = t′ < n − 1, a contradiction.

3 Complexity and approximability of t-tvc

We begin with a lower bound for the approximability of t-tvc in general graphs.

Theorem 3. For each t ≥ 1, t-tvc is NP-hard and not approximable within an asymp-
totic performance ratio of 10

√
5 − 21 − δ, for any δ > 0, unless P=NP.

Proof. For t = 1 the result follows by [13]. Now assume that t ≥ 2. Let G = (V,E) be
an instance of vc. We lose no generality in assuming that G is connected and |V | ≥ 2.
Create a new graph G′ = (V ′, E′) such that V ′ = V ∪ W and E ′ = E ∪ E1 ∪ E2, where
W = {wi : 1 ≤ i ≤ t} is a set of new vertices, E1 = {{v, w1} : v ∈ V } and E2 =
{{wi, wi+1} : 1 ≤ i ≤ t − 1}. Let W ′ = W\{vt}. It is straightforward to verify that
if S is a minimum vertex cover in G, then S ∪ W ′ is a t-tvc in G′. Conversely if S ′ is
a minimum t-tvc in G′, then S′ ∩ W = W ′, and S′ ∩ V is a vertex cover in G. Hence
α0,t(G

′) = α0(G) + t − 1. The result follows by [13].

We now present an upper bound for the approximability of t-tvc.

Theorem 4. For each t ≥ 1, t-tvc is approximable within 2.

Proof. Let G = (V,E) be an instance of t-tvc (then G is a connected graph, where
n = |V | ≥ t and m = |E| ≥ 1). Savage [46] presents an approximation algorithm for
cvc: the algorithm computes a cvc S in G such that |S| ≤ 2α0(G). Suppose firstly that
t ≤ |S|. Then S is a t-tvc, and |S| ≤ 2α0(G) ≤ 2α0,t(G) by Proposition 1, as required.
Now suppose that t > |S|. Let t′ = t − |S|. As G is connected, we may construct a t-tvc
S′ in G by adding t′ vertices to S. Then |S ′| = t, so that S ′ is in fact a minimum t-tvc by
Proposition 1.

The next two results concern the complexity and approximability of t-tvc in bounded
degree bipartite graphs, for each t ≥ 2.

Theorem 5. For each t ≥ 2, t-tvc-d is NP-complete for planar bipartite graphs of
maximum degree 3.

Proof. Clearly t-tvc-d belongs to NP . To show NP-hardness, we give a reduction from
the NP-complete restriction of vc-d to planar graphs of maximum degree 3 [27, 26].
Hence let G = (V,E) (a planar graph of maximum degree 3) and k (a positive integer) be
an instance of this problem. Let E = {e1, e2, . . . , em} for some m. We define an instance
of t-tvc-d as follows. Construct a graph G′ = (V ′, E′) by letting V ′ = V ∪ W , where
W = {wi,j : 1 ≤ i ≤ m ∧ 1 ≤ j ≤ t}. For each i (1 ≤ i ≤ m), suppose that ei = {u, v} for
some u, v ∈ V . Add the edges {u,wi,1}, {wi,j, wi,j+1} (1 ≤ j ≤ t − 1) and {wi,1, v} to E′.
Clearly G′ can be constructed in polynomial time from G, and G′ is planar, bipartite and
has maximum degree 3. Let k′ = k +(t− 1)m. We claim that G has a vertex cover of size
at most k if and only if G′ has a t-tvc of size at most k′.
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For, suppose that G has a vertex cover S of size at most k. Let S ′ = S ∪ W ′, where
W ′ = W\{wi,t : 1 ≤ i ≤ m}. Then it may be verified that S ′ is a t-tvc of G′, and
|S′| = |S| + (t − 1)m ≤ k + (t − 1)m = k′.

Conversely suppose that G′ has a t-tvc of size at most k′. Choose S ′ to be such a
set that minimises |S ′ ∩ W |. It is straightforward to verify that W ′ ⊆ S′, since t ≥ 2.
Also, S′ ∩ W = W ′. For, suppose that wi,t ∈ S′ for some i (1 ≤ i ≤ m). Let ei = {u, v}
for some u, v ∈ V . Define S ′′ = (S′\{wi,t}) ∪ {u}. Then S ′′ is a t-tvc of G′, |S′′| ≤
|S′| ≤ k′, and |S′′ ∩ W | < |S′ ∩ W |, contradicting the choice of S ′. Hence the claim is
established. Let S = S ′ ∩ V . Then it may be verified that S is a vertex cover of G, and
|S| = |S′| − (t − 1)m ≤ k′ − (t − 1)m = k.

Corollary 6. For each t ≥ 2, t-tvc in bipartite graphs of maximum degree 3 is not
approximable within 1 + 1

500t−400 unless P=NP.

Proof. vc in cubic graphs is not approximable within 100
99 unless P=NP [10]. By consider-

ing this problem as the starting point for the same reduction as in the proof of Theorem 5,
it again follows that α0,t(G

′) = α0(G) + (t− 1)m. Now α0(G) ≥ β1(G) ≥ m
5 [49, Theorem

60], where β1(G) is the size of a maximum matching in G, since G is cubic. It follows that
α0,t(G

′) ≤ (5t− 4)α0(G). Hence the reduction of Theorem 5 is an L-reduction (defined in
[45]) with parameters α = 5t − 4 and β = 1. The result follows by [49, Theorem 63].

We now turn to the parameterised complexity of t-tvc, for t ≥ 2. Our first result
establishes a small kernel for this family of problems, indicating that they belong to the
class FPT . To be more precise, we obtain an annotated kernel in the sense of [1].

Theorem 7. For each t ≥ 2, t-tvc-d has a kernel of size O(k(k + t)), and hence is in
FPT and can be solved in time O∗((k(k + t))k), where k is the size of the t-tvc.

Proof. Let G = (V,E) (a connected graph) and k (a positive integer where k ≥ t) be
an instance of t-tvc-d. Initially let all vertices in G be unmarked and let k ′ = k. We
exhaustively apply the following reduction rules to G, for any remaining vertex v:

1. v is isolated. If v is marked, output NO, otherwise delete v.

2. v is unmarked and has degree > k. Mark v and decrement k ′.

3. v is marked and deg(v) ≥ t − 1. Partition N(v) into N1(v) and N2(v), where
N1(v) comprises vertices of degree 1, and N2(v) comprises vertices of degree ≥ 2.
Let N∗

1 (v) denote those vertices in N1(v) that are marked. Delete min{|N1(v)| −
|N∗

1 (v)|, deg(v) − (t − 1)} unmarked vertices from N1(v).

It is straightforward to verify that, if the above rules output NO, or if k ′ falls below 0,
then 〈G, k〉 is a NO-instance. Otherwise let G′ = 〈V ′, E′〉 denote the kernel graph that
remains after the reduction rules have been applied exhaustively to G, and let S denote
the set of marked vertices at that point. Then k = k ′ + |S|. Moreover it is straightforward
to verify that G has a t-tvc of size at most k if and only if G′ has a t-tvc of size at most
k that contains the vertices in S.

Now suppose that C is such a t-tvc of G′. Let V1 be the vertices of G′ of degree 1, let
V3 be the vertices of G′ of degree larger than k, and let V2 be the remaining vertices of G′.
Let Ci = C ∩ Vi and let ki = |Ci| for i = 1, 2, 3. Since V3 = S, it follows that |V3| = k3.
Also k1 + k2 ≤ k′ and k1 + k2 + k3 ≤ k.

Let v ∈ V1. Either (i) v ∈ C1, or (ii) v /∈ C1. In case (ii), v’s unique neighbour w in G′

belongs to C. Hence w has degree at least 2 in G′, and thus belongs to V2∪V3, since t ≥ 2.
Rule 3 above implies that there are no more than t−1 unmarked degree-one neighbours of
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w in G′. Since this observation, together with case (i), accounts for all the vertices in V1,
it follows that |V1| ≤ k1+(t−1)(k2 +k3). Hence, |V1∪V3| ≤ k1+(t−1)k2 +(t−1)k3 +k3 ≤
tk′ + tk3 ≤ tk.

