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SUMMARY

The goal of a Drug Delivery System (DDS) is to provide a localized drug pres-

ence where the medication is needed, while, at the same time, preventing the drug from

affecting other healthy parts of the body. Amongst others, the most advanced solutions

use drugs composed of nano-sized particles for Particulate Drug Delivery Systems (PDDS)

or antibody fragments for Antibody-mediated Drug Delivery Systems (ADDS). Molecular

Communication (MC) is a new paradigm in communication research where the exchange

of information is achieved through the propagation of molecules.

The objective of the proposed research is to develop an analytical framework for the

modeling, performance analysis, and optimization of DDS through the MC paradigm. First,

a fundamental analytical model of the drug particle propagation through the cardiovascu-

lar system is presented, comprised of the blood velocity network, using transmission line

theory, and the drug propagation network, using harmonic matrices theory. The outcomes

of the analytical model are validated by comparing them with physiological measurements

as well as comprehensive simulations of drug propagation in the cardiovascular system us-

ing COMSOL finite-element simulation and kinetic Monte-Carlo simulations. Second, the

MC-PDDS model is developed to take into account the biochemical interactions between

the nanoparticles and the body. The performance and optimization of the MC-PDDS is

studied through delay, path loss, noise, and capacity. Third, the MC-ADDS model is de-

rived to capture the peculiarities of antibody-antigen transport and interactions. The effect

of the shape and electrochemical structure of the ADDS molecules is reflected on the de-

lay, path loss, and noise. The MC-DDS system modeling is shown to be a full-fledged and

novel framework for the design and optimization of targeted DDS.

xii



CHAPTER 1

INTRODUCTION

Targeted Drug Delivery Systems (DDS) are nowadays under intensive study as they are at

the cutting edge of modern medical therapeutics [1]. In particular, the goal of DDS is to

provide a localized drug presence where the medication is needed, while, at the same time,

preventing the drug from affecting other healthy parts of the body. For this, the design

of a DDS involves the joint optimization of the drug chemical behavior and the transport

process from the point where the drug enters the body until reaching the targeted site.

In a DDS, the drug must be efficiently delivered in the desired concentrations where it

is needed. The understanding of how the drug molecules diffuse in the body and the evolu-

tion of their distribution over time is of primary importance for the design of a DDS. The

delivery of drug molecules can be viewed as a communication mechanism, where the drug

molecules are information carriers, which propagate messages (drug chemical properties)

from the location of transmission (intravascular injection) until the location of reception

(targeted site). We advocate for the Molecular Communication (MC) paradigm [2] as a

straightforward and efficient abstraction of DDS.

The Molecular Communication (MC) paradigm abstracts the propagation of informa-

tion between a sender and a receiver realized through mass transport phenomena, since

information-bearing molecules have to physically cover the distance from one location to

the other. MC is increasingly attracting the interest of the research community working in

the field of nanonetworking [2]. MC is a bio-inspired paradigm that, amongst others, has

been developed by nature for communication among living organisms, such as cells for in-

tracellular and intercellular signaling [3]. In MC, information is exchanged by the release,

the propagation and the reception of molecules.

1
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Figure 1. Molecular communication abstraction of PDDS.

1.1 Particulate Drug Delivery Systems

The study of a Particulate Drug Delivery System (PDDS) is especially suited to the MC

abstraction. As shown in Figure 1, PDDS takes advantage of the blood distribution network

for the propagation of drug particles from a location where they are injected into the blood

flow to a targeted site within the reach of the cardiovascular system. The cardiovascular

system is an intricate network of vessels which distribute the blood throughout the body,

while the blood flow is generated by rhythmic contractions of the heart. In particular, the

mass transport phenomena operated by the cardiovascular system for the propagation of the

drug particles are two, namely, diffusion and advection. As a result of diffusion, the drug

particles in suspension in the blood are subject to the Brownian motion spread from a region

of higher concentration to a region of lower concentration. As a result of advection, the

drug particles are subject to translation by the blood flow in the vessels of the cardiovascular

system. The combination of these two phenomena can be interpreted and modeled as an

MC channel. This abstraction should comprise a complete analytical model of the drug

particle propagation through the cardiovascular system. The interactions of nanoparticles

2



with the blood, their adhesion and absorption by tissues and biological fluids, should be

reflected by the model with greater accuracy than existing multi-compartmental models [4].

Also, the time-varying characteristics of the blood flow, which significantly affect the drug

propagation, should be considered in the new MC model. The effect of the noise and the

capacity of the MC model of DDS could be studied to evaluate the performance of DDS

from a communication point of view. The MC paradigm has the potential to provide a

highly precise, realistic, and flexible framework for the design and optimization of PDDS.

1.2 Antibody-mediated Drug Delivery Systems

Antibody-mediated Drug Delivery Systems (ADDS) are one of the most advanced thera-

peutic methods [5]. ADDS uses artificial molecules that are constructed from biological

materials to build and engineer drug delivery systems. They are inspired by the naturally

occurring autoimmune mechanisms that enable the human body to diagnose itself and de-

stroy the exact source of the disease, in an adaptive and constructive fashion. The versatility

in engineering ADDS and their attested clinical success open up the possibility to develop

sophisticated therapeutic strategies to effectively target diseases. As shown in Figure 2, the

drug injection of the antibody molecules propagates and diffuses through the network of

blood vessels, where they are also transported through the tissue. Upon entering the tissue,

the antibodies specifically bind to the diseased cells because they express unique antigens

not found in healthy cells and match to the antibody. The binding triggers a therapeutic

effect to the cells through a special case of the ligand-binding process, called the antibody-

antigen mechanism. The MC-ADDS modeling could provide a clearer understanding of

the mode of operation of antibodies, and enable the development of innovative methods to

guide the engineering of verifiable and safe antibody mediated therapies. This includes the

design and engineering of the drug structure, mode of administration, and dosage optimiza-

tion [6].

We propose to use the MC paradigm to model the ADDS while taking into account

3
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Figure 2. Molecular communication abstraction of ADDS.

the unique features of the antibodies and the new possibilities that are offered through

them. Based on the sequential stages of antigen delivery to the target diseased cells, certain

aspects of the MC modeling for PDDS are similar to ADDS. However, the transport and

mechanism of action of ADDS is more complex and advanced than PDDS because of

the complexity in the shape and biochemistry of the antibody and the antigen. In fact, the

efficiency of the ADDS depends on the shape, electric charges, and the ability of the ADDS

molecule to recognize the target antigen. In PDDS, the degrees of freedom in designing the

nanoparticle are limited in terms of shape and surface chemistry due to their size, while in

ADDS, the antibody-antigen recognition mechanism allows for more specific targeting of

the diseased cells by allowing the design of ADDS molecules to bind exactly to a certain

biomolecule. Also, the diffusion parameters of the ADDS molecules in the blood and

through tissues depend significantly on their shape.

MC-ADDS opens up the possibility to optimize the properties of the ADDS to achieve

a desired therapeutic effect, by determining the personalized optimal injection pattern in

terms of frequency, concentration level, and mode of administration, thus maximizing the

safety and success of ADDS and minimizing the costs [7]. The second motivation behind

the use of MC-ADDS modeling, is to understand the physicochemical interactions between

4



ADDS and the body, which are more complex than in PDDS. For example, ADDS un-

dergo electrostatic forces within the Extracellular Matrix (ECM) due to negatively charged

proteins [8]. These electric forces significantly affect the intercellular transport, antigen

binding, and the absorption of the ADDS by the cells.

1.3 Organization of the Thesis

The thesis focuses on developing an analytical framework for the modeling, performance

analysis, and optimization of DDS through the MC paradigm. The selection of the MC

paradigm is motivated by a literature survey, contained in Chapter 2, which identifies the

state-of-the-art in modeling DDS from the biomedical engineering field and reviews the

different MC modeling approaches initiated from the communication field that are translat-

able to DDS. Chapter 3 presents as system model of particulate drug delivery systems based

on molecular communication. Chapter 4 contains the molecular communication analysis of

noise and information theoretical capacity in a particulate drug delivery systems. In Chap-

ter 5, the molecular communication modeling is applied to derive the pharmacokinetics

and biodistribution properties of a DDS. In Chapter 6, the molecular communication mod-

eling is tailored to enable the study of antibody-mediated drug delivery systems. Finally,

Chapter 7 concludes the thesis dissertation.
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CHAPTER 2

PREVIOUS WORK

In this chapter, we review the state-of-the-art in two areas covered by this proposal, namely

MC and DDS. On the one hand, the previous work in MC has focused on diffusion-based

channel and ligand-binding kinetics, in idealized environments. We show here that these

models are not readily applicable to the human body, and need to be extended to account

for realistic propagation environments. On the other hand, the DDS research has addressed

many issues in tracking the time and space evolution of the drug concentration in the body

but lacks in terms of the level of detail and versatility in capturing individual specificities

and the peculiarities of the DDS molecules.

2.1 Molecular Communication

MC is a bio-inspired paradigm that, amongst others, has been developed by nature for

communication among living organisms, such as cells for intracellular and intercellular

signaling [3]. In MC, information is exchanged by the release, the propagation and the

reception of molecules [9]. Due to its inherent bio-compatibility, MC is a competitive

solution to the problem of communication in nanonetworks [10], especially for bio-nano-

medical applications. MC is increasingly attracting the interest of the research community

working in the field of nanonetworking [2]. Targeted DDS has been envisioned as one of

the most important applications of the MC paradigm. In the context of targeted DDS, the

information conveyed by the the particles is the therapeutic action.

The channel model of molecular communication by diffusion has been analyzed theo-

retically in relation to the underlying physical processes [11]. Also, the stochastic effects

in the ligand-receptor binding kinetics have been modeled through a molecular commu-

nication framework [12]. The maximum achievable information rates in diffusion-based
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molecular communication under the constraints of Brownian motion noise have been de-

rived in [13] using an novel thermodynamic information theoretical framework. Many

different types of MC have been studied so far, which involve either passive transport of

molecules (diffusion-based architectures [14]) or active transport (molecular motors [15],

bacteria chemotaxis [16]).

These existing models rigorously reflect unique channel effects in molecular communi-

cation, but they cannot be directly applied for DDS in the complex human body, because

they assume linear time-invariant channel models for the propagation medium, which is

not reasonable to assume in the cardiovascular system where the blood flow is highly time-

varying, and they suppose a free space geometry, while the molecular communication in the

cardiovascular system is confined to the complex topology of blood vessels. The molecular

communication reception of nanoparticles is also heavily affected by the blood flow that

interferes with the chemical interactions between ligands and receptors [17].

2.2 Targeted Drug Delivery Systems

The so-called multi-compartmental approach [18] are the most successful computational

models of drug propagation for conventional targeted DDS. Multi-compartmental models

consider large portions of the human body as a single compartment, which is supposed to

be homogeneous. The time and space evolution of the drug molecules in one compart-

ment is commonly described through first-order differential equation, and is obtained for

a large timescale in the order of hours. These multi-compartmental models for DDS are

categorized as follows:

• TMDD (Target-Mediated Drug Disposition) [19] [20], which uses first-order linear

differential equations, with a limited number of parameters (around five), and takes

into account non-linearity in the case of saturation. TMDD is empirical.

• PK/PD (Pharmacokinetics and Pharmacodynamics) [21] [22], which is a model that

also takes into non-linearity in case of saturation and of second-order kinetics. The
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parameters of the model are statistically derived from experimental work, and it gives

the pharmacokinetics in the spatial scale of a cell. PK/PD only gives information on

a local level, and does not reflect the global effect of drug injection.

• PBPK (physiologically-based pharmacokinetics) [18] [23], which are based on the

division of the human body in several compartments, each representing an individual

organ. Unike PK/PD, this model gives results on the global level of the body.

The aforementioned models are limited because their parameter values are empirically

obtained. This makes the study of patient variability in drug disposition particularly dif-

ficult. Also, many assumptions simplify the scenario in these models, such as the ones

regarding mixing, time-invariance, and convection. The mixing is assumed perfect in one

organ, the blood convection is assumed constant and uniform in one organ. Also, these

methods focus more on the chemical kinetics than the mass transport.

Another issue with existing DDS models is that they are not easy to optimize. We need

models for which the optimization problems can have an explicit solution, especially given

the high number of parameters that affect the design and propagation of drug nanoparticles.

The existing models are not sufficiently detailed and flexible to study advanced drug de-

livery systems. Nanomedicine-enabled methods such as PDDS require new computational

models where the drug interactions with the body are described with great precision at a

much smaller time and space resolution and in a tractable manner.

The most promising of the aforementioned models, namely PBPK, suffers from many

limitations that make them inapplicable to advancing the current state-of-the-art in nano-

medicine [24] [25]. The issue with the PBPK model is that the diseases that are meant to

be targeted, such as tumors, are highly localized and grow quickly, and this model does

not provide enough spatial and temporal accuracy to assess the efficiency of a DDS. Novel

modeling and optimization approaches are needed for DDS design. The MC paradigm is

well-equipped for achieving a physiologically-based analytical framework for DDS.
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CHAPTER 3

MOLECULAR COMMUNICATION SYSTEM MODEL FOR
PARTICULATE DRUG DELIVERY SYSTEMS

3.1 Motivation and Related Work

Targeted Drug Delivery Systems (DDS) are nowadays under intensive study as they are

at the cutting edge of modern medical therapeutics [1]. In particular, the goal of DDS

is to provide a localized drug presence where the medication is needed, while, at the same

time, preventing the drug from affecting other healthy parts of the body. The most advanced

solutions use drugs composed of micro or nano-sized particles (particulate DDS), which are

able to diffuse into the blood stream to be transported into arteries, veins and capillaries and

to cross barriers that prevent large particles and organisms from escaping the bloodstream.

The transport of drug particles in the human body can be viewed as a communication

system using the Molecular Communication (MC) paradigm where information is con-

veyed through the transport of molecules. The MC paradigm will give us a clear under-

standing of how the drug particles diffuse in the body and the evolution of their distribution

over time, which is of primary importance for the design of a particulate DDS. In the past

literature, statistical modeling methods, such as the first reaction method based on dynamic

Monte Carlo [26,27], have been often used to solve for this purpose. In this chapter, we

proposed an analytical approach based on the abstraction of a particulate DDSs as a com-

munication mechanism, where the drug particles are information carriers, which propagate

messages (drug chemical properties) from the location of transmission (intravascular injec-

tion) until the location of reception (targeted site).

Targeted DDS has been envisioned as one of the most important applications of the

Molecular Communication (MC) paradigm [2]. MC abstracts the propagation of informa-

tion between a sender and a receiver realized through mass transport phenomena. In the

context of targeted DDS, the information conveyed by the the particles is the therapeutic
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action. MC is increasingly attracting the interest of the research community working in

the field of nanonetworking [2]. MC is a bio-inspired paradigm that, amongst others, has

been developed by nature for communication among living organisms, such as cells for in-

tracellular and intercellular signaling [3]. In MC, information is exchanged by the release,

the propagation and the reception of molecules [9]. Due to its inherent bio-compatibility,

MC is a competitive solution to the problem of communication in nanonetworks [10], es-

pecially for bio-nano-medical applications. Many different types of MC have been stud-

ied so far, which involve either passive transport of molecules (diffusion-based architec-

tures [14] [28]) or active transport (molecular motors [15], bacteria chemotaxis [16]). The

MC paradigm can pave the way for new approaches to the analysis of immune system at-

tacks from a security and safety perspective in analogy with telecommunication security

techniques.

A particulate Drug Delivery System (DDS) takes advantage of the blood distribution

network for the propagation of drug particles from a location where they are injected into

the blood flow to a targeted site within the reach of the cardiovascular system. The mass

transport phenomena operated by the cardiovascular system for the propagation of the drug

particles are two, namely, advection and diffusion. As a consequence of advection, the

drug particles are subject to their translation while in suspension in the blood, which flows

at different velocities in different locations of the cardiovascular system. The blood veloc-

ity profile follows the laws of fluid dynamics and, in particular, the Navier-Stokes equa-

tion [29]. On top of this, as a result of diffusion, the drug particles are subject to the

Brownian motion spread in the blood from a region of higher concentration to a region of

lower concentration. This is interpreted by the laws of particle diffusion and, in particu-

lar, by the diffusion-advection equation [26]. In this chapter, we realized the molecular

communication abstraction of a particulate DDS by developing a MC channel model of the

drug particle propagation through the cardiovascular system. For this, we identified two

separate contributions within the model, namely, the cardiovascular network model and the
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drug propagation network model.

The cardiovascular network model is developed in this chapter as a solution to the

Navier-Stokes equation [29] in the cardiovascular system, and it is based on the application

of the transmission line theory [30]. We have restricted our model of the cardiovascular net-

work to the blood arteries, which are the network of blood vessels that provide organs and

tissues with oxygen and nutrients, because it is the best medical administration to provide

targeted drug delivery to these organs. Our objective is to administer a drug dose to a target

location in the extremity. Systemic arteries are the best candidate route of administration

for targeted drug delivery systems because they allow delivering a localized drug dose to

the periphery without affecting healthy organs and tissues [31]. On the contrary, veins are

more appropriate in the case when the drug must be evenly distributed to the extremities of

the cardiovascular network. By mapping the fluidic parameters of each artery to electrical

circuit components, the cardiovascular network model allows to analytically compute the

blood velocity profile in every artery of the cardiovascular system given the blood flow in-

put from the heart. A similar approach has been suggested in [30], where, differently from

our work, a bulk section of the arterial system is modeled with one circuit component and

does not allow obtaining the blood velocity profile at every possible location. In [32], a

complete fluid dynamic analysis of a pressure pulse propagation in the cardiovascular sys-

tem is performed, but without the flexibility and clarity of a circuit analogue of the blood

flow dynamics in the transmission line model we developed. In [33], a transmission line

model is developed which takes into account only the blood dynamics in the large systemic

artery tree, while our model covers in detail both large and small artery trees. In [34], the

lumped model of any artery is developed, but without taking into account their bifurcations

and the transmission line network solution of an artery tree.

The drug propagation network model is developed in this chapter as a solution to the

advection-diffusion equation [26], and it stems from the knowledge of the blood velocity

profile computed through the cardiovascular network model. Through the application of the
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Harmonic Transfer Matrix (HTM) theory [35] to the drug particle transport in the arteries

and their bifurcations, the drug propagation network allows the analytical expression of the

drug delivery rate at the targeted site given the drug location of injection and injection rate

profile. The derived model takes into account also the individual specificities in the physio-

logical parameters of the cardiovascular system, such as the compliance of the arteries, the

heartbeat rate profile and the heartbeat stroke volume. Molecular mass transport over a net-

work has been very recently approached from the point of view of complex system theory

in [26]. While this method takes into account the time-variance of the flow, the algorithm

couples a graph-based approach and numerical resolution of partial-differential equations

for every vessel, which are not required in our HTM-based approach. Such method implies

a high computation and memory cost. Also, this model does not yield analytical expres-

sions that can be of practical use to solve problems such as the optimization of the drug

delivery. The rest of this chapter is organized as follows. In Sec. 3.2 the main processes

that compose a particulate DDS and their abstractions as the components of an MC system

are introduced, together with the main objective of this work. In Sec. 3.3, the scheme of the

MC channel model of a particulate DDS is detailed into two main contributions, namely,

the cardiovascular network model and the drug propagation network model. Sec. 3.4 details

the cardiovascular network model, while Sec. 3.5 describes the drug propagation network

model. Sec. 3.6 analyzes the numerical results stemming from the proposed solution. Fi-

nally, Sec. 3.7 concludes the chapter.

3.2 Molecular Communication Abstraction of a Particulate DDS

A particulate Drug Delivery System (DDS) takes advantage of the blood circulation in the

cardiovascular system for the propagation of drug particles from a location where they are

injected into the blood flow until they reach a targeted site. We describe a particulate DDS

as composed of three main processes, namely, Injection, Propagation, and Delivery, as

shown in Fig. 3. The Molecular Communication (MC) paradigm abstracts the exchange
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Figure 3. Graphical sketch of the main processes in a particulate DDS and their MC abstractions.

of information through the emission of particles from a Transmitter, their propagation

through mass transport phenomena in the Channel, and their reception at the destination

by a Receiver. We define the particulate DDS processes and their MC abstractions as

follows:

• The Injection process is the introduction of the drug particles in the blood flowing

in the cardiovascular system at a predefined location of injection I. The injection

is performed according to a particle injection rate x(t) defined as the first derivative

with respect to the volume v in the number of injected particles in the location of

injection as the function of the time t:

x(t) =
∂ {# injected particles} (t)

∂v
. (1)

We abstract the injection process as the MC Transmitter where I is the transmitter

location and x(t) is the transmitted molecular signal.
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• The Propagation process is the spread of the drug particles throughout the cardiovas-

cular system. The cardiovascular system shows a topology of interconnected blood

vessels where the blood flows due to the heart pumping action, which is expressed

as the cardiac input qin(t), defined as the blood flow input to the cardiovascular car-

diovascular system as function of the time t. Drug particles propagate through the

blood vessels according to the superposition of two physical phenomena, namely,

advection and diffusion. Advection is the transport of particles suspended in a fluid

due to the fluid’s bulk motion. Diffusion is the spontaneous spread of particles sus-

pended in a fluid from a space region where they are in a higher concentration to

another region where they are in a lower concentration. We abstract the propagation

process as the MC Channel, where the transmitted molecular signal is propagated

via advection-diffusion through the blood flow in the cardiovascular system.

• The Delivery process is the arrival of the drug particles at the targeted site O, where

they are expected to perform their healing action. The drug delivery process is char-

acterized by the particle delivery rate y(t) at the targeted site, defined as the first

derivative with respect to the volume v in the number of particles present at the tar-

geted site as function of the time t:

y(t) =
∂ {# particles at targeted site} (t)

∂v
. (2)

We abstract the delivery process as the MC Receiver where O is the receiver location

and y(t) is the received molecular signal.

One of the main objectives in the study of a particulate DDS is to develop a model to

analytically compute the particle delivery rate y(t) at the targeted site as function of the

time t from the knowledge of the location of injection I, the particle injection rate x(t), the

cardiac input qin(t) and the targeted site O. This is expressed as follows:

y(t) = f (I, x(t), qin(t),O) , (3)
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where the function f (.) represents the analytical model. We abstract this objective as the

modeling of the MC channel between the MC transmitter located at I and the MC receiver

located at O, where the input transmitted molecular signal x(t) is propagated by advection

and diffusion in the blood flowing through the cardiovascular system as function of the

cardiac input qin(t). The output of this MC channel is the received molecular signal y(t).

The outcome of the model expressed in (2) through the MC abstraction is twofold:

• To study optimization techniques for particulate DDSs which could allow a careful

selection of the location of injection I and a definition of the particle injection rate

x(t) as function of the time t with the goal of obtaining a desired particle delivery rate

y(t) as function of the time t at a targeted site O, while minimizing the drug spread in

the rest of the cardiovascular system [1].

• To develop a novel MC technique to realize Intra-Body Communication (IBC) net-

works [36] by modulating at the transmitter the injection of particles in the blood

according to the signal to be transmitted, and, upon their propagation through the

cardiovascular system, by demodulating the received signal from the delivery rate of

incoming particles at the receiver.

3.3 Scheme of the MC Channel Model of a Particulate DDS

The MC channel model of a particulate DDS developed in this chapter is divided into two

main contributions, namely, the Cardiovascular Network Model and the Drug Propa-

gation Network Model, as shown in Fig. 4. These two contributions are summarized as

follows:

• The Cardiovascular Network Model is developed as a solution to the Navier-Stokes

equation [29], which relates the blood velocity vector ul(r, t), function of the radial

coordinate r and the time variable t, in every location of the cardiovascular system to
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Figure 4. Scheme of the MC channel model of a particulate DDS with the two contributions.

the blood pressure p(t) as functions of the time t. This is expressed as follows:

ρ

(
∂ul(r, t)
∂t

+ ul(r, t) · ∇ul(r, t)
)

= −∇p(t) (4)

+ µ∇2ul(r, t) + f ,

where ρ is the blood density, which we assume homogeneous, ∇ is the Nabla vector

differential operator, µ is the blood viscosity, and f represents the contribution of

blood vessel wall properties [37]. As detailed in Sec. 3.4, the cardiovascular network

model allows to compute the blood velocity ul(r, t) as function of the time t in every

artery l of the cardiovascular system CV from the knowledge of the cardiac input

qin(t), expressed as follows:

qin(t)
Cardiovascular Network Model
−−−−−−−−−−−−−−−−−−−−→ {ul(r, t)|l ∈ CV} , (5)

where qin(t) is the blood flow input to the cardiovascular system, {.} is the set symbol

and CV denotes the set of all the arteries included in the cardiovascular system. As

explained in Sec. 3.4, the cardiovascular network model is developed through the ap-

plication of the transmission line theory [30] to the modeling of the interconnection

of the arteries in the cardiovascular network.

• The Drug Propagation Network Model is developed as a solution to the advection-

diffusion equation [38], which relates the drug concentration c(t) in every location of
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the cardiovascular system to the blood velocity vector ul(r, t) as functions of the time

t. It is expressed as follows:

∂c(t)
∂t

= −∇. [−D∇c(t) + ul(r, t)c(t)] , (6)

where ∇ is the Nabla vector differential operator, and D is the particle diffusion co-

efficient. As detailed in Sec. 3.5, the drug propagation network model allows to

compute the particle delivery rate y(t) at the targeted site as function of the time t

from the knowledge of the location of injection I, the particle injection rate x(t), the

blood velocity ul(r, t) as function of the time t in every artery l of the cardiovascular

system CV , and the targeted site O, expressed as follows:

I, x(t), {ul(r, t)|l ∈ CV} ,O
Drug Propagation
−−−−−−−−−−−→

Network Model
y(t) , (7)

where {.} is the set symbol and CV denotes all the arteries included in the cardio-

vascular system. The drug propagation network model is developed by applying the

Harmonic Transfer Matrix (HTM) theory [35] to express the transfer function of

each artery and bifurcation in the cardiovascular system CV , as explained in Sec. 3.5.

The MC channel model, composed by the two aforementioned contributions, allows to

find the analytical solution to the objective expressed in (2) by using the particulate DDS

MC abstraction. The cardiovascular network and drug propagation network models are

detailed in Sec. 3.4 and 3.5, respectively.

