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Abstract. A promising approach to compare graph clusterings is based on using measure-
ments for calculating the distance. Existing measures either use the structure of clusterings
or quality–based aspects. Each approach suffers from critical drawbacks. We introduce a
new approach combining both aspects and leading to better results for comparing graph
clusterings.
An experimental evaluation of existing and new measures shows that the significant draw-
backs of existing techniques are not only theoretical in nature and proves that the results of
our new measures are more coherent with intuition.

1 Introduction

Finding groups of similar elements in datasets, a technique known as clustering, is an
important problem in the analysis and exploration of data. There are numerous appli-
cations such as data mining [1], network analysis [2], and biochemistry [3]. While recent
research [4,5] focused on measuring the quality of a given clustering of an underlying graph,
the problem of comparing two graph clusterings becomes more and more important. For
example, dynamic clustering [6] is based on measuring the distance of the original and the
updated clustering. For evaluating the usability of a clustering algorithm [4,7] the obtained
clustering needs to be compared to a given reference clustering.

At a first glance, the two problems of quality and distance seem to be independent
of each other. However, there exists a mutual relation: On the one hand, one can use a
quality index to obtain a distance measure as shown later. On the other hand, measuring
the distance of a given clustering to an “optimal” clustering could be interpreted as the
quality of the clustering.

Current techniques use only qualitative aspects or transfer existing measures from the
field of data mining. Both approaches have critical drawbacks: When comparing clusterings
by using qualitative aspects the results are highly dependent on the used quality measure
and completely different clusterings may have the same significance and are indicated
as equal. Measures originating from data mining only consider the partition of nodes
and ignore the structure of graphs. In the following, we show that such measures suffer
from critical drawbacks even when comparing clusterings on the same graph, which is
later called static comparison. Due to the fact of these conceptional disadvantages, the
introduction of new measures seems inevitable, using structural and qualitative properties
of the clusterings to calculate an appropriate distance.
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We present a new approach combining structural properties and qualitative aspects
resulting in better measures for comparing graph clusterings. In order to achieve this, we
extend data mining measures by adding qualitative features and introduce a new promising
measure having its origin in quality measurement. Due to the high complexity of clusterings
we focus on the case of static comparison. Nevertheless, an outlook on the dynamic case
is given. An experimental evaluation is presented, showing that the drawbacks of data
mining measures are not only theoretical in nature.

This paper is organized as follows. Section 2 introduces preliminaries and existing
measures for comparing (data–)clusterings, including their drawbacks. Two approaches
for constructing new measures are presented in Section 3. An evaluation of all presented
measures is given in Section 4. Section 5 concludes this paper by giving a summary and
an outlook on following questions.

2 Preliminaries

We assume that G = (V,E) is an undirected, unweighted and connected graph. Let n :=
|V |,m := |E|, and C := {C1, . . . , Cp} a partitioning of V . We call C a clustering and the
Ci clusters of the graph. The set of all possible clusterings is P(V ). Let E(C) := {{u, v} ∈
E | u, v ∈ Ci} be the set of intra-cluster edges of C and E(C) := {{u, v} ∈ E | u ∈
Ci, v ∈ Cj , i 6= j} the set of inter-cluster edges of C. The cardinalities are indicated by
m(C) := |E(C)| and m(C) := |E(C)|. We call a graph with disjoint cliques a clustergraph
and FC , the set of edges to be added or deleted in order to transform a given graph into a
clustergraph, the cluster editing set of C. When comparing two clusterings we use C and C′,
with k := |C|, l := |C′|. With deg(Ci) :=

∑
v∈Ci

deg(v) we indicate the sum of all degrees
of nodes within a cluster.

Some existing measures calculate the similarity between clusterings. These measures
can be transfered to distance measures. For better understanding, all presented measures
are given in a normalized distance version, i. e., equal clusterings yield the value of zero
and completely different clusterings have a value of one.

In the following, we give a short overview of existing comparison techniques. Among
them are measures based on quality and on comparing the partitions of node–sets, the
latter are also called node–structural.