Let E2 denote the edges in G′[V2]. Since C2 is a vertex cover of G′[V2], it follows that
|E2| ≤ k2k, since each vertex in C2 can cover at most k edges of E2. But |E2| ≥ |V2|, since
each vertex in V2 has degree at least 2. It follows that |V2| ≤ k2k ≤ k2.

The set V ′ forms our kernel for t-tvc-d, and it follows from the above that |V ′| =
O(k(t + k)). The second stage of our implied FPT algorithm enumerates all subsets
of V1 ∪ V2 of size k′, checking to see whether each is a t-tvc of G (given the marked
vertices in V3 already chosen). It follows that the overall complexity of our approach is
O∗((k(k + t))k).

We next present a parameterised algorithm for 2-tvc which improves on the algorithm
suggested by Theorem 7 for the case that t = 2.

Theorem 8. 2-tvc-d can be solved in time O∗(2.3655k), where k is the size of the 2-tvc.

As a preparatory step, let us first describe an algorithm running in time O∗(4k). This
will display the main idea of our more refined and intricate algorithm that will yield the
claimed running time.

Lemma 9. 2-tvc-d is in FPT and can be solved in time O∗(4k), where k is the size of
the 2-tvc.

Proof. All our algorithms are based on the following simple observation. each 2-tvc of size
k contains a minimal (not necessary total) vertex cover of size at most k.

It is known (see [17, 12]) that all minimal vertex covers of size at most k can be
enumerated (listed) in time O∗(2k). So, the question is how to extend a minimal vertex
cover C to a valid 2-tvc C ′ of minimum size. In other words, how can we find a 2-tvc
C ′ with C ⊆ C ′, such that there is no other 2-tvc C ′′ with C ⊆ C ′′ and |C ′′| < |C ′| ? If
this question can be answered in time O∗(ck), then 2-tvc-d is in FPT ; more precisely, it
could be solved in time O∗((2c)k).

For each minimal vertex cover C of G described at a leaf of the search tree, we construct
a hypergraph H as follows: V ′ = V \ C are the vertices of the hypergraph, and the
hyperedges E ′ are the open neighbourhoods of the vertices in C that do not contain
(other) vertices from C. Now, a “minimum extension” of C to a valid 2-tvc corresponds
to a minimum hitting set in H. Since |E ′| ≤ k, this can be done in time O∗(2k) according to
[22]; see also [17, Theorem 8.1]. This shows that 2-tvc-d can be solved in time O∗(4k).

The main idea of how to improve the running time of Lemma 9 is to avoid branching
at vertices of small degree in the vertex cover enumeration phase. To implement this idea,
we introduce a marking function µ (also called a colouring) on the vertex set V of the
input graph G. So, the algorithm will actually deal with annotated graph instances. We
are going to explain the meaning of the marking µ : V → {−1, 0, 1, 2} in the following:

• Vertices v ∈ V with µ(v) = −1 are also called unmarked. At the very beginning of
the algorithm all vertices are unmarked.

• Vertices that are not unmarked will be called marked. They are further distinguished
by the value of the marking function they received.

• A vertex is 1-marked if it is known to belong to the (partial) vertex cover (due to
branching).
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• A 2-marked vertex also belongs to the vertex cover, but, in addition, also one of its
neighbours is known to belong to the vertex cover.

• For a 0-marked vertex, it is unknown if it belongs to the vertex cover, but one of its
neighbours is known to belong to the vertex cover.

Our algorithms will put more and more vertices into a (partial) cover, either by re-
duction rules or by branching. For the marking function, this means according changes.
However, due to the semantics just described, these changes can only increase the value of
a marking. More specifically, unmarked vertices should be turned into 1-marked vertices
and 0-marked vertices should be turned into 2-marked vertices upon putting them into
the cover.

We call an annotated instance updated if the following properties are true:

1. There is no unmarked vertex that is known to be in the vertex cover or in the
neighbourhood of a vertex from the vertex cover.

2. There is no 1-marked vertex that is neighbour of a vertex known to belong to the
vertex cover.

3. There is no vertex that is 2-marked.

As we will see, updated instances allow further simplifications. The updating itself and
the mentioned simplifications can be handled by simple rules that we call colour handling
rules. Details of these rules are described in the actual proof of Theorem 8, since these
rule will also modify the parameter budget in a specific way, which in turn affects the run
time analysis as given in the proof. Without explaining this parameter budget handling,
the rules listed in Fig. 1 can be already read at this point.

To give an idea how the marking could be helpful to get rid of small-degree vertices,
consider the case that x is a vertex of degree 0:
Degree-0 rule: If G is an annotated updated graph instance and x is a vertex of degree 0,
then do:

• If x is 1-marked, then we have a NO-instance.

• Otherwise, delete x.

Lemma 10. The degree-0 rule is sound.

Proof. Consider an isolated vertex x. Since the instance is updated, x is not 2-marked. If
x were 1-marked, then—being isolated—x cannot find a neighbour in the cover. Hence,
we have a NO-instance in that case. If x is 0-marked or unmarked, we delete it: Because
x is isolated, taking it into the cover would neither cover any edges nor help a neighbour
(that is in the cover) to form a component of size two.

Since the degree-1 rule will explicitly deal with the parameter(s) as well, we will defer
its discussion to the actual proof of Theorem 8 below.

As a second feature of our improved algorithm, we mention that the hitherto clearly
separated vertex cover enumeration and hitting set phases will be interleaved. In partic-
ular, this means that the search tree part hidden in the vertex cover enumeration phase
will be made explicit. This mixing of the two phases also enables to better deal with the
involved parameter(s), which finally yields the better run time estimate.
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Figure 1: Colour handling rules (parameters that are not changed are not mentioned):

1. If vertex x is unmarked but neighbour of a 1-marked or 2-marked vertex,
then 0-mark x.

2. If vertex x is 1-marked and is a neighbour of a 1-marked or 2-marked vertex,
then 2-mark x and decrement k2.

3. Merge two 2-marked vertices.

4. If none of the previously listed rules apply, delete a possibly existing 2-
marked vertex.

Proof. (of Theorem 8) The following proof is organised into three subsections: In (A), we
discuss and justify the reduction rules. Based on the correctness of the reduction rules,
we prove the correctness of our algorithm in part (B). Finally, in (C) we show how the
interplay of reduction rules and heuristic priorities positively affect the run time estimate.
(A) Discussion of the reduction rules.

To be coherent with the search tree part, we manage the parameter budget in a way
that the 1- and 2-marked vertices are already taken into account; hence we have a NO-
instance (corresponding to a particular branch of the search tree) if the parameter budget
falls below 0.

We now introduce two budgets (parameters) k1 and k2, both bounded by the original
parameter size of k at the outset, where k1 actually bounds the first part (the vertex cover
enumeration, although this dictum is not strictly true) and k2 bounds the second part (the
Hitting Set phase) of the search tree. Obviously, k1 ≤ k2 as long as we are in the vertex
cover enumeration phase. Moreover, k2 − k1 equals the number of 1-marked vertices.
Our discussion justifies the following reject rule:
If the parameter k1 drops below 0, we have a NO-instance.

We employ the colour handling rules listed in Fig. 1. The correctness of these rules
should be clear. Let us call an instance that is reduced with respect to the colour handling
rules CHR-reduced.

These rules guarantee that the following properties of a CHR-reduced instance are
true: Claim 1:

1. A CHR-reduced instance is updated.

2. The set of 1-marked vertices forms an independent set in the graph of a CHR-reduced
instance.

Further, notice that there is at most one 2-marked vertex in the graph before applying
the last of the colour handling rules due to the third of these rules. 3

In the following, we always assume that we have already exhaustively executed the
colour handling rules.

We have already explained above how to handle vertices of degree zero (see Lemma 10).
Vertices of degree one are handled as follows:
Degree-1 rule: If G is a annotated updated graph instance and x is a vertex of degree 1
with unique neighbour y, then do the following:

1. If x is unmarked or 0-marked, we distinguish two subcases:

(a) If y has degree 1, decrease both parameters k1 and k2 by 2 if x and y are both
unmarked, and decrease both parameters k1 and k2 by 1 if x or y is 0-marked.
In both cases, delete both x and y.