3.4 Cardiovascular Network Model

The cardiovascular network model allows to compute for every artery l the blood velocity

ul(r, t) as function of the distance r from the blood vessel axis and the time t, and it stems

from the closed-form solutions to the Navier-Stokes equation (4) applied to the cardiovas-

cular system. As shown in Fig. 5, the cardiovascular network model is composed of the

following elements:
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• The Cardiac Input Qin(ωk), which is the flow Qin(ωk) exerted by the heart as func-

tions of the heartbeat frequency component ωk. The blood pressure is defined as the

force induced by the blood on the walls of a blood vessel, while the blood flow is

defined as the quantity of blood traversing the cross section of a blood vessel per unit

time. The computation of Qin(ωk) is detailed in Sec. 3.4.1.

• The Small Arteries Model. Small arteries are defined as the systemic circulation

vessel with a radius comprised between 0.05mm and 2mm. They have muscular walls

and deliver blood to capillaries. This model is developed in Sec. 3.4.2 and gives the

transfer matrix and load impedance for a small artery l.

• The Large Arteries Model. Large arteries are defined as the systemic circulation

vessels with a radius larger than 2mm. They have elastic walls and branch ultimately

into small arteries. Their model is developed in Sec. 3.4.3 and also yields the transfer

matrix and load impedance for a large artery l.

• The General Transfer Matrix and Load Impedance T(ωk). It characterizes the

cardiovascular network between the heart and any small or large artery l and it is

computed from the aforementioned elements by applying the transmission line the-

ory [30]. We express T(ωk) as a 2×2 matrix with elements A(ωk), B(ωk), C(ωk), and

D(ωk) in Sec. 3.4.4.

• The Blood Velocity. The output of the cardiovascular network is the blood velocity

ul(r, t) in a large or a small artery l. We suppose that it is homogeneous along the

longitude of the artery and that it only depends on time variable t and the radial

coordinate r in the artery. We find in Sec. 3.4.5 a final relationship that gives the

blood velocity ul(r, t) of any artery l of the cardiovascular system CV from the cardiac

input Qin(ωk) through the following formula:

ul(r, t) =
1 − r2

r2
l

πr2
l

+∞∑
k=−∞

Qin(ωk)
Zl(ωk)C(ωk) + D(ωk)

e jωkt . (8)

18



l

Path between
heart and artery l
with transfer matrix
T(ωk)

Cardiac input

Blood velocity
in artery l

Large arteries tree

Qin(ωk)

ul(r,t)

Small arteries tree

Load impedance
Zl(ωk)

ĺ
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where Qin(ωk) is the cardiac input, Zl(ωk) is the load impedance of the artery l, and

C(ωk) and D(ωk) are the first and second elements of the second row of the trans-

fer matrix T(ωk) representing the cardiovascular network between the heart and the

artery l sampled at angular frequency ωk respectively.

3.4.1 Cardiac Input

The cardiac input Qin(ωk) is the blood flow ejected by the heart in the cardiovascular system

as functions of the heartbeat frequency component ωk. Qin(ωk) is considered to be the

Fourier coefficients of the blood flow qin(t) taken from clinical measurements provided

in [37] and performed by using Magnetic Resonance (MR) on a set of human individuals.

By exploiting the periodicity of the cardiac input, we compute the Fourier coefficients [39]

and obtain the cardiac input Qin(ωk) as function of the Fourier series index k:

Qin(ωk) =
1
T

∫ T
2

− T
2

qin(t)e− jωk dt . (9)
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3.4.2 Small Arteries Model
3.4.2.1 Load Impedance of a Small Artery

The modeling of a small artery l as an electrical component with a load impedance Zl(ωk) is

explained in the following. The load impedance Zl(ωk) is calculated recursively according

to the algorithm described in Algorithm 1. The harmonic impedance Z′l (ωk) of the sister

branch is calculated similarly.

Small arteries possess the following properties:

• The scaling parameters α and β, which are scaling parameters that relate the radii of

the two bifurcating arteries rl at the left and r′l at the right to the radius rl−1 of their

parent artery l − 1 (rl = αrl−1 and r′l = βrl−1)

The tree is terminated when the radius is no larger than a minimal radius rmin. The

tree representation for the renal artery is given in Fig. 18.

• The length `l, which is proportional to the radius rl of the small artery. Since, the

tapering is no longer significant in small arteries, it is possible to consider small

arteries as cylinders. It has been observed from measurements that the length-radius

ratio lrr is constant for small arteries. In fact the length of a small artery l can be

expressed approximately in function of its radius rl as follows:

`l = lrrrl = (50 ± 10) rl . (10)

• The volume compliance cl, which is supposed to be similar to the volume compliance

for large arteries (20).

Due to the different mechanical and geometric properties between large and small ar-

teries, we use a different transmission line model for small arteries.

According to [40], the harmonic pressure Pl(ωk) and the harmonic flow Ql(ωk) in a

small artery l can be related by a load impedance Zl(ωk) as follows:

Pl(ωk) = Zl(ωk)Ql(ωk) . (11)
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Eq. (11) is similar to Ohm’s law [41] if pressure is seen as voltage and flow as current.

More importantly, the harmonic impedance at the inlet of the small artery Zl(ωk) and the

harmonic impedance at the outlet of the small artery Zout
l (ωk) are related by the following

relationship [40]:

Zl(ωk) =
jτl(ωk) sin (τl(ωk)) /`l + Zout

l (ωk) cos (τl(ωk))
cos (τl(ωk)) + j`lZout

l (ωk) sin (τl(ωk)) /τl(ωk)
, (12)

with [40]:

τl(ωk) =
lrr
√
π

√√ ρcl

1 − 2J1( jr2
l ω/ν)

jr2
l ω/νJ0( jr2

l ω/ν)

, (13)

where rl is the small artery radius, `l is the small artery length, lrr is the length-to-radius

ratio, ρ is the blood density, µ is the blood viscosity, υ = µ/ρ is the blood kinematic

viscosity, cl is the small artery volume compliance, j is the imaginary unit, J0 and J1 are

the Bessel function of the first kind and, respectively, zero and first order [42].

For ωk = 0, we calculate the limit of the function Zl(ωk) in (12) as ωk → 0 to get:

Zl(ωk) =
8µ`l

πr4
l

+ Zout
l (ωk) . (14)

The conservation of flow at the bifurcation, and continuity of pressure justify the mod-

eling of bifurcations as the branching of perfectly conducting wires in the electric analogue

of blood flow and pressure, and allow the application of Kirchhoff’s current and voltage

laws [43]. The harmonic impedance at the output Zout
l (ωk) can be related to the harmonic

impedance at the daughter small artery l + 1 Zl+1(ωk) and the harmonic impedance of its

sister Zl′+1, by the following relationship:

Zout
l (ωk) =

(
1

Zl+1(ωk)
+

1
Zl′+1(ωk)

)−1

. (15)

The tree of small arteries is truncated when the radius rl is no larger than rmin. The

harmonic impedance of a small artery l such as rl < rmin is taken to be zero. With this

condition, we can compute the load impedance Zl(ωk) of a small artery l according to the

recursive function in Algorithm 1, where f (ZOut, r), implementing the expression defined

in (12), returns the impedance ZIn given the output impedance ZOut and the radius r.
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Algorithm 1 Recursive computation of the load impedance of a small artery.
1: Global alpha, beta, rMin . Parameters
2: function ImpedanceSmall(r)
3: if r ≤ rMin then
4: ZR← ImpedanceS mall(beta ∗ r) . ZR: Impedance of the right daughter artery
5: ZL← ImpedanceS mall(alpha ∗ r) . ZL: Impedance of the left daughter artery
6: ZOut ← 1/(1/ZR + 1/ZL)
7: ZIn← f (ZOut, r)
8: else
9: ZIn← 0

10: end if
11: return ZIn
12: end function

Ql(ωk)

Pl(ωk)Zl'(ωk)

Zl(ωk)Ql-1(ωk)

Pl-1(ωk)

Zl-1(ωk)
Zl(ωk)Zl'(ωk)

Zl(ωk)+Zl'(ωk)
-

Figure 6. Transmission line model for a tree of small arteries.

3.4.2.2 Small Artery Transfer Matrix

Here, we find a transfer matrix Tl(ωk) that relates the harmonic flow and pressure [Pl(ωk) Ql(ωk)]′

in a small artery l located in a tree of small arteries to the flow and pressure at the root il of

the tree of small arteries
[
Pil(ωk) Qil(ωk)

]′ (cf. Fig. 7).

By calculating the harmonic impedance at the root artery Zil(ωk) the harmonic impedance

at the small artery l Zl(ωk) and at its sister small artery Zl′(ωk), we can represent the tree

of small arteries by the two-port network in Fig. 6. Using Kirchhoff’s circuit laws, we

find a linear system involving the input pressure Pil(ωk), the input flow Qil(ωk), the output

pressure Pl(ωk), and the output flow Ql(ωk). Hence, the flow and pressure in a small artery

l and the root of the tree of small arteries i are related by the following matrix relationship

using the transmission line theory:

Pil(ωk)

Qil(ωk)

 = Tl(ωk)

Pl(ωk)

Ql(ωk)

 , (16)

22



Interface between large arteries
and small arteries il

l
l-1

Zl-1(ωk)
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Figure 7. A small arterial tree as a network of impedances.

with:

Tl(ωk) =
∏
m∈Sl

1 +
∆Zm−1(ωk)

Z′m(ωk) ∆Zm−1(ωk)

1
Zm′ (ωk) 1

 , (17)

where Sl = (...,m, ..., l − 1, l) is the sequence of all small arteries carrying blood from the

interface to the small artery l, [Pl(ωk) Ql(ωk)]′ is the harmonic flow and pressure in a small

artery l, and
[
Pil(ωk) Qil(ωk)

]′ is the harmonic flow and pressure at the root of the tree of

small arteries il, and ∆Zm−1(ωk) is the impedance between the inlets the small arteries m

and m − 1 which is computed as in the following,

∆Zm−1(ωk) = Zm−1(ωk) −
Zm(ωk)Zm′(ωk)

Zm(ωk) + Zm′(ωk)
. (18)

Zm(ωk), Zm′(ωk), and Zm−1(ωk) are, respectively the harmonic impedance of the small artery

m, its sister small artery m′, and its parent small artery m − 1. At the interface, we take that

∆Zil(ωk) = 0.
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Figure 8. Electrical scheme of the transmission line representation of a large artery segment.

r

0

z

ℓl

rl(z)

rl
top

rl
bot

Figure 9. A large artery m as an axisymmetric tube with tapering radius in the (r,z) plan.

3.4.3 Large Arteries Model

The objective of this section is to present an expression of the transfer matrix Tl(ωk) for

a large artery l and an algorithm to calculate the load impedance Zl(ωk) for a large artery

located in the cardiovascular system.

3.4.3.1 Large Artery Transfer Matrix

The transfer matrix Tl(ωk) for a large artery l depends on its geometric dimensions and

physiological parameters of the artery, which are as follows:

• Radius tapering. A large artery l is considered as an axisymmetric tube with decreas-

ing radius as illustrated in Fig. 9 and length `l. The inlet of the large artery l has a

top radius rtop
l and its outlet has a bottom radius rbot

l where rbot
l ≤ rtop

l . The numerical

values for rtop
l ,rbot

l , and `l are found from anatomical measurements (cf. Table 1).We

consider z as the longitude coordinate along the axis of the large artery, and rm(z)
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as the radial distance of the tube surface to the axis at z, the radius rl(z) decreases

exponentially from rtop
l at z = 0 to rbot

m at z = `l, as follows:

rl(z) = rtop
l exp(−klz) , (19)

where kl, the tapering factor for a large artery l, is defined as kl =
log(rtop

l /rbot
l )

`l
.

• The volume compliance, which quantifies the tendency of the artery walls to yield to

pressure and other external forces. Using statistical studies of physiological measure-

ments [37], the volume compliance cl can be estimated by the following equation:

cl(z) =
πrl

2(z)
k1 exp(−k2rl(z)) + k3

, (20)

where k1 = 1.34 × 107g/(s2.cm), k2 = 22.53cm−1, and k3 = 5.77 × 105g/(s2.cm).

The blood flow in a large artery is assumed to be laminar, viscous, and incompress-

ible, and that pressure is constant over the cross-section of the large artery. Starting from

the Navier-Stokes equation (4), equating the variance of the flow in a large artery with the

volume absorbed by the large artery due to its compliance, we get a system of coupled dif-

ferential equations [44] for one-dimensional blood flow q̂l(z, t) and one-dimensional blood

pressure p̂l(z, t):

−
∂ p̂l(z, t)
∂z

=
ρ

πr2
m

∂q̂l(z, t)
∂t

+
8µ
πrl

4 q̂l(z, t) (21)

−
∂q̂l(z, t)
∂z

= cl
∂p̂l(z, t)
∂t

. (22)

This system is governed by differential equations which resemble the Telegrapher’s

equations. A Telegrapher’s equation have an electrical circuit analogue as illustrated in

Fig. 8. The components of this circuit are the resistance per unit length R
′

l =
8µ
πrl4

, in-

ductance per unit length L
′

l =
ρ

πrl2
, the capacitance per unit length C

′

l = πrl
2

k1 exp(−k2rl)+k3
, and
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the admittance per unit length G
′

l = 0, and are expressed as function of the physiologi-

cal parameters previously defined, with rl = rl(z = `l). Stemming from these electrical

components, two important parameters are hence defined for a large artery segment l:

• The propagation coefficient γl(ωk), which is expressed by:

γl(ωk) =

√(
R′l + jωkL′l

) (
G′

l + jωkC
′

l

)
. (23)

• The characteristic impedance Z◦l (ωk), defined as the impedance that the transmission

line segment would have if it was a part of an infinitely long transmission line with

homogeneous parameters [45]:

Z◦l (ωk) =

√
R′l + jωkL′l
G′

l + jωkC
′

l

. (24)

By applying the two-port network circuit analysis [41], the Fourier coefficients of the pres-

sure Pl(ωk) and flow Ql(ωk) in the large artery segment l can be related to the Fourier

coefficients of the pressure Pl+1(ωk) and flow Ql+1(ωk) of the next large artery segment l + 1

as follows:

Pl+1(ωk)

Ql+1(ωk)

 = Tl(ωk)

Pl(ωk)

Ql(ωk)

 , (25)

with:

Tl(ωk) =

Al(ωk) Bl(ωk)

Cl(ωk) Dl(ωk)

 , (26)

where Al(ωk), Bl(ωk), Cl(ωk), and Dl(ωk) are the elements of the transfer matrix Tl(ωk) of

the large artery l, defined as [46]:

Al(ωk) = cosh (γl(ωk)`l)

Bl(ωk) = Z◦l (ωk) sinh (γl(ωk)`l)

Cl(ωk) =
1

Z◦l (ωk)
sinh (γl(ωk)`l)

Dl(ωk) = cosh (γl(ωk)`l) . (27)
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Figure 11. A tree of large arteries as branching transmission lines.

where γl(ωk) is the propagation coefficient of large artery segment l, Z◦l (ωk) is the charac-

teristic impedance of large artery segment l, and `l is its length.

3.4.3.2 Load Impedance of a Large Artery

The load impedance of a large artery Zl(ωk) is a measure of the opposition experienced by

the blood flow at the inlet of a large artery l. It depends on the topology of all large arteries

that branch out from large artery l and their geometric dimensions. Large arteries are

arranged in a tree-like structure. The arteries grow out from the aorta, the systemic artery

originating at the heart, and branch out to reach the peripheral body tissues and organs.

Measurements of the position of arteries and the points of bifurcations are available from
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anatomy books [47], and are presented in Table 1. The large arteries are ended by a tree of

small arteries which are presented in 3.4.2.

Fig. 10 illustrates the topology of the tree of large arteries branching out from a large

artery l. As shown in Fig. 11, the tree of large arteries is terminated by trees of small arteries

with load impedance Zil′+1(ωk), Zil′+2(ωk), Zil+1(ωk), etc. which are calculated according to

the algorithm presented in Sec. 3.4.2.1.

Using transmission line theory [45], it is possible to express the load impedance of the

large artery l in function of the load impedance at its outlet, which is denoted Zout
l (ωk).

Zl(ωk) = Z◦l (ωk)
Zout

l (ωk) + Z◦l (ωk) tanh (γl(ωk)`l)
Z◦l (ωk) + Zout

l (ωk) tanh (γl(ωk)`l) ,
(28)

where Z◦l (ωk) and γl(ωk) are respectively the propagation coefficient and characteristic

impedance for the large artery l as found in (23) and (24). If the large artery l branches out

into two large arteries l + 1 and l′ + 1, the load impedance at the outlet of large artery l is

given by:

Zout
l (ωk) =

(
1

Zl+1(ωk)
+

1
Zl′+1(ωk)

)−1

. (29)

Otherwise, if the large artery l is terminated by a tree of small arteries, the load impedance

at the outlet of large artery l is exactly the load impedance of interface with small arteries

Zil(ωk).

Zout
l (ωk) = Zil(ωk) =

(
1

Zl+1(ωk)
+

1
Zl′+1(ωk)

)−1

. (30)

where l + 1 and l′ + 1 are the indexes of the small arteries braching out if the large artery l.

We can describe the procedure required to get the load impedance Zl(ωk) of the large

artery l by the recursive algorithm in Algorithm 2 by defining:

• f : (ZOut, L,R)→ ZIn as the function that returns the load impedance ZIn of a large

artery with radius R and length L, and the load impedance at its outlet ZOut.

• r(l), rBot(l) and l(i) as the functions that return the radius at the top, the radius at the

bottom, and the length of the large artery i, respectively.
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Algorithm 2 Recursive computation of the load impedance for a large artery.
1: Global alpha, beta . Parameters
2: function ImpedanceLarge(i)
3: if r ≤ 2e − 3 then . Large artery branches
4: iR← IdR(i)
5: iL← IdL(i)
6: ZR← f (ImpedanceLarge(iR), l(iR), r(iR))
7: ZL← f (ImpedanceLarge(iL), l(iL), r(iL))
8: ZOut ← 1/(1/ZR + 1/ZL)
9: else . Small artery interface

10: ZR← ImpedanceS mall(alpha ∗ r(i))
11: ZL← ImpedanceS mall(beta ∗ r(i))
12: ZOut ← 1/(1/ZR + 1/ZL)
13: end if
14: return ZOut
15: end function

Pre-l 
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Network

Zl(ωk)

Output

Cardiac

Input

Arterial 

System

Venous 

System

Qin(ωk)

Ql(ωk)

Pl(ωk)

Pin(ωk)

Figure 12. Overview of the transmission line network of the cardiovascular system.

• IdR(i) and IdL(i) as the functions that return the index of the large artery branching

out of the artery i to the right and to the left, respectively.

These functions are based on the data provided in Table 1 and the topology of the large

arteries in Fig. 21.

We present in this section the expression of the transfer matrix T(ωk). This transfer

matrix represents the propagation effect of the cardiovascular network between the heart

where the cardiac input Qin(ωk) is pumped and an artery l experiencing a blood flow Ql(ωk)

and a pressure Pl(ωk).
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3.4.4 General Transfer Matrix and Load Impedance

The part of the cardiovascular vascular system between the heart and the artery l in the

direction of the flow is called here the pre-l network, and the part between the artery l and

the venous system in the direction of the flow is called the post-l network as illustrated in

Fig. 12.

• The pre-l network is characterized by a a transfer matrix T(ωk) that imposes a lin-

ear relationship between the cardiac input Qin(ωk), the pressure exerted by the heart

Pin(ωk), the blood flow Ql(ωk), and the pressure Pl(ωk) in the artery l as follows:Pin(ωk)

Qin(ωk)

 = T(ωk)

Pl(ωk)

Ql(ωk)

 , (31)

where A(ωk), B(ωk), C(ωk), and D(ωk) are the matrix elements of Tl(ωk):

T(ωk) =

A(ωk) B(ωk)

C(ωk) D(ωk)

 . (32)

• The post-l network is characterized by a load impedance Zl(ωk) that imposes a rela-

tionship between the blood flow Ql(ωk) and the pressure Pl(ωk) in artery l as follows:

Pl(ωk) = Zl(ωk)Ql(ωk) . (33)

We have previously presentend the algorithms that return the load impedance Zl(ωk) for

a small artery l in Sec. 3.4.2.1 and for a large artery l in Sec. 3.4.3.2.

By cascading the transfer matrices [45] of all large arteries m carrying blood from the

heart to the large artery l and the transfer matrices of large artery branches along this path

(cf. Fig. 13), the transfer matrix T(ωk) for a large artery is calculated as follows:

T(ωk) = T1(ωk)
∏
m∈Ll

Am(ωk) +
Bm(ωk)
Zm′ (ωk) Bm(ωk)

Cm(ωk) +
Dm(ωk)
Zm′ (ωk) Dm(ωk)

 , (34)
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where Ll = (...,m, ..., l − 1, l) is the sequence of all large arteries carrying blood from the

heart to the artery l, A(ωk), B(ωk), C(ωk), and D(ωk) are the matrix elements of the transfer

matrix Tm(ωk) of an artery m (27), T1(ωk) is the transfer matrix of the aorta (the large artery

directly connected to the heart), Tl(ωk) is the transfer matrix of the artery l, whether it is a

small artery (17) or a large artery (27), and Zm′(ωk) is the load impedance of the artery m′

parallel to m (See Fig. 13).

For a small artery, we further multiply by the small artery transfer matrix as follows:

T(ωk) = T1(ωk)
∏
m∈Ll

Am(ωk) +
Bm(ωk)
Zm′ (ωk) Bm(ωk)

Cm(ωk) +
Dm(ωk)
Zm′ (ωk) Dm(ωk)

 (35)

Tl(ωk) ,

where Sil = (...,m, ..., il) is the sequence of all large arteries carrying blood from the heart

to the interface il of the tree of small arteries to which l belongs.

3.4.5 Blood Velocity

The objective of this section is to present the expression of the blood velocity ul(r, t)

given the cardiac input Qin(ωk), the transfer matrix T(ωk), and the load impedance Zl(ωk)

which were expressed in the preceding section.By connecting a pre-l network with load

impedance Zl(ωk) to the post-l network with transfer matrix T(ωk), we enforce the equa-

tions (31) and (33), and we collapse the two-port network into a one-port network. There-

fore, we eliminate the pressures Pin(ωk) and Pl(ωk), and the harmonic flow Q(ωk)l in the

artery l can be computed directly from the cardiac input Qin(ωk) by:

Ql(ωk) =
Qin(ωk)

Zl(ωk)C(ωk) + D(ωk)
, (36)

where C(ωk) and D(ωk) are the first and second elements of the second row of the transfer

matrix representing the cardiovascular network between the heart and the artery l sampled

at angular frequency ωk respectively, and Zl(ωk) is the harmonic impedance of the artery l.

We can get the blood velocity ul(r, t) as function of r, the distance from the axis of the
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Figure 14. Drug propagation network model.

vessel, and the time t from the periodic blood flow in the time-domain ql(t) by assuming a

parabolic profile for the blood velocity, which gives:

ul(r, t) =
1 − r2

r2
l

πr2
l

+∞∑
k=−∞

Ql(ωk)e jωkt . (37)

3.5 Drug Propagation Network Model

The drug propagation network model allows to compute the drug delivery rate y(t) at the

targeted site as function of the time t from the knowledge of the blood velocity ul(r, t) in

every artery l of the cardiovascular system, function of the distance r from the artery axis

and the time t, computed through the cardiovascular network model detailed in Sec. 3.4.

The drug propagation network model stems from the solutions to the advection-diffusion

equation expressed in (6), and it is composed of the following elements:

• Artery Link Models. An artery link is defined as the arterial blood vessel segment

which connects two adjacent bifurcations. The artery link models are derived from

the solution to the General Taylor Dispersion equation [48], which is a simplification
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of the advection-diffusion equation (6) in case of advection in a cylindrical pipe.

Each artery link l model is expressed by a Linear Periodically Time-Varying (LPTV)

impulse response hlink
l (t, t′) as function as function of the time variables t and t′, as

detailed in Sec. 3.5.1.

• Junction Node Models. A junction node is defined as the arterial location where an

incoming blood flow is split into two outgoing diverging flows. The junction node

models are derived from the principle of mass conservation [49] in fluid mechanics,

and each junction node n model is expressed by an LPTV impulse response hn(t, t′),

as detailed in Sec. 3.5.2.

• Bifurcation Node Models. A bifurcation node is defined as the venal location where

two incoming blood flows are joined into one single flow. Similarly, the bifurca-

tion node n is characterized by an LPTV impulse response hn(t, t′), as detailed in

Sec. 3.5.3.

From the knowledge of the location of injection I and the targeted site O, the Drug Propa-

gation Network Model is expressed by a LPTV impulse response hI,O(t, t′) as function of

the time variables t and t′, through which we compute the drug delivery rate y(t) given the

drug injection rate x(t), functions of the time t, as follows:

y(t) =

∫ +∞

−∞

hI,O(t, t′)x(t′) dt′ . (38)

In Sec. 3.5.4 we detail the procedure to compute the expression of the LPTV impulse

response hI,O(t, t′), function of the time t and the periodic time variable t′, by applying

the Harmonic Transfer Matrix (HTM) theory [35] to the artery link and bifurcation node

models.

3.5.1 Artery Link Models

The model of the artery link l, as illustrated in Fig. 15, corresponds to the relation between

the drug delivery rate yl(t) at the output of the artery link and a drug injection rate xl(t) at
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Figure 15. A segment of a blood vessel modeled as an artery link.

the input of the artery link l, functions of the time t. This model is expressed through the

LPTV impulse response hlink
l (t, t′), function of the time variables t and t′, as follows:

yl(t) =

∫ +∞

−∞

hlink
l (t, t′)xl(t′)dt′ . (39)

The LPTV impulse response hlink
l (t, t′), function of the time variables t and t′, corresponds

to the the drug particle concentration cl(z, t) at the artery link longitudinal coordinate z = `l

when the drug injection rate xl(t) at the input of the artery link l is equal to a Dirac delta

δ(t − t′) centered at time t′. This is expressed as follows:

hlink
l (t, t′) = cl(`l, t)|xl(t)=δ(z)δ(t−t′) , (40)

where `l is the length of the artery link l.

