Abstract

In this review we discuss the observable consequences of in-medium changes of hadronic properties in reactions with elementary probes, and in particular photons, on nuclei. After an outline of the theoretical method used we focus on a discussion of actual observables in photonuclear reactions; we discuss in detail 2π2\pi- and vector-meson production. We show that the 2π02\pi^0 photoproduction data can be well described by final state interactions of the pions produced whereas the semi-charged π0π±\pi^0\pi^\pm channel exhibits a major discrepancy with theory. For ω\omega production on nuclei in the TAPS/CB@ELSA experiment we analyse the π0γ\pi^0\gamma decay channel, and illustrate the strength of the method by simulating experimental acceptance problems. Completely free of final state interactions is dilepton production in the few GeV range. We show that the sensitivity of this decay channel to changes of hadronic properties in medium in photonuclear reactions on nuclei is as large as in ultrarelativistic heavy ion collisions and make predictions for the on-going G7 experiment at JLAB. Finally we discuss that hadron production in nuclei at 10 -- 20 GeV photon energies can give important information on the hadronization process, and in particular on the time-scales involved. We show here detailed calculations for the low-energy (12 GeV) run at HERMES and predictions for planned experiments at JLAB.Comment: Invited Talk by U. Mosel, Proceedings of the Int. School on Nuclear Physics, 26th Course, "Lepton scattering and the structure of hadrons and nuclei", Erice (Sicily), September 16th-24th, 2004, short piece of text adde

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019