9



(b) Otherwise, y has degree at least 2.

• If y is unmarked, 1-mark y, delete x and decrement k1.

• If y is 0-marked, 2-mark y, delete x and decrement k1 and k2.

2. If x is 1-marked, then 2-mark y and decrement the parameters k1 and k2.

Claim 2: The degree-1 rule is sound.
For the proof of this claim, we distinguish three cases: (1) x is 1-marked, (2) x is unmarked
or 0-marked and deg(y) = 1, and (3) x is unmarked or 0-marked and deg(y) ≥ 2.
Case (1): If x is 1-marked, then the edge {x, y} is covered. Notice that, since we are
dealing with CHR-reduced instances, y must be unmarked or 0-marked, because otherwise
Property 2 of CHR-reduced instances is violated. This means that y was not known to
belong to the vertex cover. The only way to form a valid 2-tvc is to put y into the cover,
as well, since otherwise x would find no neighbour in the cover. We model this fact by
2-marking y. Moreover, since y was not known to belong to the vertex cover before, we
decrease k1 and k2 by one.
Case (2) means that we have a matching edge between x and y.
If x and y are both unmarked, then both x and y must be put into the 2-tvc in order to
cover the edge {x, y}, since this is the only way to guarantee that x or y find a neighbouring
vertex in the cover. Since neither x nor y have other neighbours beside y or x, we can
safely delete this small component. Moreover, we must update the parameters k1 and k2:
in particular, since both x and y have a neighbour in the cover (after putting both into the
cover), they need not be considered in the Hitting Set phase, which justifies decreasing k2

by two.
If x is 0-marked, then it is known that there exists a neighbour of x (in the original graph;
this vertex might have been deleted by now) that belongs to the vertex cover. So, if we
put x into the cover, it will be 2-marked and can hence be finally deleted. Since we are
looking for a small 2-tvc, there is no reason to put y into the cover as well. So, we may
carry out the operations as described.
Consider now case (3). Let z ∈ N(y) \ {x}. Consider a minimum 2-tvc C of the original
graph that extends the partial cover that has been fixed so far during the run of the
algorithm. If y /∈ C, then x, z ∈ C, since otherwise the edges {x, z} and {y, z} would not
be covered. This means that at the current point of the run of the algorithm, x (being
of degree one) must be 0-marked (otherwise, x is in the cover but no neighbour of x is).
Moreover, the only reason why x is in the cover is in order to cover {x, y}. Therefore,
(C \ {x}) ∪ {y} would be a valid 2-tvc of the same size. Hence, we can assume without
loss of generality that y is put into the cover. In that case, if C is a minimum 2-tvc that
includes x, then (C \ {x}) ∪ {z} is a minimum 2-tvc excluding x. The handling of the
markings is now easily understood. 3

If the vertices that are unmarked or 0-marked form an independent set, a vertex cover
has been found; without any 1-marked vertices, we have even found a 2-tvc.

In Alg. 1, the reader can find a summary of how to employ the reduction rules in a
way that guarantees their correct usage, so that the soundness claims made above and the
derived properties are true.
(B) Correctness of the search tree algorithm.
After having shown the correctness of the reduction rules, we are now going to discuss
the correctness of the overall search tree algorithm that can be found in Alg. 2. In the
very beginning, i.e., when confronted with an instance (G, k) of 2-tvc-d, the algorithm
initialises the marking function µ to constantly deliver (−1), it assigns k1 := k2 := k, and
the initial (partial) cover is empty, as is the branching candidate list L. Throughout the
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Algorithm 1 The employment of the reduction rules for 2-tvc-d, called tvc-reduce

Require: an annotated graph G = (V, E) with marking functions µ : V → {−1, 0, 1, 2}, positive
integers k1 and k2, a set C ′ of cover vertices

Ensure: return a reduced version of G if G might have a 2-tvc C ⊆ V with |C| ≤ k1; NO otherwise

{The rules will implicitly modify G, µ, k1, k2, and C ′ themselves}
if k1 < 0 then

return NO; {reject rule}
else

5: changed := false;
while possible do

apply one of the first three colour handling rules; changed := true;
end while
if possible then

10: delete a 2-marked vertex; changed := true;
end if
if possible then

apply a degree-0 or a degree-1 rule; changed := true;
{An application of such a rule might also modify C ′}

15: end if
if changed then

return tvc-reduce(G, µ, k1, k2, C
′)

else
return (G, µ, k1, k2, C

′)
20: end if

end if

run of the algorithm, (more specifically, before recursively entering tvc-st) we maintain the
following invariants:

1. |C ′| = k − k1 (notice that k is not changed by the algorithm)

2. k2 − k1 = |{v ∈ V | µ(v) = 1}|
We now present a list of give properties. The first four are used to establish the fifth,

which is particularly useful for the run time estimate (dealt with under part (C) of the
proof below) for the algorithm.
Claim 3: Upon entering lines 18 ff. of Alg. 2, we face an instance with the following
properties:
(1) All neighbours of 0-marked vertices are unmarked or 1-marked.
(2) There are unmarked vertices.
(3) All neighbours of unmarked vertices are unmarked or 0-marked.
(4) Except for the very first call of the algorithm, each component of the graph instance
contains 0-marked vertices.
(5) Except for the very first call of the algorithm, there are always 0-marked vertices in
the graph that have unmarked neighbours.

Namely, 2-marked vertices are deleted after applying the reduction rules. So, (1)
would be false if we encounter two adjacent 0-marked vertices. This is impossible due to
the branching in lines 7–8 of Alg. 2.
If (2) was false, we would have entered the Hitting Set phase, lines 9ff. of Alg. 2.
If (3) was false, the first colour handling rule would have applied, contradicting the fact
that we deal with reduced instances at this point.
Property (4) can be seen by induction on the depth of the search tree. After the very first
branching (at y), some 1-marked vertices will appear in each component of the originally
connected graph; observe that in the branch where y is not taken into the cover, the
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Algorithm 2 An advanced search tree algorithm for 2-tvc-d, called tvc-st

Require: an annotated graph G = (V, E) with marking functions µ : V → {−1, 0, 1, 2}, a pos-
itive integers k1 and k2, a partial cover C (including those vertices marked 1 or 2 in G and
also possible further vertices that have been deleted from the original graph at this point), a
preferred branching candidate list L

Ensure: return C ′ ⊇ C if G has a consistent 2-tvc set C ′ ∩ V with |C ′ ∩ V | ≤ k1; NO otherwise

C ′ := C; {C ′ collects the cover vertices}
reduction-result := tvc-reduce(G, µ, k1, k2, C

′);
if reduction-result = NO then

return NO;
5: else

(G, µ, k1, k2, C
′) := reduction-result; {G has no 2-marked vertices}

if there are two neighboured vertices x, y with µ(x) = µ(y) = 0 then
branch at y;

else if G contains no more unmarked vertices (i.e., no x with µ(x) = −1) then
10: form the corresponding Hitting Set instance with the 0-marked vertices as vertices of the

hypergraph and the hyperedges N(x) for x being 1-marked;
compute a minimum hitting set H ;
if |H | > k1 then

return NO;
else

15: return H ∪ C ′;
end if

else
delete from L all vertices x with µ(x) > 0;
select a vertex y for branching according to the list of priorities from Fig. 2;

20: if deg(y) ≤ 6 and L = ∅ then
L := N(y);

end if
branch at y;

end if
25: end if

originally connected graph might decompose into several components. The reduction rules
will hence introduce at least one 0-marked vertex in each component. A careful look at all
reduction rules and branching scenarios proves that this property is maintained through
the course of the algorithm. More specifically, branching itself never poses a problem,
since it will 1-mark or 2-mark new vertices and hence 0-mark their neighbours. If 0-
marked vertices disappear through the reduction rules, this either means that a component
is completely resolved or that (through the degree-1 rule) new vertices are put into the
cover, which again means that their neighbours will be 0-marked.
If (5) was not true, all neighbours of 0-marked vertices must be 1-marked due to Property
(1). By the colour handling rules, all neighbours of 1-marked vertices must be 0-marked.
Therefore, in this scenario, a component that contains 0-marked vertices can contain 0-
marked or 1-marked vertices only. By Property (4), this means that the whole graph
instance only contains 0-marked and 1-marked instances. Hence, the Hitting Set Phase
would have been entered, contradicting our assumption that we entered lines 18 ff. of
Alg. 2. 3

The correctness proof of our algorithm can be easily done by induction, once the fol-
lowing assertions are seen:
Claim 4: The translation into the minimum hitting set instance is correct.
Claim 5: The branching is in particular correctly handling the parameters and the mark-
ings.
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Notice that we can safely defer the discussion of the heuristic priorities to subsection
(C) of this proof, since they only affect the order of precedence in which vertices are
selected for branching, but they do not interfere with the correctness, since eventually
some vertex y will be selected for branching.