The drug particle concentration cl(`l, t) is computed through the inhomogeneous advection-

diffusion equation [38], simplified into the inhomogeneous General Taylor Dispersion equa-

tion [48], since in the artery link the drug particles are subject to advection in a cylindrical

pipe.

The inhomogeneous General Taylor Dispersion equation when the input drug injection
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rate is equal to a Dirac delta δ(t − t′) centered at time t′ is expressed as follows:

∂cl(z, t)
∂t

+ ūl(t)
∂cl(z, t)
∂z

= δ(z)δ(t − t′) (41)

+De f f
l (t)

∂2cl(z, t)
∂z2 ,

where cl(z, t) is the drug particle concentration at longitudinal coordinate z in the artery link

l, ūl(t) is the average cross-sectional velocity in the artery link l, defined as

ūl(t) =
2
rl

2

∫ rl

0
rul(r, t)dr , (42)

where ul(r, t) is the blood velocity at the output of the artery l as function of the distance r

from the artery axis and the time t. De f f
l (t) is the effective diffusivity [48] in the artery link

l, expressed as follows:

De f f
l (t) = D −

rl
3ūl

2(t)
8D

+
2

Drl

∫ R

0
rūl(t)

∫ r

0

1
r′

∫ r′

0
r′′ul(r′′, t)dr′′dr′

−
2

Drl

∫ R

0
rul(r, t)

∫ r

0

1
r′

∫ r′

0
r′′ul(r′′, t)dr′′dr′

+
2

Drl

∫ R

0

r3

4
ūl(t)ul(r, t)dr , (43)

where rl is the radius of the artery link, and D is the diffusion coefficient [50] of the drug

particles in the blood, whose expression is

D =
KBTp

6πηa
, (44)

where KB is the Boltzmann’s constant, Tp is the blood absolute temperature, η is the intrin-

sic viscosity of the particle, which depends on the geometry of the drug particles, and a is

the radius of the drug particles.

To obtain the expression of the drug particle concentration cl(`l, t), we apply the Fourier

transform [51] F {·} with respect to the variable z, which is the longitudinal coordinate in
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the artery, to both terms of the advection-diffusion equation (41), which results in

∂

∂t
F {cl(z, t)} + 2iπξūl(t)F {cl(z, t)} = δ(t − t′) , (45)

+4π2ξ2De f f
l (t)F {cl(z, t)}

where ξ is the frequency variable along the artery link longitudinal coordinate z. Using

Green’s method for solving inhomogeneous differential equations [52], we obtain

F {cl(z, t)} = exp−
(
π2σ

2
l (t, t′)

2
ξ2 + 2iπξµl(t, t′)

)
U(t − t′) , (46)

where U(·) is the Heaviside step function [53], and where µl(t, t′) corresponds to the particle

displacement as function of the time variables t and t′. It depends on the average cross-

sectional velocity ūl(t) in the artery link l as follows:

µl(t, t′) =

∫ t

t′
ūl(τ)dτ , (47)

and σl(t, t′) corresponds to the particles spread as function of the time variables t and t′. It

depends on the effective diffusivity De f f
l (t) of the particles (43), and the radius of the link

rl:

σ2
l (t, t′) =

∣∣∣∣∣∣2
∫ t

t′
De f f

l (τ)dτ

∣∣∣∣∣∣ . (48)

Finally, the expression of the LPTV impulse response hlink
l (t, t′) is obtained through the

inverse Fourier transform [51] of (46) computed at the artery link longitudinal coordinate

z = `l, which has the following expression:

hlink
l (t, t′) =

1√
2πσ2

l (t, t′)
exp

(
−

(`l − µl(t, t′))2

2σ2
l (t, t′)

)
, (49)

where µl(t, t′) is given by (47), σ2
l (t, t′) is given by (48), and `l is the length of the artery

link l.

3.5.2 Junction Node Model

The model of a junction node n, as illustrated in Fig. 16, corresponds to the relation between

the drug delivery rates yn(t) at the output branch of the junction node n and a drug injection
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Figure 16. A blood vessel junction modeled as a cardiovascular network node.

rate xn(t) at the input of the bifurcation node n, functions of the time t. This model is

expressed through the LPTV impulse response hnode
n (t, t′), function of the time variables t

and t′, as follows:

yn(t) =

∫ +∞

−∞

hnode
n (t, t′)xn(t′)dt′. (50)

To compute the LPTV impulse response hnode
n (t, t′), function of the time variables t and

t′, we assume that in a junction node the propagation of the drug particles is given mainly

by their advection in the blood flows, while the contribution of their diffusion is negligible.

Under this assumption, the relation between drug delivery rate yn(t) of the junction node n

and a drug injection rate xn(t) at the input of the bifurcation node n, functions of the time t

is computed through the the principle of mass conservation [49] in fluid mechanics, which

is expressed as follows:

yn(t) =
ūn(t) + ūn′(t)

ūn(t)
xn(t) , (51)

where n′ is the index of the sister of the input branch n, ūn(t) and ūn′(t) are the average

cross-sectional blood velocities at the input branches indexed by n and n′, respectively. As

a consequence, by comparing the expressions in (50) and (51), we obtain the following
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Figure 17. A blood vessel bifurcation modeled as a cardiovascular network node.

expression for the LPTV impulse response hnode
n (t, t′) as function of the time variables t and

t′:

hnode
n (t, t′) =

ūn(t) + ūn′(t)
ūn(t)

δ(t) , (52)

where δ(t) is the Dirac delta time function, n is the index of the junction node input branch,

and n′ is the index of the sister of the input branch n.

3.5.3 Bifurcation Node Model

The model of a bifurcation node n, as illustrated in Fig. 17, corresponds to the relation

between the drug delivery rates yn(t) at the output branch of the junction node n and a drug

injection rate xn(t) at the input of the bifurcation node n, functions of the time t. Similarly,

this model is characterized by an LPTV impulse response hnode
n (t, t′), function of the time

variables t and t′, as follows:

hnode
n (t, t′) = δ(t) , (53)
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This relationship stems from the fact that the concentration is continuous in a bifurca-

tion node.

3.5.4 LPTV Impulse Response of the Drug Propagation Network Model

The LPTV impulse response hI,O(t, t′) of the drug propagation network model having lo-

cation of injection I and the targeted site O, as function of the time variables t and t′, is

computed from the Fourier coefficient hk(τ) as follows:

hI,O(t, t′) =

∞∑
k=0

hk(t − t′)e jkω0(t−t′) , (54)

where ω0 is the angular heartbeat frequency, and each Fourier coefficient hk(τ) is com-

puted from the equivalent HTM HI,O(s) of the drug propagation network model through

the following expression:

hk(τ) =

m−|k|∑
n=−(m−|k|)

{
HI,O(s)

}
k+n,n

∣∣∣
s=0

e jnω0τ , (55)

where m is the matrix truncation index, |.| is the absolute value operator, and
{
HI,O(s)

}
k+n,n

denotes the element of the equivalent HTM HI,O(s) of the drug propagation network model

having k + n-th row and n-th column indexes. The equivalent HTM HI,O(s) of the drug

propagation network model is computed by applying the HTM theory to the LPTV im-

pulse response hlink
l (t, t′) and hnode

n (t, t′) of the artery link and the bifurcation node models,

respectively. This is achieved by considering that both hlink
l (t, t′) and hnode

n (t, t′) are periodic

with period T , which is the heartbeat period, with respect to both time variables t and t′,

expressed as

hlink
l (t + T, t′ + T ) = hlink

l (t, t′) (56)

hnode
n (t + T, t′ + T ) = hnode

n (t, t′) ∀t, t′∈R .

This periodicity allows to compute Fourier series [51] coefficients for both hlink
l (t, t′) and

hnode
n (t, t′).

hmodel,m
k (τ) =

1
T

∫ T

0
hmodel

k (t, t − τ)e− jkω0tdt , (57)
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where model and m correspond either to link and l, or to node and n, respectively, ω0 is the

angular heartbeat frequency, and τ is an auxiliary time variable. According to the Fourier

series theory [51], we can express the relation between the drug delivery rate ym(t) at the

output and a drug injection rate xm(t) at the input of an artery link or a bifurcation model as

ym(t) =

k=+∞∑
k=−∞

e jkω0t
∫ +∞

−∞

hmodel,m
k (τ)xm(t − τ)dτ. (58)

If we define Ym(s), Hmodel,m
k (s), and Xm(s) as the respective Laplace transforms of ym(t),

hmodel,m
k (τ), and xm(t), Equation (58) becomes

Ym(s) =

k=+∞∑
k=−∞

Hmodel,m
k (s − jkω0)Xm(s − jkω0). (59)

The expression in (59) can be transformed into a matrix multiplication by defining the

infinite-dimensional vectors Ym(s), Xm(s), and the doubly infinite matrix Hmodel
m (s) as:

Xm(s) =
[
Xm(s + jkω0)

]′
k∈Z (60)

Ym(s) =
[
Ym(s + jkω0)

]′
k∈Z (61)

Hmodel
m (s) =

[
Hmodel,p−q

k (s + jqω0)
]

p,q∈Z
, (62)

where [·]′ denotes the matrix transpose operation. As a consequence, the expression (59) is

transformed into a linear matrix relationship:

Ym(s) = Hmodel
m (s)Xm(s) . (63)

Hmodel
m (s) is the Harmonic Transfer Matrix (HTM) of the arterial link l, in case model = link

and m = l, or the bifurcation node n, in the case where model = node and m = n. In

practice, the infinite matrices Hmodel
m (s) and the vectors Ym(s) and Xm(s), are truncated to

contain only the significant harmonics [54].

Using the HTM for every link and node, it becomes possible to obtain the HTM HI,O(s)

of the drug propagation network model between the location of injection I and the tar-

geted site O, which allows to compute the LPTV impulse response hI,O(t, t′) through the

expressions in (55) and (54). This is accomplished using the two following rules:
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• The cascade rule, which states that the harmonic transfer matrix H◦m,m′(s) of the

cascade of two network models m and m′, which can be links, nodes, or combi-

nation thereof, is obtained by multiplying their respective harmonic transfer matrices

Hmodel
m (s) and Hmodel′

m′ (s) as follows:

H◦m,m′(s) = Hmodel
m (s)Hmodel′

m′ (s) . (64)

• The parallel rule, which states that the harmonic transfer matrix H‖m,m′(s) of the par-

allel of two network models m and m′, which can be links, nodes, or combination

thereof, is obtained by summing their respective harmonic transfer matrices Hmodel
m (s)

and Hmodel′
m′ (s) as follows:

H‖m,m′(s) = Hmodel
m (s) + Hmodel′

m′ (s) . (65)

By using the cascade rule (64) and the parallel rule (65), the HTM HI,O(s) of the drug

propagation network model between the location of injection I and the targeted site O is:

HI,O(s) =
∑

p∈P(I,O)

∏
(l,n)∈p

Hlink
l (s)Hnode

n (s) , (66)

where P(I,O) is the set of parallel paths p linking the location of injection I to the targeted

site O. Every path p ∈ P(I,O) is a sequence of link l and node n couples (l, n) (p =

{..., (l, n), ...}). Finally, the LPTV impulse response hI,O(t, t′) is computed by applying (66)

to the expressions in (55) and (54).

3.6 Numerical results
3.6.1 Topology

As a numerical application of our model, we choose to study drug propagation between one

location of injection I and four different targeted sites O2, O4, O8, and O17. These locations

are different points in the small artery tree taking root at the renal artery as represented in

Fig. 18. The blood velocity calculation takes into account the numerical values for large
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Figure 18. Tree of small arteries at the end of the renal artery with their corresponding link numbers.

arteries dimensions presented in Table 1 and their topology represented in Fig. 21 collected

from anatomical data [37].

In Fig. 18, the geometry of the renal arterial tree is illustrated. The topology reflect-

ing the asymmetry of small arteries geometry and their reducing lengths are explained in

3.4.2. The numbers in the figures correspond to the link indexes l. The arteries with ra-

dius rl inferior to rmin = 0.8mm are not included, in fact, when the artery radius is smaller

than rmin = 0.8mm, the subtree is truncated, and replaced with a leaf with null hydraulic

impedance as explained in Sec. 3.4.2.1. where γ is called the asymmetry ratio and ξ is a

parameter that characterizes the turbulence of the flow. Physiological studies yield values

γ = 0.41 of the asymmetry ratio and ξ = 2.76, which characterizes the turbulence of the

flow. Using these values, we get asymmetry factors α = 0.9 and β = 0.6.

3.6.2 Cardiovascular Network Model

The blood velocity network model was validated against the magnetic resonance measure-

ments made available by [55], which was used to validate a model implemented numeri-

cally by finite difference methods. Fig. 19 compares the flow rate measurements in three

locations of the cardiovascular system, namely, the descending aorta, the iliac, and the

femoral arteries, with the flow rates obtained using the transmission line model developed
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in Sec. 3.4. We see a very good agreement between the experimental measurements and

the results of the developed model. We used the same topology as in [55], and we used the

flow measured in the aortic arc as an input to the cardiovascular network model.

3.6.3 Drug Propagation Network

The LPTV impulse response h(t, t′) is calculated for a fixed location of injection I set at

the inlet of the arterial tree, and different targeted sites O2, O4, O8, and O17, located respec-

tively at the outlet of links 2, 4, 8, and 17. A change of variables is performed on h(t, t′)

for a better representation, such that h
′

(t, τ) = h(t, t − τ). t is the periodic time variable, in

which the LPTV impulse response is T-periodic:h
′

(t, τ) = h
′

(t + T, τ). τ is the propagation

time variable: h(t, τ) → 0 as τ → +∞. A 3D representation of the functions h
′

(t, τ) is

rendered in Fig. 20. In Fig. 20a, we can observe the LPTV impulse response goes to zero

after a propagation period of 1200ms. It can be seen that the time-variance is significant.

In fact, we obtain two main peaks in the impulse response for the link 2 in Fig. 20 b),

separated by an important fading, due to the considerable blood velocity fluctuations in

that artery. In Fig. 20e, the drug propagates through link 2 with LPTV impulse response

hlink
2 (t, τ), with radius r2 = 2.5mm, and a link 2 with LPTV impulse response hlink

4 (t, τ), with

radius r4 = 2.2mm, passing by a node 2 with LPTV impulse response hnode
2 (t, τ). Due to

the bifurcation, the cascading of these two links and node causes a spread of the delay and

slower convergences to zero of the equivalent LPTV impulse response between I and O4.

In Fig. 20g, the drug propagates through an additional node 4 with LPTV impulse response

hnode
2 (t, τ), and an additional link 8 with LPTV impulse response hlink

8 (t, τ). The bifurcation

effect is slightly more pronounced here, with a considerable portion of the drug rate that

is lost at the node. The drug delivery rate experiences a drop after the the peak and then

converges slowly to zero which would cause a dispersion of the drug between I and O8.

In the preceding examples, we chose a path through the left links which, by geometrical

asymmetry, experience a higher blood velocity compared with the right links. In Fig. 20e,
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Figure 19. Comparison of the flow rates calculated using the transmission line model with physiological
measurements in various locations of the cardiovascular system.
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Figure 20. Time-varying impulse response for different vessel topologies.
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Figure 21. Topology of large arteries.

we consider that the drug network includes an additional node 8 with LPTV impulse re-

sponse hnode
8 (t, τ), and an additional link 17 with LPTV impulse response hlink

17 (t, τ) which is

positioned to the right. Since the node 8 relays most of the drug rate to the left link which

has much higher effective diffusivity, a more significant portion is lost to the left link. The

asymmetry of the small arteries tree causes most of the drug to be propagated in the left-

most blood links in the tree of small arteries. Here, the dispersion is more pronounced, and

the reflections from the preceding nodes is apparent.
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Table 1. List of large arteries and their dimensions
Index l Name `l[cm] rtop

l [cm] rbot
l [cm]

1 Ascending aorta 1 1.525 1.502
3 Ascending aorta 3 1.502 1.42
4 Aortic arch 3 1.42 1.342

12 Aortic arch 4 1.342 1.246
14 Thoracic aorta 5.5 1.246 1.124
15 Thoracic aorta 10.5 1.124 0.924
27 Abdominal aorta 5.25 0.924 0.838
29 Abdominal aorta 1.5 0.838 0.814
31 Abdominal aorta 1.5 0.814 0.792
33 Abdominal aorta 12.5 0.792 0.627
35 Abdominal aorta 8 0.627 0.55
36 External iliac 5.75 0.4 0.37
37 Femoral 14.5 0.37 0.314
40 Femoral 44.25 0.314 0.2
38 Internal iliac 4.5 0.2 0.2
39 Deep femoral 11.25 0.2 0.2
2 Coronaries 10 0.35 0.3
5 Brachiocephalic 3.5 0.95 0.7

6,17 Subclavians 3.5 0.425 0.407
9,19 Brachials 39.75 0.407 0.25

10,21 Radials 22 0.175 0.175
11,20 Ulnars 22.25 0.175 0.175
8,18 Vertebrals 13.5 0.2 0.2

7 R. carotid 16.75 0.525 0.4
13 L. carotid 19.25 0.525 0.4
16 Intercostals 7.25 0.63 0.5
28 Sup. mesenteric 5 0.4 0.35
22 Celiac 2 0.35 0.3
23 Hepatic 2 0.3 0.25
24 Hepatic 6.5 0.275 0.25
25 Gastric 5.75 0.175 0.15
26 Splenic 5.5 0.2 0.2

30,32 Renals 3 0.275 0.275
34 Mesenteric 3.75 0.2 0.175
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3.7 Conclusions

The goal of a Drug Delivery System (DDS) is to provide a localized drug presence where

the medication is needed, while, at the same time, preventing the drug from affecting other

healthy parts of the body. Amongst others, the most advanced solutions use drugs com-

posed of micro or nano-sized particles (particulate DDS) that are able to cross barriers

to the transit of particles out of the bloodstream. The Molecular Communication (MC)

paradigm abstracts the propagation of information between a sender and a receiver realized

through mass transport phenomena, since information-bearing molecules have to physi-

cally cover the distance from one location to the other. In this chapter, we advocate for the

Molecular Communication (MC) paradigm as a straightforward and efficient abstraction of

a particulate DDS, thus enabling the control and prediction of particulate drug delivery by

using tools from communication engineering.

In this chapter, we realized the molecular communication abstraction of a particulate

DDS by developing a MC channel model of the drug particle propagation through the car-

diovascular system. For this, we identified two separate contributions within the model,

namely, the cardiovascular network model and the drug propagation network model. The

cardiovascular network model allows to analytically compute the blood velocity profile

in every location of the cardiovascular system from the knowledge of the blood pressure

profile and flow input from the heart. The drug propagation network model allows the an-

alytical expression of the drug delivery rate at the targeted site from the knowledge of the

drug location of injection and injection rate profile. The derived model takes into account

also the individual specificities in the physiological parameters of the cardiovascular sys-

tem, such as the compliance of the blood vessels, heartbeat rate profile and the heartbeat

stroke volume. An example application of the developed model is also presented through

numerical results to assess the flexibility and accuracy of the analytical results of this work.

We propose as future work to investigate the safety issues of MC for the human being.

First, care should be taken to ensure that the drug concentration does not reach toxic levels
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in the body. Second, the interaction with naturally-occurring MC phenomena in the body

such as the cell signaling through the endocrine system should be considered. Third, the

MC system should be resilient against possible ‘malicious’ attacks. Such attacks may be

undertaken by benign bacterial and viral organisms, which develop defenses against the

therapy, or by the immune system which considers the foreign therapeutic agent as an

intruder to the body. Safety issues of MC could be studied in analogy with security issues

in classical communication systems.

The results detailed in this chapter open up the possibility to study optimization tech-

niques for particulate DDSs which could allow a careful selection of the location of injec-

tion and drug injection profile with the goal of obtaining a desired drug delivery profile at a

targeted site while minimizing the drug presence in the rest of the cardiovascular system. In

addition, the models developed in this research could potentially serve to investigate novel

communication techniques for Intra-Body Communication (IBC) networks.
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CHAPTER 4

MOLECULAR COMMUNICATION NOISE AND CAPACITY
ANALYSIS FOR PARTICULATE DRUG DELIVERY SYSTEMS

4.1 Motivation and Related Work

Particulate Drug Delivery Systems (PDDS) are therapeutic methods that use drug nanopar-

ticles to specifically target the cause of the disease while avoiding to affect other healthy

parts of the body. Drug nanoparticles are able to penetrate inside the body cells to de-

liver therapy, and therefore can bypass all physiological barriers that are in place inside the

human body to protect it from foreign elements. The PDDS aims to engineer drug nanopar-

ticles not only in terms of their chemical properties, size, and shape, but also in terms of the

injection pattern, location, and other mechanisms that enable the optimal reception of drug

nanoparticles by the diseased cells. By analyzing the PDDS, it is possible to know exactly

where the drug accumulates in the body, measure the efficiency of the PDDS solution, and

optimize the drug injection pattern.

The modeling of complex spatiotemporal dynamics of drug nanoparticles has been

identified as one of the major challenges to develop a new generation of efficient thera-

pies [56]. From the drug injection site, to the absorption by diseased cells, the nanoparticles

undergo several biophysical processes that are noisy in nature. In this chapter, an analytical

noise model of the PDDS in the human body is derived, reflecting all the possible noise

effects for the PDDS. First, the drug injection may suffer from imprecision due to the in-

jection device limitations, the pressure difference between the syringe and the blood flow,

and the creation of turbulences around the needle. Second, the nanoparticles are randomly

dispersed by the possibly turbulent blood flow in an intricate network of irregularly shaped

blood vessels, and exhibiting Brownian motion. Third, the penetration of drug nanopar-

ticles to the tissues surrounding the blood vessels is complicated by the stochastic nature

of the chemical reactions, and the time-varying mechanical forces interfering with these
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chemical reactions.

Our previous work in [57] uses transmission line theory to obtain the blood veloc-

ity everywhere in the cardiovascular system, and uses the theory of Taylor dispersion

to obtain the deterministic drug propagation in the body from the injection to the deliv-

ery point. In this chapter, the Fokker-Planck equation and the theory of inhomogeneous

Poisson processes are used to mathematically derive a new stochastic and information-

theoretical framework to model the random transport and binding of nanoparticles in the

cardiovascular system and to quantify the effect of noise through the use of the concept of

the information-theoretical capacity. This analysis uses the expressions obtained in [57]

to estimate several parameters, namely the blood velocities and the PDDS drug propaga-

tion probability. The noise and capacity analysis fills an important limitation in [57] in

regards to the random behavior of drug nanoparticles. An end-to-end Molecular Commu-

nication (MC) framework is proposed to analyze the noise effects in the PDDS. The novel

MC paradigm [2], where the information is conveyed through molecules, instead of the

conventional electromagnetic signals, is employed to enable the communication in biolog-

ical environments that are governed by molecular signals, such as bacterial communica-

tion [58] [16], with the long-term aim of establishing communication networks between

nanomachines inspired by intracellular signaling.

In the literature, the noise effects in the intercellular communication are shown to have

both beneficial and detrimental effects in intracellular MC [59]. The noise in MC by diffu-

sion is analyzed in relation to the underlying physical processes [11]. Also, the stochastic

effects in the ligand-receptor binding kinetics and interference are modeled through the MC

framework [12] [60]. The maximum achievable information rates in diffusion-based MC

under the constraints of Brownian motion noise are derived in [13] by using a novel ther-

modynamic information theoretical framework. These existing models rigorously reflect

the unique noise effects in MC, but they cannot be directly applied for the PDDS in the

complex cardiovascular network [57], because they assume linear time-invariant channel
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models for the propagation medium, which is not realistic to assume in the cardiovascular

system where the blood flow is highly time-varying, and they suppose diffusion in the free

and isotropic space (i.e. the molecules propagate in all the Cartesian directions in the same

manner and without any obstacles), while the MC in the cardiovascular system is confined

to the complex topology of blood vessels. The MC reception of nanoparticles is also heav-

ily affected by the blood flow that interferes with the chemical interactions between ligands

and receptors [17].

In addition to the analysis of the noise effects in the PDDS, the use of information the-

ory is proposed to evaluate the performance of the PDDS through the MC paradigm. The

main objective of the PDDS is to engineer a system that can induce a therapeutic effect in

the location where it is needed. The desired drug delivery at the location of the disease may

vary from one individual to another, depending on the nature and the stage of the illness,

the genomics that greatly affect the binding of drug nanoparticles to the receptors in the dis-

eased cells [61], and the desired intensity of the treatment. Therefore, it is highly desirable

that, for a given clinical setting, the PDDS can be employed effectively and reliably for the

treatment of a diversity of individuals. In this chapter, the PDDS is considered to be similar

to a communication system, where the drug injection which corresponds to a signal trans-

mission, induces the drug reception which corresponds to a signal reception, after being

distorted by the human body which corresponds to the communication channel. Through

this paradigm, the set of desired responses may be viewed as an alphabet of different re-

sponses yA, yB, . . . , yZ, etc. If the PDDS can reliably deliver different kinds of responses

unambiguously at the same time, this PDDS can be qualified to be very performant. The

size of this alphabet can be measured in bits (1 bit for two possible different therapeu-

tic responses, 2 bits for four possible different therapeutic responses, etc.). The existing

PDDS models are mostly based on deterministic approaches, while stochastic approaches

are mainly developed for the purpose of statistically estimating the required parameters of

the system from experimental results. In this chapter, based on the comprehensive model
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of the noise effects in PDDS, the capacity of the PDDS under the constraints of the noise

effects is mathematically derived, and this concept is used to evaluate the performance of

the PDDS. The expression of the capacity can be used as an objective function encompass-

ing all the PDDS parameters in order to optimize its design and the drug injection rate.

In classical communication theory, this optimization is solved through the water-filling al-

gorithm which assists in designing the transmitted signal in such a way that most of the

power is used in clear channel conditions, and the power is minimized in noisy channel

conditions. Similarly, in the PDDS, this analysis will enable to construct a drug injection

rate that transmits most of the valuable drug nanoparticles when the chances of having them

absorbed are high, and a minimal amount of drug nanoparticles when the chances of their

non-targeted dispersion is inevitable.

The paper is organized as follows: First, in Section 4.2, all the noise effects that exist

in the PDDS are presented, which are going to be modeled by using the MC paradigm.