2.1 Quality–Based Distance

Quality–based measurements can be constructed by comparing the scores of the two clus-
terings with respect to an arbitrary quality index such as coverage, performance or mod-
ularity [2,5]. The comparison can be realized by the absolute difference, for example. Of
course, many other functions are also possible. Note, that a distance measured in such a
way is highly dependent on the used index. Furthermore, completely different clusterings
can yield the same value. Thus, we neglect quality–based distances in the following and
focus on measuring the distance based on the structure of the clusterings.
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2.2 Counting Pairs

In [8] some techniques based on counting pairs are presented. Summarizing, every pair
of nodes is categorized based on whether they are in the same (or different) cluster with
respect to both clusterings. Four sets are defined: S11(S00) is the set of unordered pairs
that are in the same (different) clusters under both clusterings, whereas S01(S10) contains
all pairs that are in the same cluster under C(C′) and in different under C′(C). Based on
the cardinalities nab := |Sab|, for a, b ∈ {0, 1} several measures are defined. In the following
we present two representatives for this class: Rand and adjusted Rand measure.

Rand has introduced the distance function R given in Equation (1) in [9]. It is widely
spread but suffers from several drawbacks. For example, it is highly dependent on the
number of clusters.

R(C, C′) := 1− 2(n11 + n00)
n(n− 1)

=
2(n01 + n10)

n(n− 1)
(1)

One attempt to remedy some of these drawbacks, which is known as adjusted Rand
and given in Equation 2, is to subtract the expected value for hypergeometric clusterings,
see [10].

AR(C, C′) := 1− n11 − t3
1
2(t1 + t2)− t3

, (2)

where t1 :=
k∑

i=1

(
|Ci|
2

)
= n11 + n10, t2 :=

l∑
j=1

(
|C ′

j |
2

)
= n11 + n01, t3 :=

2t1t2
n(n− 1)

Note that t1(t2) is the cardinality of all pairs of nodes that are in the same cluster under
C(C′). Although the assumption of hypergeometric clusterings seems to be counterintu-
itive, the quality measure modularity [5], which seems to be a quite promising approach
for quality measurements of clusterings, is also built on a strong – although different –
assumption.

2.3 Overlaps

Another counting approach is based on the k× l confusion matrix CM := (mij) whose ij-
entry indicates how many elements are in Cluster Ci and C ′

j , formally mij := |Ci∩C ′
j |, for

1 ≤ i ≤ k and 1 ≤ j ≤ l. Several measures are based on the confusion matrix. We restrict
ourselves to the measure NVD, introduced by van Dongen in [11], given in Equation (3).
Other measures suffer from the obvious disadvantage of asymmetries, thus we exclude
them. We use a normalized version to keep the measure to the interval [0, 1].

NVD(C, C′) := 1− 1
2n

k∑
i=1

max
j

mij −
1
2n

l∑
j=1

max
i

mij (3)

One potential drawback of NVD is that the distance between the two trivial clusterings,
i. e., k = 1, l = n, does not have not a maximum value.
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2.4 Information Theory

More promising approaches are based on information theory [12]. Entropy in the context
of clustering is defined by:

H(C) := −
k∑

i=1

P (i) log2 P (i) where P (i) :=
|Ci|
n

Informally, the entropy of a clustering is the uncertainty of a randomly picked node be-
longing to a certain cluster. An entropy of a clustering is always positive and is bounded
by log2(n), see [13]. An extension of entropy is the mutual information of two clusterings
C, C′:

I(C, C′) :=
k∑

i=1

l∑
j=1

P (i, j) log2

P (i, j)
P (i)P (j)

where P (i, j) :=
|Ci ∩ C ′

j |
n

Informally, the mutual information of two clusterings is the loss of uncertainty of one
clustering if the other is given. Thus, mutual information is positive and bounded by
min{H(C),H(C′)} ≤ log2(n). In the following we present two representatives in this class,
namely one introduced by Fred & Jain [14] and Variation of Information, introduced by
Meila [15].

The first measure FJ , given in Equation (4), is a normalized version of the mutual
information and stated as distance function. The case differentiation is used to deal with
the degenerated case of two trivial clusterings, i. e., k = l = 1.

FJ (C, C′) :=

{
1− 2I(C,C′)

H(C)+H(C′) , if H(C) +H(C′) 6= 0

0 , otherwise
(4)

The second measure Variation of Information, introduced by Meila in [16], is motivated
by an axiomatic approach and given in Equation (5).

VI(C, C′) := H(C) +H(C′)− 2I(C, C′) (5)

It is shown that VI is the only measure fulfilling several axioms. However, these axioms
seem to be inadequate in the special case of graph clustering. According to these axioms,
the movement of a node v from one cluster Ci to another cluster Cj is equivalent to first
splitting v from Ci and then merging it with Cj . In addition, this measure is not normalized
and the two possible normalization factors, which are 1/ log2(n) and 1/ log2(max{k, l}) re-
spectively, have significant drawbacks. Nevertheless, we use the log2(n) normalized version
for better comparability with the other measures.