The hitting set phase is only entered when there are no more unmarked vertices.
Immediately before entering this phase, the reduction rules have been exhaustively applied,
as explained in Alg. 1. Therefore, the instance is updated, which implies that there are
no more 2-marked vertices. Therefore, all vertices are either 0-marked or 1-marked. In
order to be ready to enter the hitting set phase, we must also guarantee that the 1-marked
vertices form a vertex cover. This is checked by the branching immediately preceding the
hitting set phase: namely, the hitting set phase is only entered when no two neighbouring
0-marked vertices can be found, i.e., only when the 0-marked vertices form an independent
set. It is well-known that the complement of an independent set is a vertex cover, which
means that in our case, when entering the hitting set phase, the 1-marked vertices form a
vertex cover as required. Hence, the translation into the minimum hitting set instance is
correct; so, by the reasoning given above for the simple version of the search-tree algorithm
for 2-tvc-d, we are guaranteed to obtain a minimum valid 2-total vertex cover set that
extends our previously determined partial cover. 3[of Claim 4]

Algorithm 3 The code of “branch at y”

j := µ(y) + 1; {It is known that j ∈ {0, 1}.}
Define µ′ by setting µ′(y) := µ(y) + 2 and µ′(x) := µ(x) for x 6= y;
C ′′ :=tvc-st(G, µ′, k1 − 1, k2 − j, C ′ ∪ {y}, L);
if C ′′ 6=NO then

5: return C ′′;
else

j := |{v ∈ N(y) | µ(v) = 0}|;
i := |{v ∈ N(y) | µ(v) ≤ 0}|;
modify µ by setting µ(v) := µ(v) + 2 for all v ∈ N(y) with µ(v) < 1 at present;

10: delete y from G (and from µ);{keeping the same names G, µ}
return tvc-st(G, µ, k1 − i, k2 − j, C ′ ∪ N(v), L);

end if

To see Claim 5, we have to study Alg. 3. Basically, the branching in Alg. 3 explores
two mutually exclusive possibilities: either (a) y is put into the cover, or (b) y is not
put into the cover. In case (a), we update C ′ by adding y. Moreover, the budget k1 is
decremented, which is correct when we assume that we only branch at vertices hitherto not
determined to go into the vertex cover (this property can be easily checked by inspection).
The parameter budget k2 is decremented if and only if µ(y) = 0. Case (b) is a little bit
more complicated, but it can be analysed completely similarly. The only differences that
might need some attention are the following ones: (i) C ′ might have vertices in common
with N(y), the set of vertices added in the recursive call. (ii) We modify G by deleting
y from the instance. This is justified by our branching: (I) We will not consider the case
that y might go into the cover (also not in the following hitting set phase), since this case
is covered under (a). (II) Since all neighbours of y are put into the cover, y should be
0-marked. By (I), it will never be 2-marked, so that it could be deleted from further
consideration. 3

(C) Discussion of the branching in special cases
This leads to an analysis of the run time as claimed. However, let us first understand that
even without this more sophisticated case analysis inspired by the heuristic priorities listed
in Fig. 2, we obtained a significant gain over the first and simple search-tree algorithm.
Namely, since we never branch on vertices of degree zero or one, the vertex cover search-
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Figure 2: Heuristic priorities used for branching in Alg. 2

1. If possible, select y ∈ L. Modify L := L \ {y}.

2. If possible, select an unmarked y that belongs to a triangle.

3. If possible, select an unmarked y that has a neighbour x with µ(x) = 0.

4. Otherwise, select any unmarked y.
{ A catch-all; possibly needed at the very beginning }

tree phase only takes time O∗(1.62k), (ignoring for the moment the branch at neighbouring
0-marked vertices) which totals up to a run time estimate of O∗(3.24k).1

Our run time analysis contains a feature that could be helpful in analysing other
parameterised algorithms, as well, in particular those consisting of two phases: namely,
by considering both of the two parameters k1 and k2 in the recursions bounding the run
times, we could take advantage of reducing either of them.

We only remark on one specific feature of this analysis here which should be understood
in order to appreciate the pseudocode of our algorithm, namely the role of the list L. This
list is introduced only to enforce a specific branching behaviour of the algorithm that
would possibly be violated if not explicitly mentioned. Therefore, vertices on the list are
treated with priority, as in Fig. 2. This enforced branching behaviour will be exploited in
the run time analysis of the case of branching on vertices of degree at most six. Therefore,
only in that case, the list is updated by our algorithm. So, this list handling avoids some
special-case branchings that would be necessary otherwise to correctly reflect the run time
analysis.

We now present the run-time analysis. In a first step, we analyse the run time of the
branching of neighbouring 0-marked vertices (as done before entering the hitting set phase)
and the run time for branching in triangles (as done by the second heuristic priority).

Let us look at a first simple example, namely triangles, as found as the second item
on the priority list of Fig. 2. There, we face a situation where the three vertices x, y, z
in the graph that are mutually neighboured and y is selected for branching. At most one
vertex from {x, z} is 0-marked due to Property (1) from Claim 3. This implies that all
of them are either unmarked or 0-marked, since we are dealing with updated instances.
In the case when y is put into the cover, both x and z will be 0-marked by the colour
handling rules (in the recursive call). Hence, lines 7–8 of Alg. 2 apply, putting either x or
z into the cover. Therefore, the branching that is triggered covers three cases that could
be summarised as taking two out of the three vertices from {x, y, z} into the cover.

Actually, already for the classical vertex cover case, (i.e., 1-tvc-d), we know that two
out of these three vertices must go into the cover. So, the point of the preceding paragraph
is to show that this scenario will happen according to our algorithm. Notice that in this
special case these two vertices will be neighbours, so that this branching scenario is also
valid for 2-tvc-d, since clusters are automatically created. Therefore, the vertices put
into the cover by this branching need not be taken care of later in the Hitting Set phase.
Hence, the budget for that phase can be reduced by 2; in fact, this would be done by the
colour handling rule that subsequently deletes two 2-marked vertices. The corresponding
recurrence is therefore:

T (k1, k2) ≤ 3T (k1 − 2, k2 − 2)

Fortunately, we already know the complexity of the second phase, which is O∗(2k2). As-

1A different but similar approach to arrive at this run time is explained in [18].
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suming a running time of O∗(ck1) for the first phase (with c still to be determined), we
obtain the condition

ck12k2 ≤ 3ck1−22k2−2.

Multiplication with c−k1+22−k2+2 yields: 4c2 ≤ 3, i.e., c ≤
√

3/2. The overall running
time of the algorithm can be grossly estimated by assuming k1, k2 ≤ k, so that in that

particular case (2 · c)k ≤
√

3
k ≤ 1.7321k follows.