Second, in Section 4.3, the elements of the MC abstraction of the PDDS noise effects are

presented, and the notion of capacity in the PDDS is defined and justified. Third, the

MC end-to-end drug reception noise is derived in Section 4.4. Fourth, in Section 4.5, the

MC capacity of the PDDS is derived within an information theoretical framework, and is

expressed as a function of all parameters of the noise effects from the drug injection to

the drug reception by diseased cells. Fifth, a kinetic Monte-Carlo scheme of the PDDS

in the cardiovascular system is described in Section 4.6, and the numerical results from

this scheme are compared with the analytical MC noise. Finally, Section 6.8 concludes the

paper by discussing the key outcomes of the MC noise modeling for the PDDS, the PDDS

capacity, and its application to the design and optimization of the PDDS.

4.2 PDDS Noise Scheme

The PDDS noise scheme consists of all the noise effects that affect the injection, propa-

gation, and reception of drug nanoparticles. As illustrated in Fig. 22, the following noise
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Figure 22. MC noise effects in particulate drug delivery systems.

effects are identified in the PDDS:

• The drug injection noise is caused by the mechanical limitations of the drug in-

jection device. The drug injection device is a computer-controlled infusion syringe

pump that allows the control of the drug injection rate in the drug injection site. This

device is likely to suffer from imperfections that cause an inaccurate drug injection

rate. Also, the drug injection device cannot be controlled arbitrarily fast, because

of the mechanical friction and compression phenomena occurring in the pump. In

addition, the drug injection rate is limited by the toxicity level. All these effects will

be considered for the MC noise and capacity modeling of the PDDS.

• The drug propagation noise is due to the stochastic nature of the motion of drug

nanoparticles in a possibly turbulent blood flow. After being injected, drug nanopar-

ticles are lost randomly at the level of blood vessel bifurcations, towards organs

and tissues where their effect is not desired. Especially at high concentration lev-

els, drug nanoparticles become more agitated, causing a noticeable Brownian noise

55



effect, since drug nanoparticles try to move from the regions with high concentration

to the regions with low concentration.

• The drug reception noise affects the reception of drug nanoparticles by the diseased

cells. In fact, the ligand-binding interactions by which drug nanoparticles bind to the

surface of diseased cells is very stochastic. The diseased cells surface is a site where

different kinds of energies interact, such as the kinetic energy due to the blood flow,

the chemical energy of reaction between the ligands and the receptor, characterized

by a chemical potential, and the thermal energy related to the Brownian motion in

the blood medium. The small surface of interaction, irregularities in the cells, the

weakness of the chemical affinity between ligands and receptor, and the negative

effect of blood flow, which impede the drug delivery to the diseased cells.

These noise effects are numerous, complex, and inter-dependent, making their model-

ing tedious and challenging. However, the MC paradigm is well suited to address these

issues. In fact, it provides a comprehensive PDDS noise from the drug injection to the drug

reception, and enables the performance evaluation of the PDDS through the concept of the

capacity.

4.3 MC Noise And Capacity Abstraction for the PDDS

The MC Noise And Capacity Abstraction for the PDDS provides the model of the noise

effects in the PDDS, how the aggregate consequences of the noise effects are evaluated by

using the concept of the capacity, and how the noise is validated by using kinetic Monte-

Carlo simulations. As illustrated in Fig. 23, the PDDS is modeled as an MC channel with

the following components:

• The MC Transmitter represents the drug injection device, which applies a drug

injection rate x(t) at the drug injection site, where the drug injection device syringe

is inserted.
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Figure 23. Elements of the MC abstraction of the noise effects in the PDDS, and their relationship with
the PDDS capacity.

• The MC Channel reflects the effect of the blood flow on the propagation of drug

nanoparticles in a complex network of interconnected blood vessels. As presented in

our previous work [57], the PDDS channel is characterized by a time-varying drug

propagation probability h(t, τ), and by cross-sectional blood velocities in every blood

vessel l, denoted by {ul(t); l ∈ CV}.

• The MC Receiver is the set of the diseased cells that require the PDDS thera-

peutic effect. The MC receiver, located in the drug reception rate y(t), receives

drug nanoparticles through the ligand-binding mechanism. This mechanism allows

ligand-coated drug nanoparticles to have a high affinity to receptors located in the

surface of the diseased cells. The MC reception is complicated due to the fact that

the influence of the blood flow on the affinity between ligand and receptors varies

periodically with time.

MC noises for all the components of the PDDS system are provided. These noises are
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derived individually and then combined to obtain the aggregate effect of the end-to-end

drug reception noise in the PDDS, as follows:

• The drug injection noise describes the noise limitations of the drug injection device.

This model depends on the maximum injection rate A(t), the sampling period Ts, the

average drug injection constraint, and the drug leakage rate η(t). In Section 4.4.1,

these noise limitations are formulated depending on the pump injection syringe.

• The drug propagation noise depends on the drug diffusivity D and the topology of

the cardiovascular system. In Section 4.4.2, a detailed probabilistic derivation of the

drug propagation noise is provided, which gives the drug propagation probability

h(t, τ), where t and τ are time variables.

• The drug reception noise gives the probability that drug nanoparticles located in

the drug reception site are received by the diseased cells through the ligand-binding

mechanism. This model depends on the number of ligands in a drug nanoparticle

NL, the number of receptors in the diseased cells NR, the temperature Tp, the drug

nanoparticle spheroid dimensions, with a radius a and an aspect-ratio γ, the maxi-

mum attraction distance ξ, the bond equilibrium length ζ, the characteristic length

χ, and the cross-sectional average blood velocity at the drug reception site ul(t). In

Section 4.4.3, these parameters are explained in detail, and are related to the drug

reception probability pr(t).

These noise effects are aggregated to obtain an end-to-end model of the MC noise effects for

the PDDS. In this chapter, it is found that the drug reception rate y(t) is an inhomogeneous

Poisson process related to the drug injection rate x(t) through the following relationship:

y(t) ∼ Pois

pr(t)η(t) +

+∞∫
−∞

h(t, τ)pr(t)x(τ)dτ

 , (67)

where Pois (.) denotes the Poisson distribution.
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Based on the result in (67), the MC capacity of the system is presented which is a

measure derived from information theory quantifying how much the drug injection rate

x(t) can reliably affect the drug reception rate y(t) under the constraints of the various

aforementioned noise effects. The capacity is found to be expressed as:

CN = Ts

M∑
m=1

ψm

 N∑
n=1

αn,mAn pm

 , (68)

where αn,m is an expression of the drug propagation probability and the drug reception

probability at the drug injection time sample n and the drug reception time sample m, An is

the maximum non-toxic number of drug nanoparticles at the time nTs, pm is a coefficient

depending on the maximum drug reception rate and the drug reception noise, m is the

drug injection time sample, n is the drug reception time sample, M is the length of the

discretized MC channel memory, N is the length of the drug injection rate x(t), ψm (·) is a

function depending on the drug injection noise parameters, the drug leakage rate, and the

drug injection time sample m. The MC channel for the PDDS is unique in many senses.

First, it is not Gaussian, as it is often assumed to derive the capacity in molecular and

electromagnetic communications. Second, all its parameters are time-varying. Third, the

PDDS channel has important memory effects due to the spread by diffusion.

Regarding inter-individual variations, one of the main advantages of the MC approach

is that all system parameters are directly related to the physiology of the patient and the

chemical properties and shape of drug nanoparticles (cf. Fig. 23). This allows the design

of personalized medicine that is specific to each individual. The existing pharmacokinetic

models use statistical methods to estimate the parameters of the system, which are valid

only for one individual. The MC model allows the incorporation of individual variabilities

mathematically.

Finally, the PDDS end-to-end noise is validated by comparing the results with simula-

tion obtained by a kinetic Monte-Carlo scheme presented in Section 4.6.
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Figure 24. Elements of the drug injection noise.

4.4 Drug Delivery Noise

The drug reception noise allows to probabilistically describe the noise effects from the

drug injection to the drug reception. Here it is shown that the drug reception rate y(t) is an

inhomogeneous Poisson process related to the drug injection rate x(t) as expressed in (67).

4.4.1 Drug Injection Noise

The drug injection noise is composed of all limitations and noise effects that are caused by

the imperfections of the drug injection device, as illustrated in Fig. 24. Our PDDS scheme

requires that the drug injection rate is controllable. Here the drug injection rate is assumed

to be modulated by an infusion pump syringe, which is connected to a computer system.

The computer system is programmed to induce a desired drug injection rate by changing

the pressure of the infusion pump. The drug injection device creates the following limiting

factors:

• The injection leakage, which is the uncontrolled leaking of drug nanoparticles from

the tip of the needle. The pump infusion syringe can leak drug nanoparticles because

of the concentration gradient between the drug solution, and the pressure difference
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between the needle and the blood flow. The leakage is independent of the drug in-

jection rate x(t). Since the blood flow is periodic, the drug leakage ratevaries peri-

odically, and creates additional drug nanoparticles in the drug reception site. The the

drug reception rate is expressed as follows:

y(t) = g(x(t)) + η(t) , (69)

where g(x(t)) represents the part of the drug reception rate that is dependent on the

drug injection rate x(t). Since the drug propagation is linear, the drug delivery rate

η(t) depends on the drug syringe spill rate ι(t) as follows:

η(t) = g(ι(t)) . (70)

The leakage is supposed to be slower than the drug injection. Therefore, the drug

leakage rate η(t) is also sampling rate limited by the sampling period Ts.

• The maximum injection rate is limited, because the drug injection rate should not

create a drug concentration of drug nanoparticles that is toxic to the location where

the drug is injected. This constraint is expressed as follows:

x(t) ≤ A(t) , (71)

where A(t) is a periodic function (A(t) = A(t + T )), which specifies the maximum

drug injection rate during a heartbeat period, and T is the blood velocity period. The

maximum drug injection rate will vary with time due to the periodic blood flow.

• The sampling rate is the maximum rate at which the drug injection can be changed

in time. This rate is limited by the mechanical deficiencies of the pump infusion

syringe, such as the friction of the syringe rubber piston, or the presence of small

compressible gas bubbles in the solution. Therefore, the drug injection cannot be

arbitrarily fast. The maximum sampling rate limitations is expressed as follows:

| f | ≥
1
Ts

=⇒ X( f ) = 0 , (72)

61



yp (t) :  Drug 
delivery rate

Rate λp (t)

pr (t)

1− pr (t)

y(t) :  Drug reception rate

Rate λ '(t) = (1− pr (t))λp (t)

y '(t) :  Drug loss rate

Rate λ(t) = pr (t)λp (t)

Figure 25. Drug nanoparticle reception as the time-varying splitting of an inhomogeneous Poisson
process.

where f is the frequency and X( f ) is the frequency transform of the drug injection

rate x(t).

4.4.2 Drug Propagation Noise

The drug propagation noise gives a probabilistic description of the presence of drug par-

ticles in the delivery site. The drug propagation along the cardiovascular system is noisy

because of the Brownian motion of drug nanoparticles, which are randomly dispersed in

the blood vessels, and lost at vessel bifurcations to regions of the body where the drug is not

needed. Here it is shown that drug nanoparticles that propagate to reach the drug reception

site, given a drug injection rate, is expressed as follows:

yp(t) ∼ Pois

η(t) +

+∞∫
−∞

h(t, τ)x(τ)dτ

 , (73)

where yp(t) is the drug propagation rate which denotes the number of drug nanoparticles

that reach the drug reception site at the time t as shown in Fig. 25.

4.4.2.1 Drug Propagation Poisson Binomial Noise

This gives the drug propagation rate yp(t) at the drug reception site, given a drug injection

rate x(t), as a function of the probability that one single drug nanoparticle injected at the

time τ in the drug injection site is located at the drug reception site at the time t, which is

denoted by ps(t, τ), which is the single drug nanoparticle propagation probability devel-

oped in Section 4.4.2.2. The drug propagation Poisson binomial model expresses the drug
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propagation rate yp(t) as a function of the drug injection rate x(t) as follows [62]:

P
[
yp(t) = k

]
=

1
K

K−1∑
n=0

e
−2inkπ

K

K−1∏
m=1

(
1 + (e

2ikπ
K − 1)ps(t,mTs)

)
, (74)

where k is the number of nanoparticles that reach the drug reception site after propagation

in the cardiovascular system, ps(t,mTs) is the probability that one single drug nanoparticle

injected at a time τ at the drug injection site is delivered at the time mTs at the drug reception

site, the number of trials K is the total of injected nanoparticles expressed as:

K =

N−1∑
n=0

x(nTs) , (75)

with N the number of time samples drug injection rate x(t), such as the drug injection rate

x(t) is written as a sequence of Dirac impulses with different weights, as follows:

x(t) =

N−1∑
n=0

x(nTs)δ(t − nTs) . (76)

The aforementioned relationship is proved by considering the probability that k nanopar-

ticles among a batch of x(nTs) nanoparticles, all injected at the time nTs, reach the drug

reception site at the time t. The probability that exactly k nanoparticles among the ones

enveloped in the drug injection rate x(t) be delivered at the time t is the probability that

the total number of nanoparticles among the N different batches that are successfully de-

livered is equal to k. In other words, the number of successful nanoparticle receptions is a

sum of independent Binomial trials each with different probabilities of success. Therefore,

yp(t) follows a Poisson binomial distribution [63], where the number of trials is the total

number of nanoparticles enveloped by the drug injection rate x(t), and the success rates are

the probabilities of the drug delivery for each nanoparticle m, with m = 0, . . . ,N − 1, as

expressed by (74).

4.4.2.2 Single Drug Nanoparticle Propagation Noise

This provides a description of the random movement of one nanoparticle injected in the

cardiovascular system. The probability that one single drug nanoparticle is delivered at
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the drug reception site at the time t if it is injected at the time τ is denoted as ps(t, τ). A

single drug nanoparticle delivery is found to follow a Bernoulli distribution with probability

ps(t, τ) that is equal to h(t, τ). This is proved based on the analogy between the advection-

diffusion equation and the Fokker-Planck equation, which is the basis of the random motion

of drug nanoparticles. A deterministic model of the movement of drug nanoparticles in

the cardiovascular system is proposed in [57]. The deterministic model was based on the

generalized Taylor dispersion equation that governs the cross-sectional concentration of

drug nanoparticles c(z, t) under the effect of advection by a fluid with cross-average velocity

u(z, t) and effective diffusivity De f f (t), as follows:

∂c(z, t)
∂t

= −u(t)
∂u(z, t)
∂z

+ De f f (t)
∂2c(z, t)
∂z2 , (77)

where ∂ is the symbol for the partial derivative. Since the advection-diffusion equation does

not capture the micro-scale variations in the propagation of nanoparticles, the deterministic

model that solves it is only adequate for describing the average space and time evolution

of the movement of drug nanoparticles. Therefore, a stochastic model is needed to reflect

both the macro-scale and micro-scale variations in the movement of drug nanoparticles.

The stochastic nature of drug nanoparticles is described by the Fokker-Planck equation

[64]. The Fokker-Planck equation is the basis of dynamic techniques for obtaining the

random path of a drug nanoparticle subject to Brownian motion [65]. The one-dimensional

form of the Fokker-Planck equation states that the position z(t) of the drug nanoparticles at

the time t has a probability density function p(z, t) governed by the following equation:

∂p(z, t)
∂t

= −
∂µ(z, t)p(z, t)

∂z
+
∂2D(z, t)p(z, t)

∂z2 , (78)

where µ(z, t) is the nanoparticle drift related to the advection process and D(z, t) is a func-

tion related to the diffusion process, such as, in the micro-scale, the position z(t) of the

nanoparticle is incremented by the random process dz(t) obeying the following stochastic

differential equation:

dz(t) = µ (z(t), t) dt +
√

2D (z(t), t)dw(t) , (79)
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where dw(t) is called a Wiener process, with the following probability density function:

f w(t) (z) =
1
√

2πt
e−

z2
2t . (80)

The generalized Taylor dispersion equation (77) and the Fokker-Planck equation (78) have

the same form, and therefore, by assuming spatially uniform drift and diffusivity, and by

taking the drift term µ(z, t) to be equal to the cross-sectional average velocity u(t), the

equations become identical. Given that these equations are linear, it is possible to conclude

that the deterministic solution of the advection-diffusion equation c(z, t) and the probability

density function of the movement of a drug nanoparticle p(z, t) are equal to each other up

to a multiplicative constant, i.e.:

p(z, t) =
1
c0

c(z, t) , (81)

where c0 is the multiplicative constant, which is obtained from the fact that the integral of

the probability density function over the entire space and time is equal to one, i.e.:

c0 =

∫
z∈CV

∫ +∞

−∞

c(z, t)dzdt , (82)

where CV denotes the spatial domain in the cardiovascular system, z is the space coordi-

nate, and t is the time coordinate. From the results above, the probability density function

that describes the drug propagation rate yp(t) close to a drug reception site by interpret-

ing the time-varying impulse response h(t, τ) at a drug reception site for an input at drug

injection site can be expressed as a probability density function. The time-varying drug

propagation probability of the PDDS h(t, τ) is equal to the drug propagation rate c(z, t) at

the longitudinal coordinate z = `l with a drug injection rate x(t) equal to an impulse δ(t− τ)

centered around the time τ, as expressed in the following:

c(z, t)|x(t)=δ(t−τ),z=`l
= p(z, t)|z=`l

. (83)

It follows by definition that:

h(t, τ) = ps(t, τ) . (84)
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Figure 26. Ligand-binding reception scheme.

Therefore, the probability that k nanoparticles (k ∈ {0, 1}), injected at the time t − τ at the

drug injection site, are delivered at the time t at the drug reception site is expressed by the

following:

P
[
ys(t) = k

]
= hk(t, τ)(1 − h(t, τ))1−k , (85)

where ys(t) denotes the number of drug nanoparticle located at the drug reception site.

4.4.2.3 Drug Propagation Poisson Noise

This provides an approximation of the drug propagation Poisson binomial noise described

in Section 4.4.2.1. By using Le Cam’s theorem [66], a Poisson binomial distribution can

be approximated by a Poisson process with a rate equal to the sum of the probabilities of

the Poisson binomial distribution. Therefore:

y(t) ∼ Pois (λ(t)) , (86)

where Pois(λ(t)) denotes an inhomogeneous Poisson process with rate λ(t). The rate λ(t)

is equal to the following:

λ(t) =

∫ +∞

−∞

x(τ)h(t, τ)dτ . (87)

4.4.3 Drug Reception Noise

The drug reception noise provides the probability that particles that reach the drug recep-

tion site after propagating in the cardiovascular system will be received by the diseased
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cells, which are here modeled as an MC receiver, through the adhesion to the cells and

absorption into the interior of the cell. This reception process is characterized by a drug

reception probability pr(t). The time-variance is due to the periodic blood flow, which

affects the ligand-binding mechanism by which drug nanoparticles are received by the dis-

eased cells.

The study of MC stochastic receiver models is proposed in [12] in a diffusion-based

environment, which allows simulating the random behavior of the chemical reactions of an

MC receiver. Such diffusion-only MC models would not accurately describe the ligand-

binding reception in a flow-dominated environment. In fact, several qualitative and experi-

mental studies [67] [17] have shown that flow creates a shear stress along the blood vessel

walls, which significantly affects the deposition and the reception of the drug nanoparticles.

The MC receiver proposed here is based on the mathematical modeling of receptor-

mediated endocytosis of nanoparticles under shear stress, which means the absorption of

drug nanoparticles inside blood vessel wall cells under the effect of the blood velocity [68].

As shown in Fig. 26, this model is extended by taking into account the blood velocity

ul(r, t) in the drug reception site, the size of the diseased region, and the parameters of the

drug nanoparticle coating. The MC receiver model scheme is pictured in Fig. 27. The MC

receiver is affected by the following elements and parameters:

• The nanoparticle characteristic size a, which is equal to the radius for a sphere.

• The nanoparticle aspect ratio γ, which is equal to the ratio between the polar diam-

eter and the equatorial diameter of a spheroid-shaped nanoparticle. It is equal to one

for a sphere.

• The number of ligands NL is the total number of ligands that cover the nanoparticle

surface. The ligands are supposed to be uniformly distributed on the surface of the

nanoparticle. The density of the ligands is assumed to be the same for all nanoparti-

cles.
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Figure 27. Elements of the Drug Reception Noise.

• The number of receptors NR is the total number of receptors that are available in

the drug reception site. It is supposed that there are more receptors than ligands (i.e.

NR >> NL).

• The ligand-receptor bond characteristic length χ, which is the distance between

the ligand and the receptor when they are bound together without any external force

affecting the bond, and which is approximately equal to 0.1 nm.

• The ligand-receptor bond equilibrium ζ, which is the distance between the ligand

and the receptor when they are bound together in equilibrium under the effect of

shear stress.

• The ligand-receptor maximum attraction length ξ, which is the maximum distance

between the ligand and the receptor at which the bonding is possible.

It is supposed that a drug nanoparticle is delivered when at least one stable bond is

established between the nanoparticle and the drug reception site. This work is based on

classical results from [69] and [70]. In this chapter, the relationship between the drug
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reception probability and the time-varying blood velocity is derived. The resulting drug

reception probability pr(t) can be expressed as:

pr(t) = πr2
0mRmLe−

χaβw(t)
kBTpr0mR

((
a
γ+ζ

)
Fs+

a2
r0

Rs

)
, (88)

where:

• r0 is the radius of the section of the nanoparticle located at a ligand-receptor maxi-

mum attraction length ξ from the blood vessel wall cells, and is expressed as follows:

r0 = a

√
1 −

(
1 −

ξ − ζ

a
γ
)2

. (89)

• mR is the receptor surface density, defined as follows:

mR =
γNR
4
3πa3

. (90)

• mL is the ligand surface density, defined as follows:

mL =
γNL
4
3πa3

. (91)

• kB is the Boltzmann constant, which is approximately equal to the following:

kB = 1.4806488 × 10−23m2kg s−2 K−1 . (92)

• Tp is the blood temperature, which is approximately equal to 310 K.

• Fs is a coefficient that is proportional to the drag force due to the blood flow, and is

equal to Fs = 6+
(
10.416 − 0.8280γ + 0.768γ2 + 0.54γ3

)
e−γ , with γ the nanoparticle

aspect ratio.

• Rs is a coefficient that is proportional to the rotational moment of force due to the

blood flow, and is equal to Rs = 8 +
(
−164 − 372γ − 280γ2 + 71.6γ3

)
e−γ with γ the

nanoparticle aspect ratio.
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• βw(t) is the wall shear stress, which is derived below. Supposing the approximation

of blood flow as a Newtonian fluid, by definition, the shear stress βw(t) at the wall

is expressed as τ = µβw(t), where µ is the blood dynamic viscosity, which is ap-

proximately equal to µ = 4.88 × 10−3Pa.s, and βw(t) is the wall shear rate, defined

as:

βw(t) =
∂u(r, t)
∂r

∣∣∣∣∣
r=rl

, (93)

where rl is the radius of the blood vessel located in the drug reception site. Based on

a result from [71], the shear rate is time-varying, and can be expressed as follows:

βw(t) =
1

2iπrl

∫ +∞

−∞

α2(ω)W(ω)
1 −W(ω)

Ul(ω)eiωtdω , (94)

where i is the imaginary unit number, ω is the radial frequency, and α(ω) is the

Womersley number, defined as α(ω) = rl
√

ω
ν
. W(ω) is the Womersley function,

defined as:

W(ω) =
2J1

(
α (ω) i

3
2

)
α (ω) i

3
2 J0

(
α (ω) i

3
2

) , (95)

which is expressed as a function of the Bessel function of the first kind, and, respec-

tively, of the zero and first order, J0 (·) and J1 (·) [42]. Ul(ω) is the Fourier transform

of the cross-sectional average blood velocity ul(t) in the drug reception site, which is

expressed as follows:

Ul(ω) =

∫ +∞

−∞

ul(t)e−iωtdt . (96)

Biologically plausible numerical values are used for the parameters for the PDDS. For

the numerical evaluation, it is considered that the nanoparticle size to be a = 20 µm, the

maximum attraction length ξ = 10−8 m, the bond characteristic length ζ = 5 · 10−9 m,

the receptor density mR = 5 · 1013 m−2, the ligand density mL = 3 · 10−3 m−2, the blood

density ρ = 1.06 ·103 kg ·m−3, the blood kinematic viscosity ν = 4.603 ·10−6 m2 · s−1, and

a spherical nanoparticle shape with γ = 1. The dimensions and topology of the considered

portion of the arterial network are presented in Fig. 30. The blood velocity network is cal-

culated by using the same numerical values as in [57]. These numerical values can be used
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Figure 28. Drug reception probability in the drug reception site as a function of time.

to extrapolate for individuals of different ages by using empirical laws such as the Preece-

Baines model, which conforms to the human growth curve [72]. Fig. 28 shows how the

drug reception probability changes with respect to time during one heartbeat period. The

numerical evaluations show that properly designing the time pattern of the drug reception

rate y(t) can highly affect the efficiency of the PDDS.

4.4.4 End-to-End Drug Reception Noise

The end-to-end drug reception noise provides a model of the noise effects from the in-

jection to the reception of drug nanoparticles by the diseased cells. This model is based

on the drug injection noise (Section 4.4.1), the drug propagation noise (Section 4.4.2), and

the drug reception noise (Section 4.4.3). The following relationship between the drug re-

ception y(t), and the drug injection rate x(t), is obtained through this model as expressed

in (67). To prove the expression in (67), the property of splitting inhomogeneous Poisson

processes [73] is used. In fact, based on the Poisson approximation of the drug propagation

model presented in Section 4.4.2.3, the drug propagation rate yp(t) is an inhomogeneous

Poisson process with rate λp(t) expressed as follows:

λp(t) = η(t) +

+∞∫
−∞

h(t, τ)x(τ)dτ . (97)
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The delivered drug nanoparticles are received by the diseased cells according to the drug

reception probability pr(t) presented in Section 4.4.3. By using a property of the splitting

inhomogeneous Poisson processes [73] illustrated in Fig. 25, the drug reception rate is also

an inhomogeneous Poisson process with rate λ(t) expressed as follows:

λ(t) = pr(t)λp(t) . (98)

4.5 Capacity Analysis of the PDDS

Here the capacity of the PDDS expressed in (68) is derived based on the drug delivery noise

developed in Section 4.4. The average mutual information I of the PDDS is defined as:

I = lim
N→∞

1
N

I(xN; yN) , (99)

where lim is the limit symbol, the drug injection sequence xN represents the drug injection

rate, and is defined by xN = [x1, . . . , xn, . . . , xN−1], where the n-th drug injection sample

xn is the number of drug nanoparticles injected at the time nTs and N is the length of the

drug injection sequence xN , the drug reception sequence yN represents the drug reception

rate, and is defined by yN =
[
y1, . . . , ym, . . . , yN+L−2

]
where the m-th drug reception sample

ym is the number of drug nanoparticles delivered during the time interval [mTs, (m + 1) Ts[,

and L is the channel memory. M = N + L − 1 is the length of the drug reception sequence.