2.5 Drawbacks of the Data Mining Approach

All node–structural measures suffer from the same drawback that they neglect the struc-
ture of the underlying graph. Even comparing clusterings on the same graph can lead to
very counterintuitive situations. Examples in Figure 1 clarifies this circumstance.
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C1 C′
1 C2 C′

2

Fig. 1. two static comparisons of graph clusterings

The figure shows four clusterings C1, C′1, C2 and C′2 on two graphs G1 and G2. A measure
d not considering the structure of the underlying graphs fulfills d(C1, C′1) = d(C2, C′2).
Although, the distance d(C1, C′1) has to be greater than d(C2, C′2).

Furthermore, when comparing clusterings on different underlying graphs, worse situa-
tions can arise. For example, when comparing the same clustering on an arbitrary graph
and its complement graph, all node–structural measures yield a distance of zero.

3 Engineering Graph–Structural Comparison Measures

In order to remedy some of the disadvantages of node–structural measures presented in
Section 2, we introduce the concept of graph–structural measures. Since they are also based
on the underlying graph structure, they can include qualitative aspects for measuring the
distance of two clusterings. In a first part, Section 3.1, we extend node–structural measures,
while a novel measure is introduced in the second part, Section 3.2.

3.1 Extension of Node–Structural Measures

Here, we present extensions of the node–structural measures given in Section 2. For con-
sistency, all extended measures should meet the following requirement: If the underlying
graph is complete, then both the graph– and node–structural version should yield the same
value. A second objective is to adjust the three founding principles – counting pairs, over-
laps and information theory – of the existing measures instead of adjusting each formula
separately.

Counting Local Pairs Instead of categorizing every pair of the graph we only consider
those pairs, that are connected by an edge in the graph. For a, b ∈ {0, 1} we define
Eab := Sab ∩ E and eab := |Eab|. It is obvious that Sab = Eab holds for complete graphs
because every pair of nodes is connected.
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Thus, we obtain the graph–based versions of the Rand and adjusted Rand measure
given in Equation (6) and (7):

Rg(C, C′) := 1− e11 + e00

m
(6)

ARg(C, C′) := 1− e11 − t3
1
2(m(C) + m(C′))− t3

where t3 :=
m(C)m(C′)

m
(7)

Note, that m(C) = e11 + e10 and m(C′) = e11 + e01, respectively, hold.

Degree–Based Overlaps Measures based on overlaps can be transformed into graph–
structural measures by a slight modification in the definition of the confusion matrix.
The ij–th entry of the degree–based confusion matrix CM d := (md

ij) indicates the sum of
the degrees of the nodes in Ci and C ′, formally md

ij := deg(Ci ∩ C ′
j). Note, that if G is

d–regular graph, then the equality CM = CM d/d holds.
The extensions of overlap based measures are obtained by substituting the confusion

matrix by the degree–based confusion matrix. In certain cases, this may lead to different
normalization factors. The extension of NVD is given in Equation (8).

NVDg(C, C′) := 1− 1
4m

k∑
i=1

max
j

md
ij −

1
4m

l∑
j=1

max
i

md
ij (8)

The equivalence of the node– and the graph–structural variant of the normalized van
Dongen measure for regular graphs follows from m = dn/2 and mij = md

ij/d.

Edge Entropy The entropy defined in Section 2 solely depends on the node–set, thus we
extend it to the edge–set using the following paradigm: Instead of picking a node randomly
from the graph for measuring the uncertainty, we pick the end of an edge randomly. As a
consequence, a node with high degree has an greater impact on the distance than a node
with smaller degree. The formal definition is given in Equation (9) and (10).

HE(C) := −
k∑

i=1

PE(i) log2 PE(i) (9)

IE(C, C′) :=
k∑

i=1

l∑
j=1

PE(i, j) log2

PE(i, j)
PE(i)PE(j)

, (10)

where PE(i) := deg(Ci)/2m and PE(i, j) := deg(Ci ∩ C ′
j)/2m. Note, that for regular

graphs, the entropy and the edge entropy coincide.
The extension of FJ and VI are given in Equation (11) and (12)

FJ g(C, C′) :=

{
1− 2IE(C,C′)

HE(C)+HE(C′) , if HE(C) +HE(C′) 6= 0

0 , otherwise
(11)

VIg(C, C′) := HE(C) +HE(C′)− 2IE(C, C′) (12)
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The equivalence of the node– and the graph–structural variant for regular graphs results
from the equality of entropy and edge entropy for complete graphs. According to the node–
structural version of the Variation of Information we use a log2(n) normalized version.
Meila showed in [16] that VI ≤ log2(n) also holds for weighted clusterings.