Let us now consider another special case with a very nice branching behaviour: that
of two neighboured vertices x, y that are 0-marked (see lines 7–8 of Alg. 2). Clearly, either
x or y must go into the cover in order to cover the edge {x, y}. Whichever vertex we
put into the cover, notice that it will be immediately 2-marked (and hence it will not be
considered in the Hitting Set phase). Therefore, also the parameter k2 is decreased. We
are led to the recurrence:

ck12k2 ≤ 2ck1−12k2−1

which is obviously solved by c ≤ 1, yielding (2 · c)k ≤ 2k.
Due to Property (5) of Claim 3, we can assume in the following that we can always

find an unmarked vertex y that is a neighbour of a 0-marked vertex x. We will branch at
y or its neighbours according to what we describe in the following. In Alg. 2, this type
of branching (on the neighbours) is enforced by using the list L. Notice that we cannot
rely on the third heuristic priority here, since we might be tempted to do other branchings
at other places of the graph before returning to the neighbourhood (which might be even
completely uninteresting for further branching at that point); so, we have to guide our
branching with the help of the additional list L. However, notice further that this is the
only purpose of this list, so that this can be easily implemented by (after having dealt
with all triangles) always first looking within the neighbourhood of the “current” node for
further branching candidates.

In the corresponding analysis, we often use the idea that when x is put into the cover,
then (since x is 0-marked) also the second parameter is decreased by 1 (actually, it would
be possible to decrease the second parameter even by 2 if we knew that x is neighbour of
a 1-marked vertex, but the worst case is that all neighbours of x are unmarked).

If deg(y) ≥ 7, we simply branch at y: either y is put into the cover (decrementing only
k1) or all its at least 7 neighbours are put into the cover. The latter branch decreases k1

by 7 and decrements k2, since x is put into the cover. We are led to the recurrence:

ck12k2 ≤ ck1−12k2 + ck1−72k2−1

which is equivalent to 2c7 ≤ 2c6+1; finally yielding (2 ·c)k ≤ 2.3653k . This will be (nearly)
our worst-case scenario in the end.

If deg(y) ≤ 6, we use another good branching idea that is indeed rather special to the
cluster concept in 2-tvc-d: one of the neighbours of a 1-marked vertex must be put into
the cover in order to satisfy the cluster condition. For small-degree 1-marked vertices, this
leads to a very satisfactory branching behaviour. We will use this idea in the subcase that
takes y into the cover (and hence 1-marked). To actually exploit this idea we had to tweak
our algorithm a little bit by introducing a vertex list L that handles the neighbours of y
with priority in recursive calls of our algorithm, hence following the pattern of analysis
given below.

Consider the case deg(y) = 6. Let N(y) = {x, z1, z2, z3, z4, z5} describe the neighbour-
hood of y. If we take y into the cover, then one v ∈ N(y) must go into the cover, since y
will then become 1-marked.

• If z1 is put into the cover, then both k1 and k2 are reduced by 2.
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• If z1 is not put into the cover, N(z1) must be part of the cover. Assume that now
z2 is put into the cover.

• Otherwise, both z1 and z2 are not put into the cover but their neighbourhoods are.
Assume also that z3 goes into the cover.

• This argument continues up to the point that none of the zi are put into the cover
but all their neighbours are. In addition, x is put into the cover.

If we do not take y into the cover, then (as before) all neighbours of y are put into the
cover, in particular x, so that the second parameter is reduced by 1.

To find a good estimate for the recursion, we have to reason about possible common
vertices and minimum degrees. First of all, as we shall see later, we may assume that
all vertices zi have each at least three neighbours. We can also assume that for all i, j:
zi /∈ N(zj) and that x /∈ N(zj), since this would mean triangles in our instance. So the
neighbours of zi, plus zi+1 or x, constitutes at least 4 vertices. All these vertices (including
y) will be put into the cover in all but the first case of the case distinction above, therefore
reducing the first parameter by 4 and the second by 2 (at least). We get as an overall
estimate for the recursion:

ck12k2 ≤ ck1−22k2−2 + 5ck1−42k2−2 + ck1−62k2−1

The first term of the right-hand side comes from the case that puts both y and z1 into
the cover, and the last term represents the case that y is not put into the cover but all its
neighbours are. A little algebra reveals that (2c)k ≤ 2.3655k in this case. In fact, this is
the overall worst case estimate of our algorithm.

Similarly, in the case deg(y) = 5, we can derive

ck12k2 ≤ ck1−22k2−2 + 4ck1−42k2−2 + ck1−52k2−1

leading to (2c)k ≤ 2.3055k . Assuming deg(y) = 4, we get:

ck12k2 ≤ ck1−22k2−2 + 3ck1−42k2−2 + ck1−42k2−1

and hence (2c)k ≤ 2.2361k . Similarly, in the case deg(y) = 3, we can derive

ck12k2 ≤ ck1−22k2−2 + 2ck1−42k2−2 + ck1−32k2−1

leading to (2c)k ≤ 2.1454k .
We now consider the case that deg(y) ≥ 3 and that y has a neighbour z1 6= x of degree

2 (already excluding the case of degree 1 due to reduction rules). Then, we can branch
as follows: either take y into the cover or take all of N(y). The analysis of this branching
depends on whether or not z1 is unmarked. If z1 is unmarked, then not taking y into the
cover not only puts the (three or more) neighbours of y into the cover, but it will (due to
the fact that y is deleted from the instance) be the case that z1 is then of degree 1; hence,
a reduction rule will trigger in the recursive call of the procedure and then the unique
neighbour of z1 will be put into the cover as well, in order to satisfy the cluster condition.
Therefore, we get the following overall recurrence:

ck12k2 ≤ ck1−12k2 + ck1−42k2−3

This leads us to (2c)k ≤ 2.1903k . If however z1 is 0-marked, then in the case that y
is not put into the cover at least two 0-marked vertices will be 2-marked (and therefore
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they disappear by reduction rules in the next recursive call). This leads to the following
recurrence:

ck12k2 ≤ ck1−12k2 + ck1−32k2−2

which means that (2c)k ≤ 2.3594k .
Finally, we consider the remaining case that deg(y) = 2, i.e., N(y) = {x, z}. If we

choose y, then we need to choose either x or z to satisfy the cluster property, since y is
unmarked. If we do not choose y, then we need to choose both x and z. When choosing
x, then x will become 2-marked. This leads to the following recurrence:

ck12k2 ≤ 2ck1−22k2−2 + ck1−22k2−1.

Thus (2c)k ≤ 2k. This concludes our case discussion.

4 Complexity and approximability of cvc

We begin with two results concerning the complexity and approximability of cvc in general
graphs and planar bipartite graphs of bounded degree.

Theorem 11. cvc is not approximable within an asymptotic performance ratio of 10
√

5−
21 − δ, for any δ > 0, unless P=NP.

Proof. The result follows using the construction in the proof of Theorem 3 for the case
that t = 2.

Theorem 12. cvc-d is NP-complete for planar bipartite graphs G = (V1, V2, E), where
each vertex in V1 has degree at most 3, and each vertex in V2 has degree at most 4.

Proof. Clearly cvc-d belongs to NP . To show NP-hardness, we use the same reduction as
in Theorem 5 with t = 2, however in this case we reduce from the NP-complete restriction
of cvc-d to planar graphs of maximum degree 4 [26]. The graph G′ so constructed is then
also a planar bipartite graph G′ = (V1, V2, E

′), where V1 = {wi,1 : 1 ≤ i ≤ m} and
V2 = V ∪ {wi,2 : 1 ≤ i ≤ m}. Clearly each vertex in V1 has degree at most 3, whilst each
vertex in V2 has degree at most 4. If S is a connected vertex cover of size at most k in
G, then S ∪ W ′ is a connected vertex cover of size at most k ′ in G′. Conversely if S ′ is a
minimum connected vertex cover of size at most k ′ in G′, then S ∩ W = W ′. It follows
that S′ ∩ V is a connected vertex cover in G of size at most k.

We remark that independently, Escoffier et al. [15] established APX-completeness for
cvc in bipartite graphs with the same degree restrictions as described in the statement of
Theorem 12.

We now show how to use the colouring techniques from the proof of Theorem 8 in
order to give a parameterised algorithm for cvc-d that improves on the previous O∗(6k)
algorithm described in [28]. Independently of our results, Mölle et al. [38, 40] obtained a
slightly better O∗(2.7606k) algorithm for cvc-d by improving on the enumeration phase.

Theorem 13. cvc-d is in FPT and can be solved in time O∗(2.9316k), where k is the
size of the cvc.