The channel memory is defined as the number of time samples for which any drug injected

at the time τ is no longer observed at any time t larger than τ + LTs. The memory is here

considered finite, such as ∀ t, τ ∈ R t ≤ τ + LTs =⇒ h(t, τ) = 0, and I(xN; yN) is the

mutual information between the random drug injection sequence xN and the random drug

reception sequence yN .

4.5.1 Drug Injection Sequence

The drug injection sequence consists of N time samples of the drug injection rate, such as

it is possible to write the drug injection sequence as xN = [x(nTs) | n = 0, . . . ,N − 1]. By

using the Dirac function, the drug injection rate x(t) can be expressed as a function of the
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drug injection sequence xN as follows:

x(t) =

N−1∑
n=0

xnδ(t − nTs) , (100)

where N is the length of the drug injection sequence xN . The drug injection rate is com-

posed of N Dirac functions, each delayed by n time samples, and weighted by the number

of injected nanoparticles at the time nTs. The drug injection sequence xN is subjected to

the two following constraints:

• the toxicity constraint, which limits the number of injected nanoparticle to a max-

imum allowed toxicity level. Beyond the toxicity level, the drug injection has an

adverse effect on the body. This constraint is written as follows:

∀n ∈ {0, . . . ,N − 1} xn ≤ An . (101)

• the average number of injected nanoparticles σ, which can be written as follows:

1
N

N−1∑
n=0

xn = σ . (102)

4.5.2 Drug Reception Sequence

The drug reception sequence is a sequence of M random variables
[
ym | m = 0, . . . ,M − 1

]
,

which represent the number of delivered nanoparticles during each the Ts-long m-th time

duration. It is shown here that the number of nanoparticles delivered during the time inter-

val [mTs, (m + 1) Ts[ ym, which is called the m-th drug reception sample, follows a Poisson

distribution with rate λm expressed as ym ∼ Pois(λm), where the rate λm is expressed as:

λm = ηmTs +

N−1∑
n=0

xnαn,m , (103)

with ηm the discrete drug leakage rate in the drug reception site at the m-th time sample (i.e.

ηm = η(mTs)), and:

αn,m =

(m+1)Ts∫
mTs

h(t, t − nTs)pr(t)dt . (104)
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where h(t, t − nTs) denotes the time-varying drug propagation probability with injection

time t − nTs and observation time t. In the following part of this section, the derivation

of the result in (103) is presented. The result is obtained in (103) by moving from the

continuous domain of Poisson processes to the discrete domain of Poisson distribution.

This is performed by building the Poisson distribution ym from the Poisson process y(t) as

the expected number of drug nanoparticle deliveries in the interval [mTs, (m + 1) Ts[. The

rate of ym is the integrated continuous rate of the inhomogeneous Poisson process y(t) in

the interval [mTs, (m + 1) Ts[ [74]. According to the expressions (87) and (105), this is

expressed as follows:

λm =

(m+1)Ts∫
mTs

λ(t)dt

=

(m+1)Ts∫
mTs

(
ηm +

∫ +∞

−∞

x(t − τ)pr(t)h(t, τ)dτ
)

dt , (105)

which can be simplified as follows with a discrete drug injection rate.

λm =

N−1∑
n=0

xn

ηmTs +

(m+1)Ts∫
mTs

pr(t)h(t, t − nTs)dt

 . (106)

Finally, by using the definition of the coefficients αn,m in (104), the following expression of

the rate λm is obtained:

λm = ηmTs +

N−1∑
n=0

xnαn,m . (107)

4.5.2.1 Capacity expression

The mutual information between the drug injection sequence xN and the drug reception

sequence yN used in (99) is as follows [75]:

I(xN; yN) = H(yN) − H(yN | xN) , (108)

where H(yN | xN) is the conditional entropy of the drug reception sequence defined as:

H(yN | xN) = −E
[
log

(
pyN |xN

)]
, (109)
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where pyN | xN is the conditional probability mass function of the discrete random variables

y1, y2, . . . , yM−1 of the drug reception sequence given the occurence of the discrete ran-

dom variables x1, x2, . . . , xM−1, and H(yN) is the marginal entropy of the drug reception

sequence:

H(yN) = −E
[
log

(
pyN

)]
, (110)

where pyN is the joint conditional probability mass function of the discrete random variables

y1, y2, . . . , yM−1 of the drug reception sequence. In the following, the derivation of the

conditional and marginal entropies of the drug reception sequence is presented.

4.5.2.2 Conditional Entropy

The conditional entropy is expressed in (109). Conditioned on the drug injection sequence,

the drug reception samples {ym; m = 0, . . . ,M − 1} are independent and have the probability

mass function pym | xN . It is then possible to write:

H(yN | xN) =

M−1∑
m=0

H(ym | xN) , (111)

where H(ym | xN) is the conditional entropy of the m-th drug reception sample given the

occurrence of the drug injection sequence xN . H(ym | xN) is by definition equal to the fol-

lowing [75]:

H(ym | xN) = − log
(
E

[
pym |xN

])
, (112)

where E [·] is the expectation operator, pym | xN denotes the conditional probability mass func-

tion of the m-th drug reception sample given the occurrence of the drug injection sequence

xN . By identification with the Lemma 1 obtained in [76],the conditional entropy H(yN | xN)

can be expressed as follows:

H(yN | xN) = −

M−1∑
m=0

E
[
λmTs log (λm)

]
+

M−1∑
m=0

E [λmTs] . (113)
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4.5.2.3 Marginal Entropy

The marginal entropy in (110) of the drug reception sequence is derived. The drug recep-

tion samples {ym; m = 0, . . . ,M − 1} are independent and have the probability mass func-

tion pym | xN . Therefore, the marginal entropy is H (yN) =
∑M−1

m=0 H(ym) , where H(ym) is the

marginal entropy of the m-th drug reception sample. H(ym | xN) is by definition equal to

H(ym) = − log
(
E

[
pym

])
where pym is the probability mass function of the m-th drug recep-

tion sequence.

By identification with the expression of the least-square estimator of Poisson-distributed

random variables performed in [76] by using semimartingale methods, and supposing that

the channel does not vary in time during Ts, the marginal entropy of the drug reception

sequence H (yN | xN) can be expressed as follows:

H (yN) = −

M−1∑
m=0

E
[
λ̂mTs log

(
λ̂m

)]
+

M−1∑
m=0

E [λmTs] , (114)

where λ̂m is the least-squares estimator of λm given the occurrence of the drug reception

sequence yN , i.e. λ̂m = E
[
λm | yN

]
. The least-squares estimator λ̂m of the rates λm can be

expressed as a function of the least-squares estimator x̂n of the drug injection samples xn,

as follows:

λ̂m =

N−1∑
n=0

x̂nαn,m + ηmTs , (115)

where the least-squares estimator x̂n of the drug injection samples xn is equal to the follow-

ing:

x̂n = E
[
xn | yN

]
, (116)

The expression of the mutual information I(xN; yN) is obtained by substituting in (108)

the drug injection sequence conditional and marginal entropies by their expressions (113)

and (114), respectively, as follows:

I(xN; yN) = Ts

M−1∑
m=0

E
[
λm log (λm)

]
− E

[
λ̂m log

(
λ̂m

)]
, (117)
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where λ̂m is the least-squares estimator of the rate λm given the drug reception sequence yN .

By using the notation proposed in [77] for the treatment of the single-input single-

output Poisson channel, the mutual information in (117) can be rewritten as the difference

between two quantities, where the first is larger than the second, as follows:

I(xN; yN) = (118)

Ts

M−1∑
m=0

ψm

N−1∑
n=0

xnαn,m

 − E

ψm

N−1∑
n=0

xnαn,m


−Ts

M−1∑
m=0

ψm

N−1∑
n=0

xnαn,m

 − E

ψm

N−1∑
n=0

x̂nαn,m

 ,
where the functions ψm(·) (m = 0, . . . ,M − 1) are defined as follows:

ψm(x) =
x

Bm

[
(ηm + Bm) log (ηm + Bm) − ηm log ηm

]
− (ηm + x) log (ηm + x) − ηm log ηm , (119)

where x is a variable of ηm, and Bm =
∑N−1

n=0 Anαn,m is the m-th drug reception sample

given the occurrence of a drug injection sequence at the maximum levels An (101) that

constrain it, and αn,m are the channel coefficients defined in (104). By identification with

the derivation in [77], the capacity is found to be closely bounded by the expression in (68)

where the coefficients pm are equal to pm = min
(

(1+sm)(1+sm)

essm
m

− sm, σ
)
, where sm is the ratio

between the reception noise and the average received number of drugs in the m-th sample,

which can be written as sm =
ηm
Bm

. Finally, the capacity of the delivery system is obtained

as:ave

C∞ = lim
N→+∞

1
Ts

CN . (120)

4.5.3 Spatial Capacity Numerical results
4.5.3.1 Effect of Blood Vessel Dimensions

Fig. 29(a)shows how the length of the blood vessel affects the performance of the PDDS

capacity. The longer the vessel is, the more dispersive the channel becomes, and therefore

the capacity of the channel is negatively affected. Fig. 29(c), shows how the radius of the
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Figure 29. The effect of the drug parameters, the vessel dimensions, and the toxic level on the capacity
of the PDDS channel.
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blood vessel affects the performance of the system capacity. When the length of the vessels

is long, the variance of the drug propagation probability increases, which creates a more

severe memory effect, and reduces the capacity of the channel. Similarly, when the radius

of the vessels increase, the mixing along the radial coordinate is reduced, which makes the

drug propagation probability more dispersive.

4.5.3.2 Effect of Blood Velocity

Fig. 29(b) shows how the length of the blood vessel affects the performance of the system

capacity. At this regime, when the blood velocity becomes high, the channel becomes more

dispersive, and therefore the capacity of the channel is affected. However, due to the Taylor

dispersion effect, the blood velocity can actually reduce the dispersion in the channel, and

produce the opposite observationin some conditions.

4.5.3.3 Effect of Diffusion Coefficient

Fig. 29(a), shows how the diffusion coefficient affects the performance of the system ca-

pacity. The higher the diffusion coefficient is, the more dispersive the channel becomes,

and therefore the capacity of the channel is affected. When the diffusion coefficient is high,

the drug disperses faster in the blood, causing a longer delay and higher memory effect.

4.6 Monte-Carlo Simulation of the PDDS

In this section, a simulation method to study the propagation of a drug nanoparticle in

the cardiovascular system with unsteady flow by introducing a Monte-Carlo simulation

method of the PDDS is presented. The deterministic impulse response model developed

in [57] has been validated by using finite-element simulation on COMSOL in [78]. For the

noise analysis of the PDDS, the kinetic Monte-Carlo technique [49] is used to observe the

random path of nanoparticles caused by random Brownian motion and validate it against

the developed stochastic model. The random Brownian motion is generated by the model

described in Section 4.4. In the kinetic Monte-Carlo technique, the path of nanoparticles

is simulated by assuming that every nanoparticle is a random walker affected by Brownian
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motion (diffusion) and by a randomly fluctuating velocity field (convection).A model is

proposed where parameters of the Brownian are directly related to the diffusion coefficient

of the nanoparticles, and the random velocity field is generated by assuming that the radial

and transversal components of the blood velocity field are correlated Gaussian random

variables. The objective of the simulation is to study the effect of the blood turbulence on

the movement of drug nanoparticles, and to compare these results with the analytical model

of drug propagation.

4.6.1 Monte-Carlo Nanoparticle Random Walk

The stochastic differential equation governing the displacements of the nanoparticles ac-

cording to the Langevin equations [79] describing the movement of a drug nanoparticle in

a fluid are dz(t) = Re {uz(z, r, t)} dt + Gz
√

2Ddt and dr(t) = Im {ur(z, r, t)} dt + Gr
√

2Ddt,

where D is the nanoparticle diffusion coefficient defined, uz(z, r, t) and ur(z, r, t) are the ax-

ial and the radial components of the random blood velocity process at time t in the point

with coordinates (z, r) respectively, Re {·} is the operator giving the real part, Im {·} is the

operator giving the imaginary part, Gz and Gr are independent standard normal random

variables.

4.6.2 Monte-Carlo Simulation Results

Fig. 30(a)- 30(c) compare the drug propagation probability obtained by using the analyt-

ical for the PDDS and the drug propagation probability obtained by kinetic Monte-Carlo

simulation. The results are obtained by placing nanoparticles in the injection point of the

blood vessel network, and the nanoparticles that arrive to the drug delivery site of the blood

vessel network are counted as the simulation time advances. Fig. 30(a)-Fig. 30(c) show the

topologies of the corresponding networks. A good agreement between the analytical model

and the kinetic Monte-Carlo results is observed. The drug propagation probability obtained

by kinetic Monte-Carlo simulation is noisy because of the discrete number of nanoparticles

and their Brownian motion.
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Figure 30. Comparison between the drug propagation probabilities obtained by the MC model and the
drug propagation probabilities obtained by the Monte-Carlo simulation for different delivery locations.

4.7 Conclusions

Particulate drug delivery systems (PDDS) aim to delivery a drug load to the parts of the

body where it is needed, at the right time and the right concentration levels, through the

use of drug nanoparticles that are able to penetrate inside the cells and unleash their drug

load. The analysis of the PDDS is crucial for the development of optimal drug delivery

formulations and techniques. The modeling of PDDSs allows the prediction of the locations

where drug nanoparticles propagate, their number, and the noisiness in their movement. It

has been shown in this chapter that the MC communication paradigm where the information

is conveyed through molecules enables a thorough analysis of the PDDS in the human

body. In fact, an MC model of the PDDS is developed, taking into account all the possible

physiological parameters of the system, such as the drug injection device, the propagation

in the intricate network of blood vessels, the time-variance and turbulence of the blood flow,

as well as the absorption of drug nanoparticles by the diseases cells through the ligand-

binding mechanisms.

Drug nanoparticles undergo many noise effects such as the injection noise, the blood

velocity turbulence, the ligand-binding noise, and the Brownian motion of nanoparticles.

In this chapter, these noise effects have been modeled through the MC paradigm where
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information is conveyed through the propagation of nanoparticles. These noise effects have

been modeled as interference in an MC system. The use of information theory was advo-

cated for the design of the PDDS. The analogy between the number of possible therapeutic

responses deliverable by the PDDS and the size of the alphabet in a communication system

was used. The PDDS was assessed as an efficient system if it is able to reliably deliver a

diverse set of therapeutic responses, depending on the stage and nature of the disease and

the individual specificities.

To our knowledge, this is the first work to propose the use of information theory in

the PDDS design. Other works were mainly based on deterministic and probabilistic anal-

ysis of the long-term drug distribution throughout the body. Our information-theoretical

approach can be applied to put into use high precision nanomedicine delivery, in contrast

with traditional medicine where the drug injection is not optimized with respect to the body

variabilities such as the blood flow, the ligand-binding kinetics, and their interaction.

The noise effects in the propagation of drug nanoparticles in the cardiovascular system

have been simulated by using kinetic Monte-Carlo simulations. The simulations show

a good agreement between the analytical model and the kinetic Monte-Carlo simulation

results. This study confirms that the MC paradigm can be conveniently used for the analysis

and optimization of the PDDS.

We suggest as future work to experimentally measure the distribution of drug nanopar-

ticles in the cardiovascular system at an accurate time and space scale. These experimental

results would be beneficial to validate the MC model. The existing experimental work on

the distribution of nanoparticles is constrained to study their space and time evolution on a

very large scale, in the order of hours and on the level of organs as a whole. We believe that

the advent of nanomedicine allows to control the drug injection at a much more accurate

resolution, and that therefore the distribution of nanoparticles should be studied in the order

of millimeters and seconds to develop a highly targeted PDDS.

The PDDS model makes it possible to engineer therapeutic solutions that are inspired
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by the naturally-occurring defense mechanisms that the body deploys to combat diseases

and anomalies in its functioning. The noise modeling is particularly important to the field

of cancer therapy, where the choice of low concentration of drug nanoparticles is made to

avoid toxic effect of the drugs, at the expense of the accuracy of the drug delivery. The

PDDS model provides quantitative models to find trade-offs between toxicity and drug

efficiency to facilitate cancer therapy. Ultimately, the MC paradigm can be used to create

bio-inspired molecular nanonetworks for the advanced nano-scale monitoring and healing

of the human body.
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CHAPTER 5

PHARMACOKINETIC MODELING USING MOLECULAR
COMMUNICATION

5.1 Motivation and Related Work

Targeted Drug Delivery Systems (TDDSs) [80] are cutting-edge therapeutic methods, which

aim at delivering the drug exactly where it is needed while minimizing the adverse effects

of the drug on the other healthy parts of the body, by using micro- or nano-sized drug-

loaded particles. The estimation of how the drug-loaded particles distribute within the

body, named biodistribution, is essential for TDDS engineering, and it is directly related to

the processes involved in the particle propagation, such as their advection and diffusion in

the blood stream, their absorption from surrounding tissues, and their chemical and physi-

cal interactions with other biomolecules present in the body. Although drug biodistribution

can be estimated empirically through clinical experiments, these are rarely performed be-

cause of the ethical and financial constraints they pose [81] and their specificity to each

individual subject.

Recent advances in biomaterials allow the engineering of drug particles with very spe-

cific chemical and geometric properties in order to provide a targeted drug delivery. To

benefit from these technological advances and study the properties of drug particles to

guarantee an optimal biodistribution, the aforementioned particle propagation processes

have to be modeled through the study of the so-called drug pharmacokinetics. The most

successful existing TDDS pharmacokinetic models are based on the multi-compartmental

approach [82], where large portions of the human body are considered as single compart-

ments, with homogeneous chemical and physical properties. The pharmacokinetics in one

compartment is commonly described through first-order differential equations, and the evo-

lution of the pharmacokinetics is obtained for a time scale in the order of hours. These

models include: i) TMDD (Target-Mediated Drug Disposition) [20], where the equations
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are based on a very limited number of parameters that are empirically derived; ii) PK/PD

(Pharmacokinetics and Pharmacodynamics) [83], where the equation parameters are statis-

tically derived from experimental work, and the pharmacokinetics is modeled only locally

within a spatial scale of a cell; iii) PBPK (physiologically-based pharmacokinetics) [84],

where pharmacokinetics is modeled globally for the whole body but by considering each

organ as a single compartment where the drug is homogeneously distributed.

Especially, nanomedicine-enabled TDDSs require new pharmacokinetic models where

the particle propagation processes within the body are described in greater precision at a

much smaller time and space resolution, and in a tractable manner, whereas the aforemen-

tioned models account for particle propagation only at the spatial resolution of organs and

the time scale of days. Moreover, the existing models are not sufficiently scalable and are

not customizable to the patients and their specific diseases [82].

To tackle the aforementioned problems, we propose a TDDS pharmacokinetic model

based on the abstraction of Molecular Communication (MC), a recently developed paradigm

in communication theory that defines information exchange through the emission, propa-

gation, and reception of molecules. In [57], we developed an MC model to calculate the

time-varying blood velocity in any location of the cardiovascular system, and to predict the

propagation of the drug-loaded particles due to advection and diffusion in the blood flow.

In this chapter, by stemming from our previous work, we develop a TDDS pharmacoki-

netic model able to predict the propagation of the particles by taking into account other

specific physicochemical processes, as well as abnormal health conditions. Through the

MC paradigm, we consider the following physicochemical processes:

• The advection process, which represents the transport of particles due to the blood

velocity.

• The diffusion process, which corresponds to the Brownian motion of particles

• The absorption process, which quantifies the particles absorption through tissues
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surrounding the blood vessels [85].

• The reaction process, which is a consequence of the degradation of particles in the

blood [86].

• The adhesion process, which accounts for other biomolecules binding to the drug-

loaded particles. The adhesion process is one of the main adverse effects to the

performance of the TDDSs [87].

In the proposed pharmacokinetic model, we also account for the effects on the drug

pharmacokinetics of cardiovascular diseases, which include blood vessel leakage, e.g., due

to tumors, and rigidity, e.g., due to arteriosclerosis. These effects are analytically con-

sidered in the proposed pharmacokinetic model, and are shown to greatly affect the drug

particle distribution through numerical evaluations of the pharmacokinetic model and the

biodistribution estimation.

In the proposed pharmacokinetic model, we also account for the effects on the drug

pharmacokinetics of cardiovascular diseases, which include blood vessel leakage, e.g., due

to tumors, and rigidity, e.g., due to arteriosclerosis. These effects are analytically con-

sidered in the proposed pharmacokinetic model, and are shown to greatly affect the drug

particle distribution through numerical evaluations of the pharmacokinetic model and the

biodistribution estimation.

By stemming from the proposed MC-based pharmacokinetic model, we propose a

method to estimate the drug biodistribution. We propose to characterize the presence of the

drug at the delivery location through communication engineering metrics, namely, channel

delay and path loss, analytically derived from the proposed pharmacokinetic model. The

channel delay corresponds to the time needed by the drug particles to reach their peak

concentration at the delivery location after they are injected, while the channel path loss

is the ratio of the drug particles that effectively reach the delivery location over the drug

particles that were initially injected. In addition, we also demonstrate that the proposed
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pharmacokinetic model allows to analytically estimate the drug accumulation in the rest of

the body.

The proposed MC-based pharmacokinetic model is validated through finite-element

simulations on COMSOL, which consider 3D Navier-Stokes and advection-diffusion-reaction

equations to simulate the drug propagation in a time-varying blood flow through a 3D

model of a blood arterial network. The proposed MC-based pharmacokinetic model proves

to be in good agreement with the results of the simulation, therefore reproducing similar

results with analytical expressions, which do not require the computational complexity of

the finite-element simulations. Additionally, numerical results are provided for the biodis-

tribution estimation in different health scenarios, namely, in the presence of arteriosclerosis

and tumor-induced blood blood vessel leakage. Through these results, we show that the

transport and kinetic properties are important factors influencing the pharmacokinetics of

the drug-loaded particles.

Finally, by stemming from the proposed model, we detail a procedure to analytically

express the optimal drug injection rate given a target drug delivery rate. For this, we sup-

pose that the healing of the disease requires an objective drug delivery rate, and that the

drug injection and delivery locations are known. The proposed pharmacokinetic model is

then applied to analytically obtain the optimal drug injection rate.

The rest of the paper is organized as follows. In Section 5.2, we mathematically de-

scribe the pharmacokinetic model based on the MC abstraction of the physicochemical

processes in the drug-loaded particle propagation, namely, advection, diffusion, reaction,

absorption, and adhesion. Moreover, we incorporate in the pharmacokinetic model possible

cardiovascular diseases affecting the blood flow. In Section 5.3, we obtain the biodistribu-

tion estimation of the particles through the communication engineering metrics of channel

path loss and delay, and the expressions to compute the drug accumulation in the rest of

the body. Numerical results are provided for the biodistribution in different scenarios. In

Section 5.4, the validation of the MC-based pharmacokinetic model with multiphysics
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finite element simulation is presented. In Section 5.5, we apply the MC-based pharma-

cokinetic model to find the optimal drug injection rate that would achieve an objective

drug delivery rate at the delivery location. Finally, Section 6.8 concludes the paper with

comments about the validity of the model and the various factors influencing the perfor-

mance of TDDSs.

5.2 MC-based Pharmacokinetic Model

In this section, we mathematically describe the pharmacokinetic model of a TDDS

based on the analytical MC channel abstraction, which considers additional physicochemi-

cal processes in the particle propagation from the injection location to the delivery location,

in addition to the advection and diffusion processes already considered in [57].

The network of blood vessels is abstracted here as an MC network. Fig. 31 illustrates

the physicochemical processes in a blood network consisting of several blood vessels. un(t)

denotes the blood velocity in a blood vessel n, and t is the time variable. The drug prop-

agates in this blood network subject to an absorption with rate ρn, reaction with rate µn,

adhesion with an adsorption rate k+ and a desorption rate k−, diffusion with a diffusion co-

efficient D, and advection driven by the blood velocity. The drug propagation is abstracted

as an MC channel, and completely characterizes the relationship between the drug injection

rate and the drug delivery rate. The drug injection rate is the MC signal transmitted at the

inlet of the blood vessel and the drug delivery rate is the MC signal received at the outlet of

the blood vessel. This is achieved by a time-varying impulse response h(ρn,µn)
(n) (t, τ), where

τ is a time variable, for every blood vessel n (n = 1, 2, . . . , 7). The MC link channels are

cascaded to obtain an MC path, which provides the relationship between the drug injection

rate x(t) and the drug delivery rate y(t), through the time-varying impulse response for the

path channel, denoted, e.g., by h(ρ1,µ1,ρ2,µ2,ρ4,µ4)
(1,2,4) (t, τ) for the cascade of MC links 1, 2, and 4

as shown in Fig. 31.
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In Section 5.2.1, we present how a blood vessel is abstracted as an MC link. In Sec-

tion 5.2.2, we describe how the physicochemical processes between the drug particles and

the body can be modeled by combining MC links. Finally, in Section 5.2.3, the modeling

of cardiovascular diseases using equivalent circuits is proposed.
5.2.1 Molecular Communication Link Model

We found in [57] that the drug injection rate x(t) and the drug delivery rate y(t) in the blood

vessel n are related mathematically by the following expression:

y(t) =

∫ +∞

−∞

x(τ)h(ρn,µn)
(n) (t, τ)dτ . (121)

Due to the fluctuations in the blood flow, the impulse response of the system depends

on the state of the blood flow at the time of the injection, therefore the system is not linear

time-invariant (LTI). The response of non-LTI systems cannot be expressed in the form of a

convolution operation. For the aforementioned reasons, the expression in (121) is different

from a convolution. We derive the analytical expression of the time-varying impulse

response of the MC link n, as follows:

h(ρn,µn)
(n) (t, τ) =

exp
(
−

(ln−mn(t,τ))2

2σ2
n(t,τ) − µn(t − τ)

)
√

2πσ2
n(t, τ)

, (122)

where:

• mn(t, τ) is a function of apparent velocity vn(t) as follows:

mn(t, τ) =

∫ t

τ

vn(t′)dt′ , (123)

where t′ is the time integration variable.