3.2 A Novel Approach for Measuring Graph–Structural Distance

Although the extensions introduced in the previous section incorporates the underlying
graph structure, they are not suitable for comparing clusterings on different graphs. As a
first step to solve this task, we consider the restriction to graphs with the same node–set,
but potentially different edge–sets. Motivated by the cluster editing set, we introduce the
editing set difference defined in Equation (13).

ESD(C, C′) =
|FC ∪ FC′ | − |FC ∩ FC′ |

|FC ∪ FC′ |
= 1− |FC ∩ FC′ |

|FC ∪ FC′ |
(13)

The size of a cluster editing set indicates the significance of a clustering, a smaller value
indicates a significant clustering, a high value corresponds to an unrelated clustering. By
comparing the two clusterings with a geometric difference, we obtain an indicator for
the structural difference of the two clusterings. It easy to see, that in the case of static
comparison, ESD is a metric.

4 Experiments and Evaluation

We evaluate the introduced measures on two setups. The first setup focuses on structural
properties of the clusterings, while the second setup concentrates on qualitative aspects.
More precisely, they are built in the following way:

Initial and Random Clusterings The tests consist of two comparisons, each includ-
ing clusterings with the same expected intrinsic structure of the partitions, i. e., the
expected number of clusters and the size of clusters. The first comparison uses one
significant clustering and one uniformly random clustering, while the second one uses
two uniformly random clusterings.

Local Minimization The setup consists of two parts, each comparing a reference clus-
tering with a clustering of less significance. The two parts differ in the significance of
the reference clustering.

The intuition of the first test is to clarify the drawbacks of the node–structural measures,
while the second setup verifies the obtained results.

We use an attractor generator to create a graph with an initial clustering based on the
following idea: k cluster centers, called attractor nodes, are placed uniformly at random
in the plane and the corresponding clusters are filled up with n − k additional nodes,
called satellite nodes. We implemented this approach by first placing k attractor nodes on
a discrete 2–dimensional grid such that the distance between each pairs is greater than
αmin. Afterwards we insert for each empty grid position a satellite node with probability
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1/d, where d is the euclidean distance to the closest attractor node aj . If a node u is
inserted in such a way, it is assigned to the cluster represented aj and the edge {u, aj} is
inserted. As a final step, all pairs of nodes having a distance less than the threshold αmax

are connected. To ensure global connectivity the attractor nodes are connected pairwise.
In the following, we consider the ratio αmax/αmin, denoted by the density f . Furthermore,
we pick k uniformly at random between 2 and 3

√
n at each execution.

All tests use n = 1000 nodes and are repeated at least 50 times until the maximal
length of the 0.95–confidence intervals is not larger than 0.1.

4.1 Initial– and Random Clusterings

The generated clustering is used as a significant clustering. For the random clustering we
first pick k uniformly at random between 2 and 3

√
n for the number of clusters and assign

each node uniformly at random to the k clusters. Figure 2 shows the measured quality by
the indices coverage, performance and inter–cluster conductance. The tests consists of two
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Fig. 2. Measured quality of the initial (left) and random (right) clustering with increasing density f . For
random clusterings, the value of coverage and inter–cluster conductance almost coincides.

cases. On the one hand, the comparison of the generated and a random clustering (GvR)
and on the other hand, the comparison of two random clusterings (RvR).

A measure for comparing graph clusterings should differ in the two cases. For GvR,
a suitable measure should indicate a decreasing distance with the loss of significance of
the reference, while for RvR two interpretations are possible. On the one hand, one could
claim that the distance between two random clusterings should be independent of the
underlying graphs. On the other hand, one could claim that the distance should decrease
with the loss of significance because two random clusterings on an almost complete graph
are closer to each other than on a graph with an existing significant clustering. Another
interpretation seems acceptable as well: The distance of a given clustering to a random
clustering should always be somehow maximal.