Proof. The algorithm proceeds along the lines of the one suggested in [28], using two
stages: firstly, we enumerate all minimal vertex covers of size at most k, and secondly
we apply an algorithm for solving the steiner tree problem on (at most) k terminals.
Using the O∗(2k) enumeration phase for all minimal vertex covers, combined with the
well-known O∗(3k) Dreyfus-Wagner algorithm [14], the running time of [28] follows.
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Recently, the running time of the Dreyfus-Wagner algorithm has been improved to
O∗((2 + ε)k) for any ε > 0 (the smaller the ε, the bigger the polynomial, but this is
hidden in the O∗ notation) [23, 39]. Combining this with the O∗(2k) enumeration phase
for all minimal vertex covers, we obtain an O∗((4 + ε)k) algorithm for cvc-d. The afore-
mentioned hidden constants (covered by the ε) can be avoided by using the fact that the
terminal nodes of the Steiner tree instance form a vertex cover; this is detailed in [37] and
immediately gives an O∗(4k) algorithm for cvc-d.

This can be further improved by using a colour scheme similar to the one given for
2-tvc-d in combination with catalytic branching, a technique introduced in [16]. This
means that we consider all n cases as to whether a given vertex belongs to the vertex
cover set to be constructed. In our case, we will mark a vertex selected in the branching.
This can be seen in Alg. 4. Notice that the procedure cvc-annotated takes, besides the
parameter(s), a non-empty set of marked vertices as arguments.

Algorithm 4 An advanced search tree algorithm for cvc-d, called cvc-st

Require: a graph G = (V, E) and a non-negative integer k
Ensure: return YES if G has a connected vertex cover of size at most k: NO otherwise

if E = ∅ then
return YES;

else
for all v ∈ V do

5: if cvc-annotated(G, k − 1, k, {v}) = YES then
return YES;

end if
end for
return NO;

10: end if

The procedure that deals with annotated instances is described in Alg. 5. Similar to our
search-tree algorithm for 2-tvc-d, the main ingredients of this algorithm are: (1) reduction
rules, (2) a search-tree backbone, and (3) a list of heuristic priorities for branching. Due to
the simple branching that is employed, the correctness of the algorithm follows by proving
the correctness of (A) the reduction rules and (B) the search-tree backbone. The heuristic
priorities (together with the reduction rules) will determine the running time (part (C)).
(A) The reduction we use is described in Alg. 6.
Claim 1: The reduction rules are sound.

Notice that all rules but the last work in the immediate neighbourhood of the catalyst
vertex v.

1. Two marked neighboured vertices together are obviously covering all edges outgoing
from either of them; this can be equivalently expressed by merging the two of them
into a new marked vertex.

2. An unmarked neighbour x of degree 1 of a marked vertex v has no need to go into
the cover: the only edge it might cover is already covered by v and it cannot connect
to other marked vertices. Hence, we can safely delete x.

3. An unmarked neighbour x of degree at least 2 of a marked vertex v that has an
unmarked neighbour y (clearly, y 6= v by the assumed marking) that is of degree at
most 2 might be responsible for covering the edge e = {x, y}. In principle, e could
be also covered by y. However, if y was in the cover, then one of its at most two
neighbours must go into the cover to satisfy the connectivity requirement. If the
degree of y was 1, this means that x must be in the cover, which is just the case
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Algorithm 5 A search tree algorithm for annotated cvc-d, called cvc-annotated

Require: a graph G = (V, E), two integers k1, k2 (k1 is bounding the first vertex-cover-like search
tree part, while k2 is bounding the number of terminal points in the subsequent Steiner tree
algorithm; hence k1 ≤ k2); a non-empty set C ⊆ V of marked vertices

Ensure: return YES if G has a connected vertex cover of size at most k that contains all vertices
from C; NO otherwise

produce a reduced instance;
{for simplicity, we use the same namings as before: the reduction is described in Alg. 6}
if k1 < 0 then

return NO;
5: else if C covers all edges of G then

return (Steiner-Tree (G, C) ≤ k1);
{Steiner-Tree computes a Steiner tree for G with terminal vertices C (where |C| ≤ k2) and
returns the number of Steiner points}

else
pick an unmarked vertex u ∈ V to branch at; {how to choose is described in Alg. 7}

10: if cvc-annotated(G, k1 − 1, k2, G, C ∪ {u}) = YES then
return YES;

else
Let i := |{v ∈ N(u) | v is unmarked}|;
return cvc-annotated(G − u, k1 − i, k2, G, C ∪ N(u));

15: end if
end if

as claimed by the reduction rule. If y is of degree 2, then y could be in the cover
together with another neighbour z 6= x of y. Moreover, there must be a path from z
to v within the cover that does not contain y. However, instead of putting v, y, z into
the connected cover, we could also take v, x, z into an alternative connected cover of
the same size.

4. Consider the triangle given by v, x, y. Since we are aiming at finding a vertex cover,
x or y must be in the cover. By the assumption that N [y] ⊆ N [x], any solution
that has y but not x within the cover could be converted into a feasible solution (no
bigger than the previous solution) having x in the cover, instead, by exchanging y
for x. This reasoning is also valid having in mind the connectivity requirement. 3

Claim 2: After exhaustively applying the reduction rules, the marked vertices together
from an independent set.

Namely, neighboured marked vertices are merged. 3

(B) We basically run a simple vertex cover search-tree algorithm. When the graph has
no more edges, then we take the vertex cover set as a set of terminal nodes and look for
a minimum Steiner tree (in the modified graph G). The procedure Steiner Tree returns
the minimum number of Steiner points. It is called only if there are no more edges in the
graph. The result it returns must be bounded by the remaining budget k1. By induction,
the following invariants can be shown:
Claim 3: (invariants) (0) |φ(C)| + k1 = k; (1) k1 + |C| = k2; (2) |C| ≤ k2.
Here, φ(C) denotes the set of vertices obtained from C by “undoing” all merge operations
undertaken on the specific search tree path.
Namely, each time we put a vertex into the cover C (and hence in φ(C)), k1 is decreased,
proving (0). Also k2 is decremented if and only if two neighbouring vertices in C are
merged, hence |φ(C)| − |C| = k − k2. This, together with (0), implies (1). The assertion
(2) is an easy consequence of (1). 3

These observations together show the correctness of the search-tree backbone. 3
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Algorithm 6 Reductions for annotated cvc-d, called cvc-reduce

Require: a graph G = (V, E), integers k1, k2; the set of marked vertices C
Ensure: return an irreducible instance

repeat
if ∃x, v ∈ C : x ∈ N(v) then

merge v and x into a new member of C; {implicitly modifying V , E}
k2 := k2 − 1; {the number of vertices to be considered in the Steiner tree phase of the
overall algorithm is reduced}

5: else if v ∈ C has an (unmarked) neighbour x of degree 1 then
delete x;

else if v ∈ C has an unmarked neighbour x of degree at least 2 that has an unmarked
neighbour y that is of degree at most 2 then

mark x;
k1 := k1 − 1;

10: else if v ∈ C has two unmarked neighbours x, y that form a triangle, and N [y] ⊆ N [x]
then

mark x;
k1 := k1 − 1;

end if
until no more changes occur to the instance

We now discuss how to pick a vertex u /∈ C to branch at, i.e., either take u into the
cover or all its neighbours. A pseudocode can be found in Alg. 7. As before, let C be
the (assumed) cover so far found (i.e., the set of marked vertices). If none of the listed
conditions applies, we have already found a vertex cover of G and can now run some
Steiner tree algorithm to ensure connectivity of the cover set (see [28]).

Algorithm 7 Heuristic priorities for annotated cvc-d, called cvc-prio

if possible then
Choose a vertex v ∈ C such that there is a neighbour u ∈ N(v) that has at least two unmarked
neighbours

else if possible then
Choose a vertex v ∈ C such that there is a vertex u in N(N(v)) \ (N [v]∪C) with at least one
marked neighbour

else if possible then
Choose a vertex v ∈ C such that there is a vertex u of degree at least 3 in N(N(v))\(N [v]∪C)

end if

Why can we continue with the Steiner tree phase when none of the possibilities applies?
Claim 4: If none of the possibilities listed in Alg. 7 applies, there are no uncovered edges.