• σ2
n(t, τ) is a function of the effective diffusivity Dn(t) as follows:

σ2
n(t, τ) = 2

∫ t

τ

Dn(t′)dt′ . (124)

• µn is a characteristic of the reaction process, and represents the rate of reaction be-

tween the particles and the blood.
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Figure 31. Scheme of the MC modeling of TDDSs pharmacokinetics.
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In the following, we provide the expression of the apparent velocity vn(t) and the effective

diffusivity Dn(t) for advection-diffusion (Section 5.2.1.1), absorption (Section 5.2.1.2), and

adhesion (Section 5.2.1.3).

5.2.1.1 Advection-diffusion Case (No Reaction)

When the reaction process is absent, and only the advection-diffusion is occurring, the

apparent velocity in the case of no reaction vnone
n (t) and the effective diffusivity in the case

of no reaction Dnone
n (t) are: 

vnone
n (t) = un(t)

Dnone
n (t) = D +

u2
n(t)r2

n
192D ,

(125)

which is a result we derived in [57].

5.2.1.2 Absorption Case

When there is absorption due to the tissues that surround the blood network, the apparent

velocity in the case of absorption vabsorption
n (t) and the effective diffusivity in the case of

absorption Dabsorption
n (t) are [88]:

vabsorption
n (t) =

(
1 + 2

15ρn

)
un(t)

Dabsorption
n (t) = D +

un
2(t)r2

n
192D

(
1 − 4

15ρn

)
.

(126)

5.2.1.3 Adhesion Case

When adhesion to the proteins in the blood plasma or to the blood vessel walls is occurring,

the apparent velocity in the case of adhesion vadhesion
n (t) and the effective diffusivity in the

case of adhesion Dadhesion
n (t) are [89]

vadhesion
n (t) = 1

1+ k+

k−
un(t)

Dadhesion
n (t) =

r2
nu2

n(t)
48D

44r2
n

(
k+

k−

)2
+12r2

n
k+

k− +r3
n(

rn+2 k+

k−

)3

+
2u2

n(t)r2
n

k+

k−

k−
(
rn+2 k+

k−

)3 .

(127)

Section 5.4.2 provides numerical values for the cross-sectional average blood velocities

of three blood vessels, obtained using the transmission line method described in [57].
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5.2.2 Molecular Communication Path Model

The MC channel model of a path (n; n = 1 . . .N) where n is the index of a link n, is obtained

by using the Harmonic Transfer Matrix function HT M{·} and its inverse HT M−1{·} [57]

y(t) =

∫ +∞

−∞

x(τ)h(ρn,µn;n=1...N)
(n;n=1...N) (t, τ)dτ , (128)

where the time-varying impulse response of the path h(ρn,µn;n=1...N)
(n;n=1...N) is expressed as follows:

h(ρn,µn;n=1...N)
(n;n=1...N) = (129)

HT M−1

 n=1∏
n=N

HT M
{
h(ρn,µn)

(n) (t, τ)
} , (130)

Through the HTM method [35], we can find analytical solutions of the end-to-end impulse

response of TDDSs, as opposed to numerical solutions by finite-element models.

5.2.3 Disease Models with Equivalent Circuits

In this section, we present an equivalent circuit modeling of cardiovascular diseases, in-

cluding arteriosclerosis (rigid blood vessel model), and blood vessel leakage (leaky blood

vessel model).

A blood vessel is considered as a cylindrical elastic tube with radius rn and length ln, and

modeled as an electrical circuit, whose electrical components are related to the geometry

of the blood vessels. A healthy blood vessel n possesses three electrical components. First,

a resistance Rn, which is related to the blood viscosity and the diameter of the blood vessel.

Second, an inductance Ln, which is related to the blood inertia, that is how a difference in

blood pressure causes a difference in blood flow. Third, a capacitance Cn, which measures

the blood vessel elasticity. We give below the expression of the electrical components based

on their physiology [57].

The resistance of the blood vessel n is expressed as follows:

Rn =
8ν
πlnr4

n
, (131)

where ν is the blood viscosity.
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The inductance of the blood vessel n is expressed as follows:

Ln =
η

πlnr2
n
, (132)

where η is the blood density.

5.2.3.1 Rigid Vessel Model

The elasticity of a blood vessel is an important parameter in the success of drug delivery.

There have been studies to show how abnormal elasticity affects drug propagation [90].

Blood blood vessels can become rigid because of aging and diseases such as arteriosclero-

sis [91].

For a rigid blood vessel, we model the change in elasticity using an arterial elasticity

factor, which measures the ratio between normal elasticity and rigid elasticity. We retain

the same electrical components as in the healthy blood vessel model, except for the capac-

itance, which is now equal to:

Cn =
πrn

2

FC(a1 exp(−a2rn) + a3)
, (133)

where FC is the arterial elasticity factor (FC = 1 for a healthy blood vessel, FC = 0 for

a completely rigid blood vessel). a1 = 1.34 × 107g/(s2.cm), a2 = 22.53cm−1, and a3 =

5.77 × 105g/(s2.cm) are statistical parameters obtained from physiological measurements

[37].

5.2.3.2 Leaky Vessel Model

The leakage of a blood vessel is modeled by an equivalent conductance, which is related

to how easy it is for a fluid to leak from the blood vessel. We retain the same electrical

components as for the healthy blood vessel case, but we add an additional conductance Gn

to model the blood vessel leakiness:

Gn =
FL

Rn
, (134)

where FL is leakiness factor, which compares the leakage to the conductance of the healthy

blood vessel (inverse of the resistance), and Rn is the resistance of the blood vessel.
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Figure 32. Equivalent electrical circuits for a blood vessel in different conditions.
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Figure 33. Blood velocities at a tree of small blood vessels in a healthy condition.
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Figure 34. Blood velocities at a tree of small blood vessels with a branch suffering from blood vessel
leakage.
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Figure 35. Blood velocities at a tree of small blood vessels with a branch suffering from arteriosclerosis.
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Figure 36. Effect of the diffusion coefficient D and the absorption rate ρn on the channel delay.

Fig. 32 shows the equivalent electrical circuit components for a blood vessel in dif-

ferent conditions such as a healthy condition, arteriosclerosis, and blood vessel leakage.

By defining electrical equivalents of diseased blood vessels, the blood velocities are cal-

culated by using the transmission line theory method presented in [57], after substituting

the expressions of the conductances and the capacitances for healthy blood vessels with the

expressions in (133) and (134), respectively. For the numerical results, the inner iliac blood

vessel [55] was chosen, and the properties of three of its children blood vessels, denoted as

(3, 6, 7) in Fig. 33, Fig. 34, and Fig. 35, respectively, have been modified according to the

considered disease condition.

In Fig. 33, we observe that in a healthy arterial tree, the blood velocity tends to dampen

slowly as we go farther from the root of the blood vessel. In the case of a blood vessel

leakage, as illustrated in Fig. 34, this trend is not observed, where we can see that the

blood velocity may increase in some daughter blood vessels, since the resistance is reduced.

Fig. 35 shows the extreme case where a portion of the arterial tree is affected by a severe

arteriosclerosis. In that case, the diseased blood vessels exhibit a highly oscillatory blood

flow.

The method introduced in this section can be applied to model the drug propagation in

any location of the arterial network.
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5.3 Biodistribution Estimation

The biodistribution is the study of the location and the quantity of the drug that is

accumulated in the delivery location and the rest of the body, whether in the blood vessels,

their surround tissues, or reacting with elements of the blood plasma. In this section, we

estimate the biodistribution of TDDSs using the MC paradigm through the definition of

two MC metrics, namely, the channel delay and the channel path loss. In Section 5.3.1, the

channel delay is the time needed by the drug particles to reach their peak concentration at

the delivery location after they are injected in the body. In Section 5.3.2, the channel path

loss is the proportion of the injected particles that reach the delivery location despite the

blood vessels branching, reaction, adhesion, and absorption. Finally, in Section 5.3.3, the

drug accumulation in the rest of the body is expressed analytically using the MC model.
5.3.1 Channel Delay to the Delivery Location

We define the delay for a TDDS as the time required by injected molecules to reach their

peak concentration at the delivery location, which is a definition typically used in biodis-

tribution. Another definition of delay used in biodistribution studies is the half-life of a

drug [92], which is only meaningful for drugs undergoing an exponential decay. The def-

inition we choose is more general than half-life, and can provide more information about

the toxicity, potency, and elimination rate of the drug, since these properties depend on the

overall time spent by the majority of the molecules between the injection location and the

delivery location.

We express the channel delay tdelay for the path (n; n = 1 . . .N) as

tdelay =
1
T

∫ T

0
arg max

t>τ
h(ρn,µn;n=1...N)

(n;n=1...N) (t + τ, τ)dτ , (135)

where h(ρn,µn)
(n;n=1...N)(t, τ) is the time-varying impulse response with injection starting at the time

τ, and T is the heartbeat period.

Since the channel is time-varying and the blood flow changes periodically, the injected

drug particles will be delivered with a different channel delay at the delivery location de-

pending on the blood velocity that was experienced by the body when they were injected.
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We consider the ambiguity in knowing the blood velocity at the time of injection by av-

eraging over the channel delays for all possible blood velocity values that the body may

experience.

The definition of the delay as the average is only acceptable for long propagation times.

However, it is acceptable to use the delay as the average value to compare several drug

delivery systems that are within the same flow, and propagation length conditions. The

standard deviation (or error) in the delay calculation can be highly variable for the scenario

where the propagation time is low. If the blood velocity period is higher than the time it

takes for the molecules to reach the delivery location, then the error can be as much as in

the order of 100%. However, if the blood velocity period is small compared with the delay,

then the error is negligible, which means that the injection time is not critical.

5.3.2 Channel Path Loss at the Delivery Location

We define the channel path loss for the path (n; n = 1 . . .N) as

L =10 log10

(
1 −

∫ +∞

0
h(ρn,µn;n=1...N)

(n;n=1...N) (t, 0)dt
)
, (136)

where h(ρn,µn)
(n;n=1...N)(t, 0) is the time-varying impulse response, which we defined in Sec-

tion 5.2.2 with injection starting at the time τ = 0. This relationship comes from the

fact that the impulse response is the probability density of a single particle arriving at a

specific location and time. The log-scale is used because about half of the particles are

lost at every blood vessel bifurcation, which makes the particle loss follow an exponential

trend. In Fig. 36, we see the effect of the blood velocity, the drug diffusion coefficient and

the reaction rate on the channel delay. In the numerically evaluated scenario in Fig. 37 ,

we observe that the increase in the drug diffusion coefficient contributes in increasing the

delay of the channel, while the effect of the absorption rate contributes in decreasing the

delay.

In Fig. 37, we observe that reaction and absorption have similar consequences on the

channel path loss. For the absorption, we see that the higher the absorption rate the smaller
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Figure 37. Effect of the absorption rate (ρn) and the reaction rate (µn) on the path loss.

the delay, which may seem counterintuitive. The reason behind the reduction in delay for

increased absorption is that the absorption reduces the number of particles in the blood that

are in proximity of the walls, which are the slowest moving particles, thus increasing the

average velocity of all the particles.

5.3.3 Drug Accumulation in the Rest of the Body

Using the time-varying impulse response, we can calculate the proportions of the drug

particles that are either still in the blood, have been absorbed by the surrounding tissues, or

have reacted with the blood plasma.

We can express the proportion of drug particles that have been absorbed as follows:

dabsorbed =
r2

N

r2
1

(∫ +∞

0
h(0,0;n=1...N)

(n;n=1...N) (t, 0)dt

−

∫ +∞

0
h(0,µn;n=1...N)

(n;n=1...N) (t, 0)dt
)
. (137)

Similarly, the proportion of drug particles that have reacted can be expressed as follows,

dreacted =
r2

N

r2
1

(∫ +∞

0
h(0,0;n=1...N)

(n;n=1...N) (t, 0)dt

−

∫ +∞

0
h(0,µn;n=1...N)

(n;n=1...N) (t, 0)dt
)
. (138)
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Figure 38. Effect of cardiovascular diseases on drug distribution.

Finally, the proportion of drug particles that remain in the blood is equal to the follow-

ing:

dblood =
r2

N

r2
1

(∫ +∞

0
h(0,0;n=1...N)

(n;n=1...N) (t, 0)dt (139)

−

∫ +∞

0
h(ρn,µn;n=1...N)

(n;n=1...N) (t, 0)dt
)
. (140)

Therefore, we can use the MC paradigm to predict where the drug is going to accumu-

late based on the physiological parameters of the drug delivery system and the body. As

presented in Fig. 38, the blood vessel conditions cause some variance in the biodistribution.

This is moderately important in leaky blood vessels, but is very important in the case of

blood vessels affected by arteriosclerosis.

5.4 Multiphysics Finite-Element Validation

In order to obtain a pharmacokinetic model of TDDSs, we made the following assumptions:

continuous concentration at the bifurcation, Poiseuille flow, Taylor dispersion approxima-

tion, perfectly cylindrical geometry, and infinite-length blood vessels. Using finite-element
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analysis, the developed model is validated realistically in a 3D geometry and assuming

physical equations in their full forms. In this section, we present the validation of the MC

model of TDDSs by simulation using finite-element analysis. We describe the geometry

of the simulated system, its governing physical equations, and how the parameters of the

analytical model have been mapped to parameters of the finite-element analysis.

Finite element analysis is a numerical method used to solve partial differential equa-

tions [9] that underlie the behavior of complex physical systems, including mechanical and

chemical transport systems. Finite element analysis has several advan- tages compared

with analytical models. First, finite element analysis allows to simulate objects of arbitrar-

ily complex 3D geometry. This is especially required for biological objects such as blood

vessels which have an imperfectly cylindrical shape and bifurcation shapes. Second, finite

element analysis makes it possible to simulate the interaction of different physical phenom-

ena, such as the interaction of the blood vessel walls, the blood flow, which is governed by

fluid mechanics, and the chemical transport of drugs. The validation is carried out using

COMSOL®1, a finite element simulation software package.

The following aspects of a drug delivery systems are considered in the simulation as

follows:

• Blood flow: the validation is performed using a 3D model of a blood arterial network

under realistic conditions. The blood flow, which is the main driving force of the

drug propagation, is simulated using the 3D Navier-Stokes equations in the station-

ary domain. In contrast with existing pharmacokinetic models which are based on

unrealistic assumption of having a constant blood flow [93], the drug is propagated

through a time-varying blood flow. The blood flow boundary conditions in the ar-

terial networks are estimated based on the realistic transmission line theory which

provides results in very good agreement with MRI measurements of blood flow in a

human [57].
1COMSOL® is a registered trademarks of COMSOL AB.
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• Geometry: in the simulation, we assume cylindrically-shaped small blood vessels,

which is in agreement with the physiological observations [94]. Large blood vessels

and anomalously shaped blood vessels can be considered with little modifications.

• Drug transport: Through the COMSOL simulation, we observe that the MC model

based on Taylor dispersion is a good approximation of particle transport in blood and

that, therefore, higher-order approximations [95] which will make the expression of

the analytical solution more complex are not needed.

• Drug kinetic interactions: the binding is considered by adding a linear reaction term

to the 3D advection-diffusion equation. The absorption is simulated as a boundary

condition on the blood vessel walls where the particles are not perfectly bouncing

but proportionally lost at the surface. The linear first order kinetics for binding and

absorption are common for particles [96]. We assume that no other kind of binding

occurs and that particles are at a sufficiently low concentration to avoid non-linear

binding kinetics.

5.4.1 Topology

For the numerical evaluation of the model, the topology information was derived from the

MRI scan of a young male individual, which is available from [55]. However, the available

MRI scan anatomical information only covers the large blood vessels. An algorithm that

represents the small blood vessels as a fractal tree rooted in the extremity of the large blood

vessels was used to obtain the topology of the studied area, in a similar way as in [57]. The

numerical values and structure of the topology are listed in this chapter and included in

Table 2 to simplify the reproduction of the results. In fact, a blood network was considered,

consisting of interconnected blood vessels n, where n is the blood vessel index (n = 1 . . . 7).

The parent blood vessel 1 bifurcates into two blood vessels, the daughter blood vessel 2 and

the daughter blood vessel 3, and so on. The blood vessel n has a radius rn and a length ln, for

n = 1 . . . 7. We have r1 = 0.5 mm, r2 = 0.45 mm, r3 = 0.3 mm, r4 = 0.40 mm, r5 = 0.23 mm,
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(a) t = 46 ms. (b) t = 92 ms.

(c) t = 138 ms. (d) t = 184 ms.

Figure 39. Evolution of the drug propagation in a tree of blood vessels showing the transport of the
injected drug particles from the inlet of the tree of blood vessels to the outlets of the branches, at
different times t.

r6 = 0.27 mm, and r7 = 0.18 mm for the radii, and l1 = 25 mm, l2 = 22.5 mm, l3 = 15 mm,

l4 = 20 mm, l5 = 11.5 mm, l6 = 13.5 mm, l7 = 9 mm. These dimensions are chosen to be

physiologically plausible [55]. According to the physiological data about the size of blood

vessels, all types of veins and blood vessels have an interior radius of the blood vessels that

is very small compared to the length. This is supported quantitatively in the human and

animal physiology literature such as in [55]. In particular, the work in [55] mentions that

the length of blood vessels is 25 times the size of their diameters with a standard deviation

equal to 5. This work also uses straight cylinders to model blood propagation in blood

vessels, which occurs at a faster scale than drug diffusion.
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Table 2. Blood network boundary conditions numerical values

k 0 1 2 3
qk,1 1.3 · 10−4 2.9 · 10−3 −1.8 · 10−4 1.6 · 10−5

pk,1 1.3 · 10−4 1.7 · 10−4 5.0 · 10−5 −6.3 · 10−5

qk,1 1.3 · 10−4 2.9 · 10−3 −1.8 · 10−4 1.6 · 10−5

pk,2 1.3 · 10−4 1.7 · 10−4 4.9 · 10−5 −6.2 · 10−5

qk,2 1.3 · 10−4 2.8 · 10−3 −1.7 · 10−4 1.6 · 10−5

pk,3 7.3 · 10−5 9.6 · 10−5 2.8 · 10−5 −3.5 · 10−5

qk,3 7.3 · 10−5 1.6 · 10−3 −9.8 · 10−5 8.8 · 10−6

pk,4 1.3 · 10−4 1.7 · 10−4 4.9 · 10−5 −6.1 · 10−5

qk,4 1.3 · 10−4 2.8 · 10−3 −1.7 · 10−4 1.5 · 10−5

pk,5 7.2 · 10−5 9.5 · 10−5 2.7 · 10−5 −3.5 · 10−5

qk,5 7.2 · 10−5 1.6 · 10−3 −9.6 · 10−5 8.6 · 10−6

pk,6 7.2 · 10−5 9.5 · 10−5 2.7 · 10−5 −3.5 · 10−5

qk,6 7.2 · 10−5 1.6 · 10−3 −9.6 · 10−5 8.6 · 10−6

pk,7 4.0 · 10−5 5.3 · 10−5 1.5 · 10−5 −1.9 · 10−5

qk,7 4.0 · 10−5 8.9 · 10−4 −5.4 · 10−5 4.9 · 10−6

5.4.2 Blood Velocity Boundary Conditions

The multiphysics finite-element simulation requires the definition of boundary conditions,

which are values defined at the surfaces of the blood network, to find the numerical solu-

tions that satisfy the physical equations. We use five boundary conditions which are defined

at the inlet (n = 1) and the outlets (n = 4, 5, 6, 7) of the blood network as shown in Fig 39.

Thus, there are five boundary conditions which are the blood velocity u1(t) at the inlet of

the network, and the blood velocities un(t) for the blood vessels n, for n = 4, 5, 6, 7, re-

spectively. The numerical values for the boundary conditions have been obtained using the

transmission line model developed in [57]. Since the boundary conditions are time-varying

and periodic, we express them in terms of their Fourier series decomposition as follows:

un(t) =

K−1∑
k=0

pk,n sin(kω0t) + qk,n cos(kω0t) , (141)

where ω0 = 2π/T is the radial sampling frequency, K is the number of samples, and the

coefficients {pk,n; k = 0 . . .K − 1} and {qk,n; k = 0 . . .K − 1} are the even and odd Fourier

coefficients, respectively.
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5.4.3 Drug Propagation Initial Conditions

The drug propagation initial conditions describe the initial values of the drug concentration

in the blood network at time t. We express the initial drug concentration c(x1, y1, z1, t) in

the blood vessel n as a function of the Cartesian coordinates, with the origin at the center

of the inlet of the blood vessel 1, and the ~x1 axis along the longitude of the blood vessel.

We approximate the drug injection impulse with a Gaussian function with a very small

variance, which we can write as follows:

c(x1, y1, z1, t) =
e
−

x2
1

2σ2
1√

2πσ2
1

c0 , (142)

where x1 is the Cartesian coordinate along the longitude of the blood vessel 1, σ1 is the

standard deviation of the impulse, and c0 is the initial concentration of particles. The

justification of a drug injection as a Gaussian function rather than a Dirac delta function

is essential to obtain the resolution of partial differential equations using using a finite-

element methods solver [97].

5.4.4 Validation Results

The impulse responses h(ρn,µn;n=1...N)
(n;n=1...N) (t, τ) are evaluated at the outlets of the blood vessels n

where n = 1 . . . 3. We evaluate the impulse response h(ρn,µn)
(n) (t, τ) as:

h(ρn,µn;n=1...N)
(n;n=1...N) (t, τ) (143)

=
1

S On

∫
M(x,y,zn)∈On

c(x, y, zn, t)dxdydz ,

where On denotes the outlet of the blood vessel n, S On is the surface area of On, M(x, y, zn)

is a point in On, and c(x, y, zn, t) is the concentration at the time instant t and the point with

the coordinates (x, y, zn).

The simulations were performed using COMSOL on a desktop machine with a total

computation time of 2 h 57 min to build the map of blood velocity and for the propagation of

drug particles, for a simulation duration Tsim = 0.25 s. Table 2 lists the Fourier coefficients

that have been used in the multiphysics finite-element calculations.
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Figure 40. Comparison between the impulse responses obtained by the MC model and the impulse
responses obtained by the multiphysics finite-element simulation technique for different delivery loca-
tions at the outlet of the blood vessels 1, 4, and 5, respectively.

In Fig. 40, we compare the impulse responses obtained by multiphysics finite-element

simulation with the analytical results obtained using the MC model described in Sec-

tion 5.2, where we use the following values for the diffusion coefficient D = 10−8 m2/s

and the absorption rates (ρn = 1e − 5; n = 1 . . . 7). We compare the results for all three

blood vessels 1, 4, and 5, and we notice in the three cases that there is good agreement

between the values generated through the simulation and the model.

5.5 Drug Injection Optimization

In this section, we aim to propose a solution to the optimization of the drug injection in or-

der to achieve a desired drug delivery rate, based on the MC-based pharmacokinetic model

presented in Section 5.2. In order to obtain efficient drug delivery systems, the timing and

location of the drug particles are crucial. The diseased region needs to receive the particles

at the right time and in the right quantity. When the particles are injected by systemic ad-

ministration, the drug particles can be lost in blood vessel bifurcations, absorbed by blood

vessels, and mixed with the blood due to diffusion. Fig. 41 shows a scheme of the injection

rate optimization, where, starting from the desired delivery rate, an optimal injection rate
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Figure 41. Scheme of the injection rate rate optimization for a desired drug delivery rate.

is found giving exactly the desired delivery rate with minimal error.

In the following, we present a method to find the optimal inject rate based on the de-

sired drug delivery rate, the physiological parameters of the body, the drug properties, the

injection location and the delivery location.

We consider a disease that requires a specific drug delivery rate that will make the

healing effective, with just a minimal number of drug particles, and below the level that

causes toxicity. We suppose that a desired drug injection rate is given by a time-varying

function x(t), which describes the drug concentration rate at every time t in the injection

location.

Using the pharmacokinetic model in Section 5.2, we obtain a channel model character-

ized by a time-varying impulse response h(ρn,µn;n=1...N)
(n;n=1...N) (t, τ) which relates the drug injection

rate x(t) to the drug delivery rate y(t), by the following relationship:

y(t) =

∫ +∞

−∞

h(ρn,µn;n=1...N)
(n;n=1...N) (t, τ)x(τ)dτ . (144)

Here, our objective is to find the optimal drug injection rate x∗(t), such that the obtained

drug delivery rate y∗(t) is as close as possible to the drug delivery rate y(t). This is expressed
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by:

x∗(t) = arg min
x(t)
‖y(t) − y∗(t)‖ . (145)

Using the time-varying impulse response, the previous expression becomes:

x∗(t) = (146)

arg min
x(t)

∥∥∥∥∥∥
∫ +∞

−∞

h(ρn,µn;n=1...N)
(n;n=1...N) (t, τ)x(τ)dτ − y∗(t)

∥∥∥∥∥∥ ,
where h(ρn,µn;n=1...N)

(n;n=1...N) (t, τ) is the time-varying impulse response that characterizes the drug

propagation from the injection location to the delivery location.

y j is defined as follows:

y j =

∫ jTs

0
h(ρn,µn;n=1...N)

(n;n=1...N) (t j, τ)x(τ)dτ . (147)

xi is defined as:

xi = x(iTs) , (148)

where i, j = 1 . . .K, K is the number of samples, and Ts is the sampling period. With

this notation, we can write:

y j =

j∑
i=1

xi

∫ iTs

(i−1)Ts

h(ρn,µn;n=1...N)
(n;n=1...N) ( jTs, τ)dτ . (149)

We define the channel coefficients h(ρn,µn;n=1...N)
i, j as follows:

h(ρn,µn;n=1...N)
i, j =

∫ iTs

(i−1)Ts

h(ρn,µn;n=1...N)
(n;n=1...N) (ti, τ)dτ . (150)

Therefore, we get the following expression:

y j =

j∑
i=1

xih
(ρn,µn;n=1...N)
i, j . (151)

Thus, the problem can be written in matrix notation as

y = H(ρn,µn;n=1...N)
(n;n=1...N) x , (152)

where y =
[
y j; j = 1 . . .K

]′
is a K-dimensional vector whose elements are samples of the

desired delivery rate, x = [xi; i = 1 . . .K]′ is a K-dimensional vector whose elements are
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samples of the optimal injection rate, and H(ρn,µn;n=1...N)
(n;n=1...N) is the square matrix of size K-by-K,

whose components are defined in (150), and [.]′ is the vector transpose operator.