Figure 3 shows the result for the node– and graph–structural measures. By comparing
Figure 3.1 and 3.2 it is evident that node–structural measures do not distinguish the two
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3.1: GvR nodes–structural
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3.2: RvR nodes–structural
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3.3: GvR graph–structural
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3.4: RvR graph–structural

Fig. 3. Results of the initial– and random clustering setup

cases. Only Fred & Jain and adjusted Rand reflect the interpretation that the distance
to a random clustering is always maximal. However, the situation changes for the graph–
structural distance (Figures 3.3 and 3.4). Only Rand and ESD capture the difference,
while the remaining measures show nearly the same behavior as their node–structural
counterparts. For GvR, the distance measured by Rand is decreasing with increasing den-
sity while for RvR the distance is invariant under the density. Furthermore, the measured
distance equals the node–structural measurement for RvR. ESD has the same behavior
for GvR as Rand, whereas RvR reflects the intuition that two random clusterings become
more similar with loss of significance.

Under the assumption that a comparison to a random clustering should always be
interpreted as maximal, adjusted Rand and Fred & Jain can be accepted. Nevertheless,
the equivalence of the node– and the graph–structural versions of van Dongen and the
normalized Variation of Information is counterintuitive. This partly originates from the
fact, that attractors are fairly regular for f > 0.5. Furthermore, the cluster are equal in
size.

The strange behavior of Fred & Jain, van Dongen and the variation of Information for
very small f is originated from the fact that for small f attractors are nearly stargraphs
with k centers.
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4.2 Local Minimization

Since there are several possible interpretations of graph–structural distance and the struc-
tural similarity of the clusterings in Section 4.1 a second test is executed having a precise
intuition for graph–structural distance. Again, as a reference clustering we use the gener-
ated clustering of an attractor graph. The second clustering of less significance is obtained
from the reference clustering by locally moving nodes from one cluster to another. Such
a shift is executed, if it maximally decreases a given index among all possible shifts. This
is done until no decrease of quality can be achieved or the number of moved nodes has
reached a maximum value of Mmax.

In this setup, we use the mean of coverage, performance, and inter–cluster conductance
as index, the density is set to the values f = 1 (type 1) and f = 3 (type 2), and Mmax

increases from 0 to 500 using steps of 5.
Figure 4 shows the measured quality of the locally decreased clusterings with increasing

number of moved nodes. Note, that for Mmax = 0 the reference and the locally decreased
clustering coincide. A suitable distance measure should first of all distinguish the two cases.
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Fig. 4. Measured quality of the locally decreased clustering on attractors with f = 1 (left) and f = 3
(right).

In addition, with increasing Mmax the measured distance in type 2 should be smaller than
in type 1, since the intuition is that in type 1 a very significant clustering is destroyed
while on type 2 the loss of significance is lower.

Figure 5 shows the results for all measures on this specific setup. As shown in Figures
5.1 and 5.2, all node–structural measures hardly distinguish the two cases. This reveals
additional disadvantages. Evaluating the graph–structural measures (Figures 5.3 and 5.4),
the intuitive behavior of Rand is verified. Furthermore, adjusted Rand and ESD distinguish
both cases very well. The remaining graph-structural measures show the same behavior
as their node–structural counterparts. Thus, the failure of van Dongen and the Variation
of Information is confirmed. Unlike in Section 4.1 Fred & Jain fails on this setup.

The unexpected behavior of the overlap and entropy based measures may be due to –
as mentioned in Section 4.1 – the fact that for f = 1 and f = 3 attractor graphs have a
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5.1: type 1 node–structural
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5.2: type 2 node–structural
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5.3: type 1 graph–structural
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5.4: type 2 graph–structural

Fig. 5. Results of the local minimization setup

fairly regular structure. As shown in Section 2 the graph–structural versions of overlap–
and entropy–based measures equal the node–structural variants for regular graphs.

5 Conclusion

The experimental evaluation confirms the critical drawbacks of node–structural measures
while some graph–structural measures, i. e., ESD, adjusted Rand, and Rand perform more
consistently with intuition. Furthermore, this is an indicator for the feasibility of the graph–
structural distance in applications such as dynamic graph clustering. More precisely, since
graph–structural measures incooperate structural and qualitative aspects, they can be
used as a foundation for dynamic graph clustering.

Summarizing, extensions of node–structural measures are not trivial and need not lead
to intuitive results. Furthermore, our presented extensions are only suitable for comparing
clusterings on the same graph. In contrast, the editing set distance only requires the same
node–set. Thus, this improves the foundation for dynamic graph clusterings.

Concluding, this work is a first step towards a unifying comparison framework. Such a
framework should yield a appropriate comparison measurement for every set of requested
intuitions.
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