To show this claim, consider the vicinity of a vertex v ∈ C. By Claim 2, all neighbours
of v are unmarked. If v has a neighbour with at least two unmarked neighbours, we
would branch according to the first heuristic priority. Hence, thereafter any neighbour x
of v has at most one unmarked neighbour y. Conversely, by the reduction rules, x must
have one neighbour apart from v. If all neighbours of x are marked, there is no need for
further branching in the first phase, since all edges incident with x are covered. So, if this
observation applies to all neighbours of all v ∈ C, then all edges are covered.

Hence, we can assume in the following discussion that x has exactly one unmarked
neighbour y.
(1) If y has a marked neighbour z, then the penultimate reduction rule applies unless
both x and y are of degree at least three (notice that z could take on the role of v in the
reduction rule). Further, recall that by our previous arguments, all neighbours of x apart
from y are marked, and by symmetry of the situation, all neighbours of y apart from x are
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marked, too. Hence, the second branching scenario applies, even in the case that z = v.
Namely, in that case, some marked vertex from X := N(x) \ N [y] could take on the role
of v. Notice that our last reduction rule ensures that X 6= ∅.
(2) So, assume that y has no marked neighbours. If y has at most one neighbour besides x,
the reduction rules would have triggered. Hence, y has at least two unmarked neighbours
besides x, and the third branching scenario considers this final case. 3

(C) As for the running time analysis, notice that there are now the following possible
worst cases:

1. v ∈ C has a neighbour u of degree ≥ 3 we branch at (with ≥ 2 unmarked neighbours).

2. v ∈ C has a neighbour x of degree ≥ 2 that has an unmarked neighbour u with at
least one marked neighbour z.

3. v ∈ C has a neighbour of degree ≥ 2 that has an unmarked neighbour u with ≥ 3
unmarked vertices; we branch at u in that case.

In Case 1, we can estimate the running time of the overall search tree (including the
Steiner tree computation phase) as follows:

T (k1, k2) ≤ T (k1 − 1, k2 − 1) + T (k1 − 2, k2).

The first term describes the running time of the branch that includes u in the cover and
the second term describes the running time of the branch that excludes u from the cover
but takes all neighbours into the cover. Notice that if u is taken into the cover, it will
be marked and hence merged with its marked neighbour after the recursive call due to
the reduction rules. Hence, the second parameter k2 (bounding the Steiner tree part) is
decremented as claimed. A little algebra shows that T (k1, k2) ≤ 1.2808k1 (2 + ε)k2 .

In Case 2, when u is not put into the cover, x will go into the cover. In either case,
the resulting marked vertex will be neighbour of a marked vertex, i.e., in the recursion the
reduction rules trigger and reduce the second parameter. Hence, we can estimate

T (k1, k2) ≤ 2T (k1 − 1, k2 − 1).

Due to the very nice reduction of the second parameter, we can estimate T (k1, k2) ≤
(2 + ε)k2 .

In Case 3, notice that in the case that u is not put into the cover but all its neighbours,
a neighbour of v will be put into the cover which reduces the second parameter k2. We
then obtain the estimate

T (k1, k2) ≤ T (k1 − 1, k2) + T (k1 − 3, k2 − 1) ≤ 1.4655k1 (2 + ε)k2 .

This gives the claimed worst case running time.

Remark 14. Due to Claim 2 in the previous proof, a reduced graph on which we start the
Steiner tree phase is bipartite. However the bipartite property alone does not in general
lead to a polynomial-time algorithm for this phase. To see this, it is straightforward to
observe that Karp’s reduction [33] shows that the Steiner tree problem is NP-hard even if
we have a set T of terminal vertices such that G has no edges between two vertices in T
and between two vertices in V \T . This fact justifies the use of the O∗((2+ ε)k) algorithm
for the Steiner tree problem [23, 39] here.

Remark 15. Very recently, Björklund et al. [3] obtained (under certain restrictions) an
O∗(2|T |) algorithm for minimum steiner tree, where T is the set of terminal nodes. This
algorithm has no large hidden constants, as in the case of the O∗((2 + ε)|T |)-algorithm.
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5 Complexity and approximability of t-tec

Let G = (V,E) be a connected graph, where n = |V | and m = |E| ≥ 1. We begin this
section by remarking that a t-total edge cover in G does not necessarily correspond to
a t-total vertex cover in L(G) (the line graph of G). For example, given any t ≥ 1, let
H = K1,t+1. Then L(H) = Kt+1. Also α0,t(L(H)) = t whilst α1,t(H) = t + 1.

Let 1 ≤ t ≤ n − 1. We now present a Gallai identity involving the concepts of a t-tec
and a t-tree packing. A t-tree packing of G is a collection P = {G1, . . . , Gk} of vertex-
disjoint (non-induced) subgraphs of G, each of which is a tree containing exactly t edges.
The value k is defined to be the size of P. Let β1,t(G) denote the maximum size of a
t-tree packing of G. Then β1,1(G) = β1(G), the size of a maximum matching in G. The
following result gives a Gallai identity involving α1,t(G) and β1,t(G).

Theorem 16. Let G = (V,E) be a connected graph, where n = |V |, m = |E| ≥ 1, and let
1 ≤ t ≤ n − 1. Then α1,t(G) + β1,t(G) = n.

Proof. Let P = {G1, . . . , Gk} be a t-tree packing of G such that k = β1,t(G). Let S initially
contain the edges belonging to the subgraphs in P. Then |S| = kt and S covers k(t + 1)
vertices of G, so that n−k(t+1) vertices are as yet uncovered. Pick any uncovered vertex
v. Then v is at distance at most t from a covered vertex w, for otherwise we contradict
the maximality of P. Let v0 = v, and let v0, v1, . . . , vs be the vertices (in order) on a path
in G from v0 to vs, where vs is covered, vi is uncovered (1 ≤ i ≤ s − 1), and 1 ≤ s ≤ t.
Add {vi, vi+1} to S (0 ≤ i ≤ s − 1). Continue in this way until all vertices are covered.
Then S is a t-tec of G. Moreover we add one edge for every additional vertex that we
cover, so that |S| = kt + (n − k(t + 1)) = n − k, i.e., α1,t(G) ≤ n − β1,t(G).

Conversely let S = {S ⊆ E : S is a t-tec in G and |S| = α1,t(G)}. Choose S ∈ S
such that G[S] contains the fewest number of cycles. Let Gi = (Vi, Si) (1 ≤ i ≤ k) be
the connected components of G[S], for some k ≥ 1. Let i (1 ≤ i ≤ k) be given. Then
by definition of S, it follows that Gi contains at least t edges. Now suppose that Gi

contains a cycle, and let e be any edge on this cycle. If k = 1 then S ′ = S\{e} is a
connected subgraph of G that spans V , and hence |S ′| ≥ n − 1, so that S ′ is a t-tec,
contradicting the minimality of S. Hence k ≥ 2. Since S is an edge cover, there exists
an edge e′ = {u, v} /∈ S in G such that u is covered by Gi and v is covered by some Gj

(1 ≤ j 6= i ≤ k). Let S ′ = (S\{e}) ∪ {e′}. Then S′ is a t-tec, |S ′| = |S| and S ′ has one
fewer cycle than S, contradicting the choice of S. Hence Gi is acyclic. It follows that
t ≤ |Si| = |Vi| − 1, so that

|S| =
k∑

i=1

|Si| =
k∑

i=1

(|Vi| − 1) = n − k.

Let P = {H1, . . . ,Hk} be formed by “pruning” each Gi in order to form a tree Hi con-
taining exactly t edges (this may be carried out by repeatedly deleting edges incident to
vertices of degree 1 in Gi, until exactly t edges remain). Then P is a t-tree packing of G,
and |P| = k = n − α1,t(G), so that β1,t(G) ≥ n − α1,t(G).