The matrix H(ρn,µn;n=1...N)
(n;n=1...N) is supposed to be invertible. In case the matrix is not invertible,

the linear matrix inequality approach as proposed in [98] can be directly adapted to the MC

model to find the optimal injection rate.

We define the vector x∗ = [xi; i = 1 . . .K]′ as follows:

x∗ =
{
H(ρn,µn;n=1...N)

(n;n=1...N)

}−1
y , (153)

where
{
H(ρn,µn;n=1...N)

(n;n=1...N)

}−1
is the inverse of the matrix H(ρn,µn;n=1...N)

(n;n=1...N) .

The desired drug injection rate is found by:

x∗(t) =

i=K∑
i=1

x∗i · sinc
(
t − iTs

Ts

)
. (154)

According to the Nyquist criterion [99], the sampling period should satisfy Ts <
1

2B , where

B is the bandwidth of the time-varying impulse response of the system. The sampling

period depends on the blood velocity and the characteristic time scale of the advection-

diffusion. For the simulations, a value of Ts = 15.645 ms, which is the sampling period of

the measured blood cardiac flow input was chosen. This is much shorter than the charac-

teristic time scale of the advection-diffusion.

5.6 Conclusions

In this chapter, we propose to apply the abstraction of the MC paradigm to address im-

portant problems in TDDSs, namely, modeling the drug pharmacokinetics, estimating the

biodistribution, and optimizing the drug injection rate. The MC abstraction allowed to ob-

tain an analytical pharmacokinetic model that accounts for various physicochemical pro-

cesses in the particle propagation, and takes into account the impact of cardiovascular dis-

eases. By stemming from the pharmacokinetic model, we proposed to use communication

engineering metrics to estimate the drug biodistribution at the delivery location, while an-

alytical expressions are obtained to estimate the drug accumulation in the rest of the body.
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We have favorably compared our pharmacokinetic model with multiphysics finite-element

simulations of the drug propagation in the arterial system, and provided numerical results

for the drug biodistribution in different scenarios. We also proposed a procedure to optimize

the drug injection rate according to a desired drug delivery rate through the pharmacoki-

netic model when the injection location and delivery are known.

The pharmacokinetic model presented in this chapter does not take into account parti-

cles that continue their propagation after having circulated the entire cardiovascular system.

This is justified by the fact that heart and veins tend to significantly disperse the particles,

therefore favoring their accumulation over their recirculation in the cardiovascular system.

A possible future extension of this work could also include these effects in the pharma-

cokinetics through a stochastic model derived from an MC noise abstraction, as presented

in [100].

The results presented in this chapter can support the future design of intra-body MC

networks [101]. In fact, the developed pharmacokinetic model has the potential to be used

to predict the propagation of MC signals in the human body undergoing several transport

and kinetic processes. With regards to the communication performance of such a system,

the theoretical limits of the amount information that can be reliably transmitted by MC

over the blood vessels has been studied in [100]. By defining the encoding and modula-

tion schemes for MC in the cardiovascular system, the achievable bit error rates can be

evaluated.

In conclusion, the proposed abstraction of a TDDS with the MC paradigm provides a

new way to model the TDDSs and support their engineering with tractable, yet complete,

analytical models.
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CHAPTER 6

MOLECULAR COMMUNICATION SYSTEM MODEL FOR
ANTIBODY-MEDIATED DRUG DELIVERY SYSTEMS

6.1 Motivation and Related Work

Antibody-mediated Drug Delivery Systems (ADDS) are at the forefront of current ther-

apeutic research [5]. The system uses artificial molecules that are constructed from bi-

ological materials to build and engineer drug delivery systems. They are inspired by the

naturally occurring autoimmune mechanisms that enable the human body to diagnose itself

and destroy the exact source of the disease, in an adaptive and constructive fashion. The

versatility in engineering ADDS and their attested clinical success open up the possibility

to develop sophisticated therapeutic strategies to effectively target diseases [102]. Fig. 2 il-

lustrates the elements of the ADDS. The drug injection occurs in the blood vessels, and the

drug delivery occurs in the extracellular matrix. The drug injection introduces antibodies

which are transported by the blood flow and diffused through the tissues. The blood ve-

locity field transports the antibodies and some of them diffuses through the vascular walls

into the tissues. Upon arriving at the diseased cell, the antibodies bind with the antigens

located on the surface of the diseased cell at the antigen-antibody binding site. The antigen-

antibody kinetics promotes the selective targeting of the diseased cells without affecting the

healthy cells. The interplay of these different transport and kinetic processes contributes to

the performance of the ADDS in maximizing the delivery of the antibodies to the diseased

cells.

In this chapter, Molecular Communication (MC) paradigm [2], where the informa-

tion is conveyed through molecules, is proposed to model the ADDS while considering

the unique properties of antibodies and the possibilities that they offer. This new model

will address the short comings of Physiologically-based Pharmacokinetics (PB/PK) mod-

els that have been proposed for ADDS propagation in the literature. PB/PK methods suffer
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from many limitations that make them inapplicable to helping the current state-of-the-art in

nanomedicine [24] [25]. The issue with the PB/PK model is that the diseases that are meant

to be targeted with ADDS, such as tumors, are highly localized and grow quickly, and this

model does not provide enough spatial and temporal accuracy to assess the efficiency of

the ADDS. Also, by modeling complex molecules for the first time in the area of MC, this

work addresses the limitations in the existing MC modeling works [103] [12].

By using the MC-ADDS paradigm, a bottom-up approach of modeling the propagation

of antibodies is proposed where the appropriate structure of the antibody is determined,

and from that propagation around the body is predicted. The MC-ADDS model solves

this problem by providing mechanistic models, based on the laws of biophysics instead

of empirical observations, and minimizing the need for parameters estimation. This will

provide higher spatial and temporal resolution tracking of the drug propagation in the micro

and millisecond scale, while being scalable to lower and higher resolutions with small

changes to the system model. In MC-ADDS, the human body is modeled as a complex

network of blood vessels and tissues where the transmitted signal is modulated by the

antibody concentration at the injection location, which is the location of the body where

the syringe is injected, and the propagation in the body is represented with simple analytical

models, directly derived from the physiology of the patient and the chemical and electrical

structure of the antibody molecule. Sec. 6.7 will show that the MC-ADDS modeling allows

the calculation of the end-to-end impulse response of the system, and evaluating which

kinetic processes are impeding the drug delivery.

In particular, the main contributions of this work are as follows:

• Modeling an end-to-end abstraction of ADDS as an MC channel: The abstracted

MC channels the ADDS into three different channels corresponding to different parts

of the body. These three different channels include the vascular, extracellular, and

antigen binding channels. Numerical evaluations are conducted for each channel to

determine the influence on the delivery of the antibodies.
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Figure 42. The MC abstraction of the ADDS.

• Determining an optimized shape for the antibody molecular structure: The

movement of the antibodies with the blood flows is modeled based on their 3D struc-

ture. The optimized geometrical structure for the antibodies is determined based on

the diffusion behavior, as well as their successful binding process to the diseased

cells. The model considers the chemical components within the blood that affects the

antibody, as well as the electrochemical properties of the antibody-antigen complex.

• Validation of the end-to-end ADDS MC channel: Validations of the ADDS is

conducted using both analytical MC modeling and comparison to the COMSOL®1,

finite-element simulations. The comparison showed strong agreement between the

MC models and the COMSOL® simulations.

The MC-ADDS modeling will provide a clearer understanding of the mode of operation

of antibodies, and enable the development of innovative methods to guide the engineering

of verifiable and safe antibody mediated therapies. This includes the design and engineer-

ing of the drug structure [104] [105], mode of administration, and dosage optimization [6].

1COMSOL® and COMSOL Multiphysics® are registered trademarks of COMSOL AB.

113



This opens up the possibility to optimize the properties of the ADDS to achieve a desired

therapeutic effect, by determining the drug injection rate in terms of drug dosage concen-

tration, the timing of the dosage, and the location of injection, thus maximizing the safety

and success of ADDS and minimizing the costs [7]. The second motivation behind the use

of MC-ADDS modeling, is to understand the physicochemical interactions between ADDS

and the body, which are more complex than in PDDS. For example, ADDS undergo electro-

static forces within the Extracellular Matrix (ECM) due to negatively charged proteins [8].

These electric forces significantly affect the intercellular transport, antigen binding, and the

absorption of the ADDS by the cells.

The rest of the paper is organized as follows: in Sec. 6.2, we explain the abstraction

of the ADDS through the MC paradigm, the objectives, and principles of this approach.

Sec. 6.3 presents the MC-ADDS Vascular Channel Model, which describes the MC ana-

lytical model of ADDS transport through the blood vessels, taking into account the roles

of tissue absorption, and the plasma binding. Sec. 6.4 introduces the MC-ADDS Extracel-

lular Channel Model, which is the MC analytical model of ADDS transport through the

extracellular matrix (ECM), taking into account the role of ECM protein binding. Sec. 6.5

presents the MC-ADDS Antigen Binding Channel Model which is developed through the

MC paradigm, by incorporating the electrochemical structure of the antibody molecule.

Sec. 6.6 defines the realistic COMSOL® Multiphysics model that was simulated to vali-

date the MC-ADDS model. Sec. 6.7 presents numerical results that were evaluated using

the MC-ADDS model and the COMSOL® Multiphysics simulation model. Sec. 6.8 con-

cludes the paper with the main outcomes of the MC-ADDS model and its prospective use

for the design and engineering of optimal ADDS.

6.2 MC Abstraction of ADDS

In this section, we present the MC-ADDS framework which abstracts the kinetics processes

that the antibody undergoes in different parts of the body as MC channels. In the context of
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communication theory, a channel is a communication medium characterized by an input-

output relationship. The combination of several channels together enables establishing a

network between several transmitters and receivers. The concept of channels is useful for

modeling, analyzing the performance, and optimizing a system regardless of the initial

conditions and input signals. As illustrated in Fig. 42, cascading the MC-ADDS channels

for each of these processes provides the end-to-end MC-ADDS channel from the location

where the antibodies are injected to the location where they are absorbed by the cells. The

drug injection is abstracted as a MC-ADDS transmitter and the drug absorption process is

abstracted as a MC-ADDS receiver. The antibody concentrations at different phases of their

propagation in the body are considered as MC signals, which are the inputs and outputs of

the following MC-ADDS channels:

• The MC-ADDS Vascular Channel models the propagation of the antibodies by

advection-diffusion through the force of the blood flow, the Brownian motion of the

antibodies in the blood, and the chemical binding with the molecules present in the

blood. The MC-ADDS vascular channel is characterized by a function hV(t). The

input signal to the MC-ADDS Vascular Channel is the ADDS Injection Concentration

x(t), defined as the concentration of antibodies in the injection location, which is

represented as follows:

x(t) = Ab(t)|Injection location . (155)

Ab(t) denotes the antibody concentration at the location of the injection at the time

t. The output from the MC-ADDS Vascular Channel is the Vascular ADDS Concen-

tration xV(t), which is defined as the concentration of antibodies in the blood as a

function of time t, as follows:

xV(t) = Ab(t)|Blood = hV(t) ∗ x(t) , (156)

where ∗ denotes the application of the impulse response hV(t) to the signal x(t).
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• The MC-ADDS Extracellular Channel models the transport of the antibodies through

the ECM. This channel is located between the vascular tissues and the surface of

the target cells, and is driven by the interstitial pressure between the blood vessel

walls and the target cells, the lymphatic flow, and the binding with the molecules of

the ECM. The MC-ADDS extracellular channel is characterized by a function hE(t).

The output signal of the MC-ADDS extracellular channel is the ADDS Extracellu-

lar Concentration xE(t), which is the concentration of antibodies in the ECM as a

function of the time t as follows:

xE(t) = Ab(t)|ECM = hE(t) ∗ xV(t) . (157)

• The MC-ADDS Antigen Binding Channel models the antigen-antibody binding

occurring at the surface of the target cell. The antigen-antibody binding is influenced

by the chemical affinity between the antigens expressed by the cell and the antibody,

as well as the physical forces exerted by the flow in the ECM. The MC-ADDS Anti-

gen Binding Channel is characterized by a function pB, which provides the output of

the MC-ADDS Antigen Binding Channel as the ADDS-Antigen Concentration y(t),

which is the concentration of antibodies bound to the antigens as a function of the

time t, given the ADDS extracellular concentration xE(t) as follows:

y(t) = AbAg(t)|Cell surface = pBxE(t) . (158)

AbAg(t) denotes the concentration of drug antibodies that are bound to antigens at

the location of the injection at the time t. pB is not time-varying because there is a

scalar relationship between the antibodies around the diseased cells and the antibod-

ies that bind to the antigens, in a steady state. y(t) is determined from the number of

antibodies that arrive around the surface of the diseased cells and the thermochemical

properties of the antibody-antigen binding.

This study will allow the optimization of MC-ADDS systems by appropriately design-

ing the antibody structure, shape, and chemical characteristics to maximize its ability to
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deliver its therapeutic effect where it is needed in a timely and efficient way.

6.3 MC-ADDS Vascular Channel Model

In this section, we derive an analytical model of ADDS vascular transport using the MC

paradigm. As illustrated in Fig. 43, the blood velocity field drives the transport of antibodies

in the vascular region, and also the antibodies diffuse randomly by Brownian motion. The

antibody molecule is characterized by two diffusion parameters, namely: the translational

diffusion coefficient DZ, and the radial diffusion coefficient DR. DZ is the parameter that

characterizes the diffusion of antibodies along the axis of the blood vessels. It is formally

defined as follows:

< z2(t) >= 2DZt , (159)

where the variable z is the translational coordinate of the antibody at the time t along the

axis of the blood vessels. The rotational diffusion coefficient DΘ is the parameter that char-

acterizes the diffusion of antibodies around their center. It is formally defined as follows:

< θ2(t) >= 2DΘt , (160)

where the variable θ is the angle of rotation of the antibody around its center.

6.3.1 MC-ADDS Vascular Channel Impulse Response

In classical MC, only one parameter, namely the diffusion coefficient D, is involved in the

transport of the molecules according to Ficks law by Brownian motion, but in the case of

ADDS, we will consider two parameters, namely the translational diffusion coefficient DZ,

which depends on the shape of the molecule, and the radial diffusion coefficient DR, which

depends also on the structure of the diffusion medium. Based on the general theory of

diffusion developed by Brenner [106], the irregular shape of molecules has an important

effect on their transport. In fact, the irregularity causes coupling between the rotational

and the translational diffusion parameters of complex molecules [107]. In addition, to

the translational-rotational anisotropy due to molecule shape, there is a translational-radial
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anisotropy owed to the non-homogeneity of cells matrices where one direction is more

conducive to diffusion than the perpendicular direction. Examples of translational-radial

anisotropy include the transport of molecules in blood vessels, where the non-uniform

distribution of red blood cells affects the diffusion in the radial direction [108], and the

anisotropy in the ECM, where the cells are organized in a preferential direction, due to the

direction of mechanical forces, especially the ones involving connective tissues [109].

An MC-ADDS transport model is developed, enabling the prediction of the propagation

of antibodies in the vascular channel. This model is deterministic, but it should be noted

that there are many fluctuations in drug delivery systems in general owing to blood turbu-

lence, Brownian motion, and ligand-binding noise. These noise effects are explained in a

previous work [110], and can be applied to ADDS with little modifications. The impulse

response hV(t, τ) is obtained by cascading the impulse responses of each channel between

the drug injection site and the drug delivery site, which can be expressed as follows:

hV(t, τ) = hV1(t, τ) ⊗ . . . hVi(t, τ) · · · ⊗ hVL(t, τ) , (161)

where ⊗ denotes the operator for cascading the periodically time-varying impulse responses

of two systems as described in [57], hVi(t, τ) is the impulse response of the i-th MC vascular

channel, and L is the number of blood vessels located between the drug injection site and

the drug delivery site.

The transport process in the ECM is dominated by diffusion, although there is an ad-

vective transport due to the plasma excudating drug particles from blood vessels to the

lymphatic system in a directed way. However, the flow rate is so slow that the dispersion

due to advection is negligible. This coincides with clinical observation of antibody trans-

port [111]. The impulse response hVi(t, τ) is expressed for each MC vascular channel based

on the generalized anisotropic Taylor dispersion equation with absorption [112], with the
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assumption of diffusion-dominated transport around the blood vessels, as follows:

hVi(t, τ) =
1√

2πσ2
i (t, τ)

exp
(
−

(l − mi(t, τ) )2

2σ2
i (t, τ)

)
, (162)

where:

• The mean antibody velocity varies with time and is expressed as follows:

mi(t, τ) =

∫ t

τ

vi(r, t) dt′ , (163)

• The variance of the antibody concentration increases with time and is expressed as

follows:

σ2
i (t, τ) = 2

∫ t

τ

Di(t′) dt′ , (164)

where t and t′ are time parameters, The effective diffusion coefficient of the antibodies Di(t)

is expressed as follows [112]:

Di(t) = DZP f + DEPw + P3
f v

2
i (t)

(
KV

KE
+

r2
i

48DR

)
, (165)

where DZ is the translational diffusion coefficient of the ADDS in the blood expressed in

(168), DE is the diffusion coefficient in the ECM, which is defined in Sec. 6.4, DR is the

radial diffusion coefficient due to anisotropy [108], ri is the radius of the vessel i, KV is the

non-specific binding equilibrium constant in the vascular channel, KE is the non-specific

binding equilibrium constant in the ECM, P f = 1
1+KV

is a kinetic ratio, and the effective

blood velocity vi(t) is expressed as follows:

vi(t) = P f ui(t) , (166)

The non-specific binding equilibrium constant in the vascular channel can be calculated

from the non-specific binding energy ∆GV . This is calculated between the antibody and the

proteins contained in the blood in a similar way to the calculation of the specific binding
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Figure 44. 3D structure of the antibody-antigen complex from the Protein Data Bank.

energy ∆G between the antibody and the antigens in (178) (Sec. 6.5), and is represented as

follows:

KV = exp
[
−

∆GV

RT

]
, (167)

where ∆GV is the non-specific binding free energy between the antibody and the proteins

in the vascular channel, and R is the ideal gas constant. Finally, from (161) and (162), we

obtain the MC end-to-end impulse response of the ADDS.

6.3.2 MC-ADDS Vascular Channel Diffusion Coefficients

Here we introduce the model of the structure of the antibody which provides the reference

geometrical and electrochemical properties of the ADDS. These properties will be used to

derive the transport diffusion coefficients. The structural information is obtained from the

Protein Data Bank (PDB) [113], which hosts the tridimensional structural data of a large

number of biological molecules, including antibodies and their antigens. A visualization

of such a structure is presented in Fig. 44 which represents the atomic structure of the

antibodies as an assortment of balls occupying the volume of the atoms and their bonds with

other atoms. The PDB also includes the constituting chemical elements of the antibodies

and their electric charges. Among all the information provided by the PDB, in this chapter

we focus on the geometry of a molecule and its charges. Each element of the antibody is
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denoted as n, and the total number of elements constituting the antibody as N. An element

n possesses the following information:

• Cartesian coordinates, denoted by the vector (xn, yn, zn) with a given Cartesian center

O.

• Radius, denoted by the scalar value ρn, which measures half the distance between

one atom and its closest element.

• Charge, denoted by the value qn, which is the electric charge born by the element n.

These three types of information are sufficient to describe the kinetic parameters of the

antibody. In the following, we explain how these parameters are derived directly from the

PDB information.

In the literature [114] [115] [116], all MC and pharmacokinetic models contain infor-

mation on the basic shapes for the molecules such as spheres, and rarely ellipsoids and rods,

to capture the antibody propagation. Therefore, there is a need for a model that takes into

account the antibody shape and structure to predict the diffusion parameters of this small

molecule without any empirical choices. The antibodies come in different arbitrary shapes

and structures as can be seen in X-Ray structure analysis of this type of molecules [117].

As illustrated in Fig. 45, the antibody-antigen is composed of several beads. In general, the

antibodies are roughly Y-shaped molecules and consist of different heterogeneous regions

(light chain and heavy chain). The geometry of the antibody has an important effect on

its motion in the blood and tissues. The irregular shape can create arbitrary motions and

fluctuations that are different from the case of spherical nanoparticles that were considered

in PDDS.

The translational diffusion coefficient DZ and the rotational diffusion coefficient DΘ are

calculated as follows [118]: 
DZ = kBT

3η tr(AZ) ,

DΘ = kBT
3η tr(AΘ) ,

(168)
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where kB is Boltzmann coefficient, T is the temperature of the blood, η is the fluid viscosity,

tr (·) is the trace function of the matrices AZ and AΘ, which represent the translational

mobility tensor matrix and the rotational mobility tensor matrix [107]. These matrices AZ

and AΘ are expressed as follows [119]:

AZ =
N∑

m=1

N∑
n=1

[
δm,nI

6πηRm,n
+

(
1 − δm,n

)
Tm,n

]−1
,

AΘ = −
N∑

m=1

N∑
n=1

Um

[
δm,nI

6πηRm,n
+

(
1 − δm,n

)
Tm,n

]−1
Un

+8πη
(∑N

n=1 ρ
3
n

)
I ,

(169)

where m and n are the indices of two beads m and n in the molecular compound, as illus-

trated in Fig. 45, N is the total number of beads in the molecular compound, η is the fluid

viscosity, Rm,n is the center-to-center distance between two beads m and n, ρn is the radius

of the bead n, δm,n is the Kronecker delta function, Tm,n is the hydrodynamic tensor of the

antibody calculated as follows from the geometric parameters of the antibody molecule:

Tm,n =
1

8πηRm,n

I +
Rm,nR†m,n

R2
m,n

 +
ρ2

m + ρ2
n

R2
m,n

 I
3
−

Rm,nR†m,n
R2

m,n

 , (170)

where Rm,n is the distance vector between the beads m and n, {·}† is the transpose function

of the vector Rm,n, Rm,n is the center-to-center distance between two beads m and n, ρn is
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the radius of the bead n, ρm is the radius of the bead m, and Um is the skew matrix of the

bead m and is expressed as follows:

Um =


0 −zm ym

zm 0 −xm

−ym xm 0

 . (171)

where (xm, ym, zm) are the Cartesian coordinates of the bead with index m from an arbitrary

origin O. Similarly, Un is the skew matrix of the bead n expressed as follows:

Un =


0 −zn yn

zn 0 −xn

−yn xn 0

 . (172)

where (xn, yn, zn) are the Cartesian coordinates of the bead with index n from the origin O.

6.4 MC-ADDS Extracellular Channel Model

In this section, we present how the transport of ADDS in the ECM is modeled. Due the

differences between tissues in the body in terms of geometry, arrangement, tortuosity, and

density, the transport of ADDS is going to vary greatly in different parts of the body. The

parameter DE denotes the diffusion coefficient in a tissue surrounding a blood vessel. The

structure of the ECM is similar to foam. The antibodies will perform random motions and

collide with the membranes of the cells, thus affecting the distribution of their concentra-

tion. Using the theory of transport in porous media [120] [121], it is possible to derive an

expression for DE based on the characteristics of the tissue. In practice, it has been ob-

served that the transport in the ECM is largely dominated by the diffusion, therefore, we

neglect the transport due to interstitial pressure differences.

The MC-ADDS model of extracellular transport becomes a diffusion MC channel [103]

with a diffusion coefficient DE and a non-specific binding equilibrium constant KE in the

ECM, as follows:
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hE(t) =
1

√
2πDEt

exp
[

−z2

(4DE + KE) t

]
, (173)

where z is the coordinate towards the target cell, KE is the non-specific binding equilibrium

constant in the ECM, and DE is the diffusion coefficient in the ECM. The non-specific

binding equilibrium constant is a value that characterizes the rate of the first-order linear

reaction between two reactants such as the antibody and other molecules.

DE =
φ

κ
DZ . (174)

As shown in Fig. 46, the diffusion coefficient DE is a function of following parameters

which can be estimated from the shape of the ECM:

• The porosity φ measures the propensity of the tissue components to allow the anti-

bodies to pass.

• The tortuosity κ is the arc length of the path over the geometric distance between

the input and the output locations of the channel. Typical values for the tortuosity

are measured experimentally from cellular imaging. The work in [122] cites values

between κ = 1.55 and κ = 1.65 in the human adult brain. The work in [123] cites

values between κ = 2 and κ = 3, and the work in [123], mentions that the tortuosity

can be as high as κ = 9 in crowded protein-loaded environments.

• The free fluid coefficient DZ is the translational diffusion coefficient of the antibodies

in the fluid, which is calculated using the result in (168).

It is noted that extracellular transport may also be subject to protein binding [124], in

which case, the model of the following section could supplement the binding of antibodies

with gels and ECM proteins. In fact, the non-specific binding equilibrium constant in the

ECM KE can be calculated from the non-specific binding energy ∆GE, which is calculated

between the antibody and the proteins of the ECM (such as collagens) in a similar way to
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the computation of the specific binding energy ∆G between the antibody and the antigens

in (178) (Sec. 6.5), as is represented in the following:

KE = exp
[
−

∆GE

RT

]
, (175)

where ∆GE is the non-specific binding free energy between the antibody and the ECM

proteins. For simplicity, we assume that the environment around the blood vessel is homo-

geneous, but, technically, the different heterogeneous layers of cell types around the blood

vessels could be accounted for by cascading the impulse response for each layer from the

plasma to the target diseased cells, based on their own tortuosity and porosity.