We remark that, in the case t = 1, Theorem 16 gives the familiar Gallai identity
α1(G) + β1(G) = n [25]. Also, in the case t = 2, a similar (but not quite identical)
Gallai identity to Theorem 16 was also observed by De Bontridder et al. [5, Theorem 4.2].
Finally, we remark that Moser and Sikdar [42] prove that β∗

1(L(G)) = β1,2(G) for a graph
G, where β∗

1(G) denotes the maximum size of an induced matching in G (a matching M in
G is induced if no two edges in M are adjacent to a common edge). Hence, for a connected
graph G with at least two edges, it follows by Theorem 16 that α1,2(G) = n − β∗

1(L(G)).
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For each t ≥ 1, let t-tree packing denote the problem of computing β1,t(G), given a
connected graph G = (V,E), where n = |V | ≥ t + 1. Let t-tree packing-d denote the
decision version of t-tree packing. Kirkpatrick and Hell [34] proved the following result
concerning t-tree packing-d.

Theorem 17 ([34]). For each t ≥ 2, t-tree packing-d is NP-complete.

The following is an immediate consequence of Theorems 17 and 16.

Corollary 18. For each t ≥ 2, t-tec-d is NP-complete.

The next two results concern the approximability of t-tec for t ≥ 2.

Theorem 19. For each t ≥ 2, t-tec is approximable within 2.

Proof. Let G = (V,E) be an instance of t-tec (a connected graph where n = |V | and
m = |E| ≥ t). Any edge cover S of G satisfies |S| ≥ n

2 , since each edge of S covers 2
vertices of G. Now let T be a spanning tree of G. Suppose firstly that t ≤ n − 1. Then
T is a t-tec of G and |T | = n − 1 ≤ 2α1(G) ≤ 2α1,t(G) by Proposition 2, as required.
Now suppose that t > n − 1. Let t′ = t − (n − 1). As G is connected, we may construct
a t-tec S by adding t′ edges to T . Then |S| = t, so that S is in fact a minimum t-tec by
Proposition 2.

Theorem 20. 2-tec in bounded degree graphs is not approximable within some δ > 1
unless P=NP.

Proof. 2-tree packing in graphs of maximum degree B is not approximable within some
ε > 1 unless P=NP [32]. We may consider this problem as the starting point for a
reduction to 2-tec that essentially follows the same lines as the proof of Theorem 16 in
the case that t = 2 and G = (V,E) is a connected graph of maximum degree B, where
n = |V | and m = |E|. Now α1,2(G) ≥ α1(G) ≥ n

2 by Proposition 2 and the fact that
a given edge can cover at most 2 vertices of G. By Theorem 16, α1,2(G) + β1,2(G) = n.
Hence the reduction described here is an L-reduction (see [45]) with parameters α = β = 1.
The result follows by [49, Theorem 63].

We now consider the parameterised complexity of t-tec (t ≥ 2).

Theorem 21. For each t ≥ 2, t-tec-d is in FPT .

Proof. Let 〈G, k〉 be an instance of t-tec-d. Then k is a parameter and G = (V,E) is a
connected graph where n = |V | and m = |E| ≥ t. As observed in the proof of Theorem
19, k ≥ n

2 or else 〈G, k〉 is a NO-instance. Hence n ≤ 2k, so m ≤ (2k)2. Generating every
subset S of E with at most k edges and verifying whether S is a t-tec is a process that
takes O∗((2k)2k) overall time.

We now consider the concept of parametric duality (see [8, 17] for a recent exposition),
which is in a sense quite related to the family of Gallai identities proved above. Define
dual-t-tec-d to be the problem of deciding, given a connected graph G = (V,E) where
n = |V | and m = |E| ≥ t, and a (dual) parameter kd, whether there a t-tec of size at most
n−kd. Using the fact that 2-tree-packing-d is in FPT and solvable in time O∗(2.4823k),
where k is the size of the 2-tree-packing [21], Theorem 16 implies the following result.

Theorem 22. dual-2-tec-d is in FPT and can be solved in time O∗(2.4823kd ).

Theorems 21 and 22 therefore imply that both 2-tec-d and dual-2-tec-d are in
FPT , a result rarely observed in the context of parameterised complexity. However, in
the case of t-tvc and cvc, we can show:
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Theorem 23. dual-2-tvc-d is W[1]-complete. Also dual-t-tvc-d (t ≥ 3) and dual-
cvc-d are W[1]-hard.

Proof. To show membership in W[1] of dual-2-tvc-d, we employ the “Turing way” [7, 17].
That is, we exhibit a Turing machine whose f(kd)-step halting problem is solvable if and
only if the given instance of dual-2-tvc-d is a YES-instance.

A 1-tape nondeterministic Turing machine MG for graph G = (V,E) would work as
follows. The tape alphabet is V × {0, 1} (plus the end markers).

1. Guess kd letters from V × {0} and write them on the tape.

2. Sweep back and forth on the tape and verify that the vertices are independent. (If
two vertices u, v have been guessed with u ∈ N(v), then the Turing machine would
enter an infinite loop.)

The second part of the tape alphabet can be used to protocol which two vertices are
tested.

If all pairs have been tested, then the tape contains an independent set I.

3. Now use the second part of the tape alphabet to cycle through all subsets of I. For
each subset ∅ 6= X ⊆ I, we have to test whether X = N(v) for some v /∈ I. If this
is the case, then we have detected a vertex from the vertex cover V \ I that has no
neighbour from V \ I.

To this end, an n-bit internal memory is used. Initially, this is an all-zero vector.
Upon reading X off the tape, at most kd bits are set to 1. Then, by the internal
memory bit vector X = N(v) can be checked in one further step. If the infinite loop
is not entered (i.e., X 6= N(v) for all v ∈ V \ I), then the kd bits are set to 0 again,
and then the “next set” is selected by the bit vector counter on the tape.

Finally, the bit vector counter on the tape contains only ones, and then the machine
will stop.

Hence, there is a function f(kd) such that G has a total vertex cover of size n − kd if
and only if MG stops in at most f(kd) steps.

We now show that dual-t-tvc-d is W[1]-hard, for each t ≥ 2. We use the same
reduction as in Theorem 3, where G = (V,E) is a connected graph with n = |V | ≥ 2
and kd is a parameter, given as an instance of independent set-d. Then G has an
independent set of size kd if and only if the (n + t)-vertex graph G′ has a t-tvc of size
n − kd + (t − 1) = (n + t) − (kd + 1).

In the case of dual-cvc-d, the proof is similar; the same reduction may be used with
t = 2.

6 Concluding remarks

In this paper we have defined the concepts of a t-tvc and a t-tec for t ≥ 1, which are
motivated by the notions of covering and clustering in graphs. We have presented NP-
completeness, approximability and parameterised complexity results for associated opti-
misation and decision problems.

Until now, enumeration-based solutions to parameterised decision problems seemed to
be doomed to give rise to a complexity function O∗(Ck) where C is quite large. Our FPT
algorithms in this paper demonstrate how this can be overcome by introducing appropriate
“colours” and corresponding reduction rules within the search tree algorithm. A further
example is the edge dominating set algorithm described in [18]. Moreover, a novel
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way of analysing search trees that can be decomposed into two phases is exhibited; this
has proved to be highly effective in the case of 2-tvc-d and cvc-d, and should also be
applicable in improving the analysis of other fixed-parameter algorithms.

In Section 4, we presented an O∗(2.9316k) algorithm for cvc-d. As mentioned in
Section 1, an improved O∗(2.7606k) algorithm for cvc-d has been reported in [38, 40].
It is likely that a further improvement could be obtained by combining the approach of
Mölle et al. with the reduction rules that we employ for our cvc-d algorithm: while we
obtain savings from better estimates of the Steiner tree phase, they obtain savings from
improved vertex cover enumeration.

The results in this paper leave open the following problems, among others, that are
worthy of further consideration: (1) Formulate polynomial-time algorithms for t-tvc and
t-tec in restricted classes of graphs. (2) Formulate FPT algorithms for t-tvc-d (t > 2)
that improve on the general approach suggested by Theorem 7. Are the corresponding
parametric dual problems in W [1] ? (3) Theorem 21 shows that t-tec-d is solvable in time
O∗(2O(k log k)) for each t ≥ 2. Are these problems solvable in time O∗(2O(k))? (4) Consider
“clustering” variants of vertex domination and edge domination.
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