6.5 ADDS Antigen Binding Channel Model

In this section, we derive the characteristic function pB of the MC-ADDS Antigen Binding

Channel, as a function of the geometry and charge of the antibody, and the number of

antigens in the surface of the diseased cells. This function allows to obtain the distribution

of the ADDS antigen-antibody density at the surface of the cell y(t) as a function of the
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ADDS extracellular concentration xE(t) as follows:

y(t) = pBxE(t) . (176)

The antigen binding probability pB is found to be expressed as [69]:

pB =
Cag

RT
exp

[
−

∆G
RT

]
, (177)

where Cag is the concentration of antigens on the surface of the diseased cells, and T is the

temperature. In the following, we derive the expression for the antigen-antibody binding

free energy ∆G, the binding probability, and the kinetic rates of the antibodies in reac-

tion with other proteins including extracellular matrix proteins and antigens. The antigen-

antibody binding free energy ∆G is calculated as follows [125]:

∆G = G+ −G− , (178)

where G− is the unbound free energy defined as:

G− =

N∑
m,n=1
n,m

(
S m,n + Vm,n + Em,n

)
+

M+N∑
m,n=N+1

n,m

(
S m,n + Vm,n + Em,n

)
, (179)

where M is the total number of beads in the antigen, N is the total number of beads in the

antibody, m and n are the indices of the beads, S m,n is the pair solvent free energy for two

beads m and n, Vm,n is the pair van der Waals energy for two beads m and n, Em,n is the

pair electrostatic potential for the two beads m and n. The equation in (179) consists of

the addition of the total energies for the antibody and the antigen, each taken individually,

where the first sum is the free energy for the individual antibody, and the second sum is the

free energy for the individual antigen. G+ is the bound free energy defined as:

G+ =

M+N∑
m,n=1
n,m

(
S m,n + Vm,n + Em,n

)
, (180)

where S m,n is the pair solvent free energy for two beads m and n, Vm,n is the pair van der

Waals energy for two beads m and n, Em,n is the pair electrostatic potential for two beads m
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and n. The equation in (180) consists of the free energy of the antigen-antibody compound

joined together. The PDB database provides the antigen-antibody bead coordinates in their

joined state, therefore the bound free energy is directly computable from the database.

The pair energies used in the expressions of the unbound and bound free energies, in

(179) and (180), respectively are expressed as follows:

• The pair solvent energy S m,n for the beads m and n is expressed as follows [126]:

S m,n =
1

8π

(
1
ε0
−

1
ε

)
qmqn

fm,n
, (181)

where qm is the charge on the bead m, qn is the charge on the bead n, ε0 is the free

space permittivity, ε is the dielectric constant of interstitial fluid, and fm,n is given by:

fm,n =

√
R2

m,n + ρmρne−gm,n , (182)

where Rm,n is the distance between two elements m and n, ρn and ρm are respectively

the radii of the two elements m and n, and gm,n is a ratio defined as follows:

gm,n =
Rm,n

4ρmρn
. (183)

This model is based on the generalized Born salvation free energy [126] which is an

approximation of the solution to the Poisson-Boltzmann equation.

• The pair van der Waals energy Vm,n for the beads m and n is calculated as fol-

lows [127]:

Vm,n = −
A
6

 2ρmρn

R2
m,n − (ρm + ρn)2 +

2ρmρn

R2
m,n − (ρm − ρn)2 + ln

R2
m,n − (ρm + ρn)2

R2
m,n − (ρm − ρn)2

 ,
(184)

where A is the Hamaker coefficient [127] which depends on the properties of the

material, and Rm,n is the center-to-center distance between two beads m and n.

• The pair electrostatic potential Em,n for the beads m and n is calculated as follows:

Em,n =
qmqn

8πεRm,n
, (185)
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where qm is the charge on the bead m, qn is the charge on the bead n, and ε is the

dielectric constant of interstitial fluid.

Finally, based on the structure data of the antigen and antibody from the PDB, namely

the charges {qn; n = 1 . . . M + N}, the radii {ρn; n = 1 . . . M + N}, the beads center-to-center

distances
{
Rm,n; m, n = 1 . . . M + N

}
, the medium parameters {A, ε} we have derived the re-

lationship between the ADDS antigen-antibody density at the surface of the cell y(t) and

the ADDS extracellular concentration xE(t) as expressed in (176) and (177).

6.6 COMSOL® Multiphysics Simulation

In this section, we present the simulation scheme used to validate the MC-ADDS model in

a realistic 3D environment. COMSOL® Multiphysics is a finite-element modeling (FEM)

software package which helps to set up complex 3D simulations involving different physi-

cal laws and models. In the interest to accurately capture the complexity of MC-ADDS sys-

tems, COMSOL® is used here to simulate two important physical laws involved in the prop-

agation of antibodies. First, the fluid dynamics (Sec. 6.6.1) provide the time-varying blood

velocity field in the blood vessels. Second, the advection-diffusion physics (Sec. 6.6.2) pro-

vide the time-varying concentration of the antibodies transported in an anisotropic manner

through the blood vessels and their surrounding tissues. By combining these two physical

laws, COMSOL® provides a realistic reference model for the spatio-temporal evolution of

the antibody through the body.

6.6.1 COMSOL® Fluid Dynamics

The blood flow is simulated by COMSOL fluid dynamics simulations to predict the blood

velocity field in the tridimensional coordinates inside the blood vessels. The blood flow

is important since it is the main driving force transporting antibodies throughout the body.

This realistic simulation is utilized to demonstrate that the assumption of uniform blood

velocity in each blood vessel is valid for the analytical model. The uniform blood velocity

allowed us to derive the simple expressions of time-varying impulse responses.
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The COMSOL® fluid dynamics is based on the Navier-Stokes equation. Blood is sup-

posed to be an incompressible fluid in laminar flow with a density ρ = 1060 kg ·m−3 and a

fluid viscosity η = 0.005 Pa · s. The Navier-Stokes equation is written as follows:

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p + f , (186)

where p is the blood pressure, v is the blood velocity, ρ denotes the blood density, ∇ is the

vector differential operator, η is the fluid viscosity, and f represents forces applies by the

blood vessel walls.

The geometry of the blood vessels network is presented in Fig. 47. The networks con-

sists of 9 curved blood vessels. The 3D data was obtained from the COMSOL® simulation

library and scaled down by a 100 factor to have the typical size of arterioles. The dimen-

sions of the blood vessels are given in Table 4.The blood vessels are surrounded by elastic

vascular walls and muscles that apply stress on the surface of the blood vessels. The out-

lets and inlets of the blood vessel network are assumed to be open with a predefined blood

pressure. The objective of the simulation is to verify that the MC analytical model prop-

erly predicts the diffusion through the walls and the diffusion along the radial dimension

by comparing the end-to-end impulse response with the concentration at the output of the

COMSOL simulated network given an initial concentration at the inlet of the network. The

surrounding tissue is simulated as a thin diffusion layer in COMSOL with a porosity of

1.6.

The boundary conditions for COMSOL® fluid dynamics consist of the time-varying

pressure applied at the inlets and outlets of the blood vessel network. The pressure at a

vessel i is denoted by pi(t) where t is the time-variable. The heartbeat period is supposed

to be constant and equal to 1s. The function pi(t) is expressed as follows:
pi(t) = pi,0 sin(πt) 0 ≤ t ≤ 0.5 s

pi(t) = pi,0 (1.5 − 0.5 cos(−2π(0.5 − t))) 0.5 ≤ t ≤ 1 s
(187)
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Table 3. Numerical values of the blood pressure at the inlets and outlets of the blood vessels network.

i 0 1 2 3 4 5
pi,0 11208 11148 11148 11148 11148 11148

Table 4. Physiological lengths and radii of the blood vessels.

Vessels V1 V2 V3 V4 V5 V6 V7 V8 V9

Length [mm] 81 17 16 18 11 14 17 11 6
Radius [mm] 2.8 2.5 2.8 2.5 2.8 2.5 2.8 2.5 2.8

where pi,0 are pressure constants in (Pa) for which the numerical values are available in

Table 3.

6.6.2 COMSOL® Advection-Diffusion

The COMSOL® advection-diffusion physics are modeled using the time-varying advection-

diffusion equation in different domains of the simulated geometry. The geometry consists

of two domains, namely the blood vessels and the ECM that surrounds it. Each domain is

denoted by the index i. The advection-diffusion equation is expressed as follows:

∂c
∂t

= ∇ · (D∇c) − ∇ · (~vc) + KVc , (188)

where ci is the antibody concentration in the domain i, Di is the diffusion coefficient or

matrix in the domain i and v is the blood velocity calculated from the COMSOL® fluid dy-

namics physics, KV is the non-specific binding equilibrium constant between the antibody

and the blood.

Between two domains, there is a molecular flux discontinuity, expressed by the follow-

ing equation:


−n · Di = Di

D j
(ci − c j)

−n · D j = Di
D j

(c j − ci) ,
(189)
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where Di and D j are the diffusion coefficients or matrices for the domains i and j respec-

tively, ci and ci are the antibody concentrations in the domains i and j respectively, and n is

the unit vector normal to the surface boundary delimiting the two domains i and j.

The following equation describes the initial concentration antibodies at the time t = 0:
c0(x, y, z) = e

−
z2

2σ2
0√

2πσ2
0

C0 x ≥ x0 and z ≤ z0

c0(x, y, z) = 0 otherwise ,

(190)

where σ0 = 0.25 mm, C0 = 1 mol · L−1, and σ0 = 0.35 mm, x0 = 50 mm, and z is the third

Cartesian axis as shown in Fig. 47. A Gaussian function is used to have a smooth impulse,

which helps to avoid numerical problems.

The inlets and outlets of the blood vessel network are assumed as open extremities,

which is expressed by the following equation:

n · D∇c = 0 . (191)

The anisotropic diffusion matrix is defined in the curvilinear coordinates along the axis of

the blood vessels.

Finally, the equations in (188), (189), (190), and (191) are applied to the geometry of

the vascular channel in Fig. 47. COMSOL® calculates the concentration c(x, y, z, t) of the

antibodies in the Cartesian coordinates (x, y, z, ) and time t.

6.7 Numerical Results

In this section, we show numerical results which compare the MC-ADDS analytical model

with a finite-element methods simulation model in a realistic 3D geometry and show the

significance of anisotropy. COMSOL® was used to simulate the propagation of antibodies

using the complete advection-diffusion equation in a 3D setting, and the effect of anisotropy

on the impulse response of the system was evaluated.

Fig. 48 compares the mathematical model, derived in (161) and (162) from Sec. 6.3,

from the MC-ADDS paradigm incorporating the effect of anisotropy and the complete 3D
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Figure 47. COMSOL® simulation of ADDS propagation in the vascular channel.
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Figure 48. Validation of the analytical impulse response with COMSOL simulation results.
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Figure 49. MC Vascular Channel impulse responses for different radial diffusion coefficient DR.

simulation with COMSOL® on one blood artery. The translational and radial diffusion co-

efficients, calculated based on the bead model, have been used in both COMSOL® and the

MC-ADDS model. An excellent agreement between the two results is shown in the figure.

This is to our knowledge the first work to validate through FEM the anisotropic transport

of molecules undergoing advection and diffusion. The anisotropic diffusion coefficient was

specified in COMSOL® in matrix form in the cartesian coordinates, where the x and y rep-

resented the radial diffusion, and z represents the translational diffusion. The results show

that MC anisotropic model will allow taking into account realistic diffusion environments

that occur in biology.

Fig. 49 illustrates how the normalized impulse response from (162) presented in Sec. 6.3,

varies highly depending on the radial diffusion coefficient. For a fixed translational dif-

fusion coefficient, the radial diffusion coefficient was varied from DR = 10−7 m2/s to
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angle between antibody arms.

DR = 10−4 m2/s. The numerical evaluations of the MC-ADDS extracellular impulse re-

sponse for these different values show that the anisotropic transport due to a radial diffusion

that is different from translational diffusion can have an important effect on the transport of

antibodies. It can be seen that the impulse response is attenuated exponentially as a func-

tion of the radial diffusion coefficient. Therefore, radial diffusion coefficient is a critical

parameter for the computational and numerical evaluation of MC-ADDS systems.

Fig. 50 shows the dependence of the anisotropic diffusion parameters on the angle be-

tween the arms of the antibody given by (168). from Sec. 6.3.2. In this figure, our objective

is to quantify the effect of changing the shape of the antibody on the diffusion parameters.

The bead model of the antibody illustrated in Fig. 45 at Sec. 6.5 has been considered, and

we have varied the angle between the two long arms of the antibody from −30 degrees to

30 degrees, and we have plotted the rotational diffusion coefficient DΘ and the translational
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Figure 51. Numerical evaluation of the MC-ADDS end-to-end response.

diffusion coefficient DZ for these different shapes. Note that the change in shape can have

a considerable effect on these two diffusion coefficient in a similar way. The more the

molecule resembles a rectangular shape the higher the diffusion coefficient is, and the more

the molecule resembles a spherical shape, the lower is the diffusion coefficient. This can

be explained by the fact that a spherical shape maximizes the contact surface area of the

antibodies, which causes more collisions, and therefore a higher diffusion coefficient due

to Brownian motion.

Fig. 51 shows the effect of the different kinetic processes on the MC-ADDS end-to-end

response by cascading the impulse responses of the different transport and kinetic pro-

cesses through (161) . The end-to-end impulse response is calculated for three different

sets of parameters, each corresponding to either the color red, green, or blue, i.e. the end-

to-end impulse response h1(t) is for DZ = 10−8 m2/s, DE = 10−9 m2/s, Cag = 0.01 mol/m2,

and ∆G = 5 kJ ·mol−1, the end-to-end impulse response h2(t) is for DZ = 5 · 10−8 m2/s,

DE = 0.5 · 10−9 m2/s, Cag = 0.05 mol/m2, and ∆G = 5 kJ ·mol−1, and the end-to-end

impulse response h3(t) is for DZ = 10−7 m2/s, DE = 10−8 m2/s, Cag = 0.1 mol/m2, and the

antigen-antibody binding free energy ∆G = 5 kJ ·mol−1 obtained through (178) in Sec. 6.5.

For the vascular impulse response, we observe that increasing the translation diffusion co-

efficient of the antibodies increases the delay and the dispersion of the impulse response.
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The figures for the vascular and extracellular impulse response are normalized with re-

gard to the maximum value of the impulse responses. The vascular impulse response hV(t)

shows some periodic sharp drops due to the periodicity of the heartbeat. For the extracellu-

lar impulse response hE(t), at a fixed association and dissociation kinetic set of parameters,

the extracellular impulse response shows increased delay but decreased dispersion, due to

the interplay of kinetic and diffusion parameters in the ECM. For the binding probability

function pB, we see that the concentration of antigens in the surface of the cells is a de-

termining factor for the binding rate, and the higher the binding energy, the lower is the

binding probability. This is explained by the fact that a high binding probability is more

likely if the required energy for the antibody-antigen binding is low. The end-to-end im-

pulse responses use the average values for the binding probability. The figure shows that

the binding probability for these specific numerical values is the most significant factor in

the end-to-end impulse response, and that although the vascular and extracellular parame-

ters are very dissimilar for the green and blue end-to-end impulse response, the difference

in the binding probability makes the two end-to-end impulse responses mostly the same.

MC-ADDS systems are remarkably complex due to the interplay of different kinetic

and transport processes. The MC modeling approach allows capturing all the important

kinetic parameters in a simple analytical expression and combining them together. The

MC-ADDS approach makes it possible to evaluate numerically the effect of each of these

kinetic parameters as well as the geometry of the disease and the physiology of the patient.

Fig. 51 has shown that diffusion in the vascular space can exhibit a trend that is opposite

to the one in the extracellular space. This means that values for the diffusion coefficient

that are beneficial for the transport in the vascular channel may be detrimental in the ex-

tracellular channel. Therefore, there is a trade-off value for the diffusion coefficient that

improves transport in the vascular channel without sacrificing the transport in the extracel-

lular transport. This is important for appropriate engineering the diffusion properties of the

antibodies. The figure also shows the importance of the binding parameters, which remain
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the most critical barrier for the efficiency of ADDS. The numerical evaluation of these im-

pulse responses and functions does not require important computational resources, which

makes the optimization of MC-ADDS for a specific clinical scenario very tractable using

this approach.

6.8 Conclusions

The Molecular Communication (MC) framework was used as an abstraction of antibody-

mediated Drug Delivery Systems (ADDS), which is one of the therapeutic methods at the

forefront of pharmacological research. The proposed MC model is based on the biophysi-

cal equations which govern antibody transport and kinetics in the human body. Analytical

expressions of the impulse responses and drug delivery probabilities for the vascular trans-

port, propagation in the ECM, and antigen binding were derived to mathematically capture

ADDS. The transport and antigen-binding kinetics of ADDS are predicted based on the

geometry of the human body, and the shape and electrochemical structure of the antibody-

antigen compound.

The aim is to provide a novel model for ADDS based directly on the chemical and

structural information about the antibody molecule. Based on the geometry and the charge

of the ADDS constituting elements, we have derived the transport and binding parame-

ters of the ADDS based on the theory of anisotropic diffusion and the thermodynamics of

antibody-antigen interactions.

The derived MC model is based on the recent advances in mass transport theory to pro-

vide an analytical solution to the problem of ADDS transport. In the frame of the current,

often over-complicated models of system biology, the proposed MC approach models the

complex behavior of ADDS with a straight-forward model. Using the MC paradigm, the

ADDS transport from the point of injection to the interior of a cell has been abstracted as a

cascade of MC channels, each characterized by an analytical impulse response. The MC-

ADDS model studies the ADDS transport in the blood vessels, in the ECM, and through the
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ligand binding. Compared with existing models, the majority of the systems parameters are

directly related to the physiology, instead of using empirical values that involve statistical

estimations from experiments.

There are several important issues that remain to be investigated on the modeling of

ADDS systems. First, an optimization framework should be devised to take advantage of

the possibilities offered by the MC approach. Second, the interference from the immune

system and the endocrine system should be added to the model as a feedback process to

improve the targeting of the disease. Finally, the toxicity of ADDS should be quantified

mathematically in this framework.

The MC-ADDS model allowed determining the parts of the human body which in-

fluence the efficiency of the drug delivery, and the ADDS molecule parameters that are

critical to overcome the obstacles posed by these limiting parts. Moreover, the MC model

showed how the shape and electrochemical structure simultaneously affects the transport

and antigen-binding kinetics of the ADDS. Finally, the validation of the MC-ADDS model

against finite-element simulations in a realistic 3D geometry has shown that the model is a

good approximation for the anisotropic advection-diffusion in the complex geometry of the

body. This analytical model can be readily used to predict, design, and optimize advanced

drug delivery systems in a versatile and accurate manner, and to simulate sophisticated

therapeutic scenarios.
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CHAPTER 7

CONCLUSIONS

Molecular communication (MC) is a novel communication paradigm where the transfer of

molecules is abstracted as a transfer of information. It has promised to have a wide range

of applications particularly in the biomedical field. In this thesis, the potential of the MC

paradigm is harnessed to model an important area of biomedical engineering that is the

modeling of drug delivery systems (DDS). The suitability of the MC paradigm comes from

a direct identification between the elements of a communication system and the elements

of a DDS. In fact, the injection of particles can be viewed as the transmission part of a

communication scheme, the propagation of particles as the communication channel, and

the delivery of particles as the reception part of the communication scheme. However, the

reality is that under this simplifying system view lies an important complexity in terms of

the governing physics of particle emission, propagation, and delivery. As examples, the

particles are carried by the blood flow governed by the Navier-Stokes equation, delivered

to tissues with porous material properties, and reacts according to stochastic properties. In

this thesis, a unifying framework is provided to model DDS as a communication system.

The framework is analytical, and compared with alternative methods for studying DDS’s

such as finite-element simulation and kinetic Monte-Carlo simulation.

The objectives of this thesis are as follows. First, we devise a system model that enables

the prediction of time and space evolution of drug propagation in the cardiovascular system.

The system model is based on a one-dimensional reduction of Navier-Stokes equations, the

advection-diffusion equation through Taylor dispersion, conservation laws, and topological

properties of the cardiovascular system. The system model is linked with the classical

measurements used in classical DDS systems such as pharmacokinetics and biodistribution.

Second, we develop a model to study the performance of a DDS through the concept of

information theoretical capacity. After evaluating the properties of noise in a DDS as well
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as the constraints that limits it, the information theoretical capacity of a DDS is defined and

used to measure the success of a DDS. Third, antibody-mediated DDS are considered in the

MC framework. We propose modifications to the basic framework in order to capture the

peculiarities of antibody-antigen dynamics. This enables to study the end-to-end response

of an antibody-mediated DDS.

Chapter 3 is devoted to present a molecular communication system model for particu-

late drug delivery systems. The main contributions are as follows:

• We define the basic elements of system modeling approach of particulate drug de-

livery systems using molecular communication, which consist of the topology of the

cardiovascular system, the drug injection, the drug delivery rate, the drug propagation

channel, and the blood velocity network.

• We model the blood velocity in every blood vessel of the cardiovascular system

through the definition of a blood velocity network. The calculation of the blood

velocity is based on a one-dimensional simplification of the network of blood vessels

and an analogy with transmission line networks for large and small arteries. The in-

puts to the blood velocity network are the topology (lengths and arrangement of the

blood vessels), the cardiac inflow, and the index of the target artery.

• We model the evolution of the drug concentration using harmonic transfer matrices

(HTM). Given the fact that the blood velocity is time-varying, a drug propagation

network is defined as a composition of HTMs with a equivalent linear periodically

time-varying (LPTV) link or node. The time-varying impulse response for a blood

vessel is analytically derived given the blood velocity, the length, and the radius of

the blood vessels. The HTM’s are combined using basic arithmetic rules.

Through the results of this novel approach in modeling particulate drug delivery sys-

tems, we learn that molecular communication provides a low-complexity and physiology-

based modeling framework for this type of systems. This opens up the possibility to study
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optimization techniques for particulate DDSs which could allow a careful selection of the

location of injection and drug injection profile with the goal of obtaining a desired drug de-

livery profile at a targeted site while minimizing the drug presence in the rest of the cardio-

vascular system. In addition, the models developed in this research work could potentially

serve to investigate novel communication techniques for Intra-Body Communication (IBC)

networks.

Chapter 4 is devoted to the noise and capacity analysis of particulate drug delivery

systems. The main contributions are as follows:

• We present an end-to-end system model of particulate drug delivery systems that in-

cludes not only the drug propagation but also the drug emission process and the drug

reception process. The drug emission process is characterized with several design

parameters and constraints and the drug reception process is derived based on the

interaction of blood flow with the binding of drug particles.

• We show that the noise in a particulate drug delivery system can be modeled through

an inhomogeneous Poisson process which is a function of the drug propagations

time-varying impulse response and the probability of drug reception. The results

stems from identifying the advection-diffusion equation with a Fokker-Planck equa-

tion describing the motion of one particle traveling through the several compartments

of the cardiovascular system.

• We compare the results of analytical noise model with the results of kinetic Monte-

Carlo simulations of drug particle propagation.

• We define the capacity in a particulate drug delivery systems as the maximum mutual

information between the drug injection rate and the drug reception rate. We prove

that the capacity of a particulate drug delivery systems is limited by several factors.

These include the distance, the characteristics of the emission device, and the blood

flow condition in the target location.
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Through the results of the noise and capacity analysis of particulate drug delivery sys-

tems, we establish the first work to propose the use of information theory in PDDS design.

Other works were mainly based on deterministic and probabilistic analysis of the long-

term and steady-state drug distribution throughout the body. Our information-theoretical

approach can be applied to put into use high precision nanomedicine delivery, in contrast

with traditional medicine where the drug injection is not optimized with respect to the body

variabilities such as the blood flow, the ligand-binding kinetics, and their interaction.

Chapter 5 is devoted to pharmacokinetic modeling using molecular communication.

The main contributions are as follows

• We describe the several processes that a drug particle may undergo during the propa-

gation in the human body. These include absorption, adsorption, reaction, diffusion,

and advection. We define parameters for each of these processes.

• We study the performance of a particulate drug delivery system through the analytical

definition of the path loss and the delay. These two measures are related to the

pharmacokinetics and biodistribution of a drug particle.

• We model biodistribution through the novel molecular communication-based paradigm.

We present formulas for directly calculating the amount of drug particles that effec-

tively attain their target under several system conditions.

• We present a method to optimize the drug injection in order to obtain a desired a drug

reception rate through the discretization of the time-varying impulse response of the

system.

• We compare the results of the analytical molecular communication frameworks with

the results of the finite-element-based COMSOL simulations.

Through the results of this pharmacokinetic modeling approach, we learn that the MC

abstraction allows to obtain an analytical pharmacokinetic model that accounts for various
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physicochemical processes in the particle propagation, and takes into account the impact

of cardiovascular diseases. By stemming from the pharmacokinetic model, we proposed

to use communication engineering metrics to estimate the drug biodistribution at the deliv-

ery location, while analytical expressions are obtained to estimate the drug accumulation

in the rest of the body. We have favorably compared our pharmacokinetic model with

multiphysics finite-element simulations of the drug propagation in the arterial system, and

provided numerical results for the drug biodistribution in different scenarios. We also pro-

posed a procedure to optimize the drug injection rate according to a desired drug deliv-

ery rate through the pharmacokinetic model when the injection location and delivery are

known.

Chapter 6 is devoted to present a molecular communication system model for antibody-

mediated drug delivery systems. The main contributions are as follows

• We present a system model that links the intrinsic properties of antibody-antigen

compounds with their molecular communication parameters.

• We analytically derive impulse responses for the propagation in the extracellular ma-

trix.

• We derive the end-to-end time-varying impulse response linking the emission of

antibody-mediated drugs with their specific binding to antigens located at the tar-

get site.

Through the results of this modeling framework of antibody-mediated drug delivery

systems, we learn that the MC-ADDS model enables the determination of the parts of the

human body which influence the efficiency of the drug delivery, and the ADDS molecule

parameters that are critical to overcome the obstacles posed by these limiting parts. More-

over, the MC model showed how the shape and electrochemical structure simultaneously

affects the transport and antigen-binding kinetics of the ADDS. Finally, the validation of

the MC-ADDS model against finite-element simulations in a realistic 3D geometry has
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shown that the model is a good approximation for the anisotropic advection-diffusion in

the complex geometry of the body. This analytical model can be readily used to predict,

design, and optimize advanced drug delivery systems in a versatile and accurate manner,

and to simulate sophisticated therapeutic scenarios.

We propose several future direction to extend on this work. First, to develop channel

coding techniques inspired by the naturally-occurring biological quality check of drug de-

livery agents. Second, to study the ability of drug delivery systems to target several types

of antigens simultaneously as a multiple-input multiple-output system. Third, to develop

non-linear models of the blood velocity network and drug propagation network with robust

drug delivery strategies.
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