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Abstract

Extracellular vesicles (EVs) are particles released in the extracellular space from 
all cell types in physiological and pathological conditions and emerge as a new way 
of cell-cell communication by transferring their biological contents into target cells. 
The levels and composition of circulating EVs differ from a normal condition to a 
pathological one, making them real circulating biomarkers. EVs have a very com-
plex contribution in both health and disease, most likely in relationship between 
diabetes and cardiovascular disease. The involvement of EVs to the development of 
cardiovascular complications in diabetes remains an open discussion for therapists. 
Circulating EVs may offer a continuous access path to circulating information on 
the disease state and a new perspective in finding a correct diagnosis, in estimating 
a prognosis and also in applying an effective therapy. Besides their role as biomark-
ers and targets for therapy, EVs can be exploited as biological tools in influencing 
the different processes affected in diabetic cardiovascular diseases. This chapter 
will summarize the current knowledge about EVs as biological vectors modulating 
diabetic cardiovascular diseases, including atherosclerosis, coronary artery disease, 
and peripheral arterial disease. Finally, we will point out EVs’ considerable value 
as clinical biomarkers, therapeutic targets, and potential biomedical tools for the 
discovery of effective therapy in diabetic cardiovascular diseases.

Keywords: extracellular vesicles, microvesicles, exosomes, diabetes, 
cardiovascular disease

1. Introduction

Lately, research has been increasingly focused on understanding of the biology 
of extracellular vesicles (EVs). Finding a more accurate name to define and classify 
EVs remains an open and, at the same time, a real challenge in the scientific world. 
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There are many reasons why it is difficult to find a very precise name for EVs: they 
are secreted by near all cell types in living organisms; the mechanisms through 
which they are released into the biological fluids are different and multiple; more-
over, they have different sizes (30–2000 nm in diameter) which make the methods 
of obtaining and analyzing them to be diverse, but at the same time, some of them 
are slightly controversial. Once released from the cells, EVs are not inert particles, 
but they have complex functions in both physiological and pathological processes 
due to their specific cargo and factors stimulating their secretion. Thus, EVs are now 
viewed as early noninvasive biomarkers for various disorders in order to establish 
a correct diagnosis, but they also can be real targets for an effective treatment and, 
at the same time, valuable tools for treating several diseases such as diabetic cardio-
vascular diseases.

2. Terminology and biogenesis pathways of extracellular vesicles

EVs are a large term used to define a variety of membrane-limited vesicles 
involved in the intercellular communication. A nomenclature has been pro-
posed but there are still numerous papers using different terms for EVs [1–3]. 
The EVs comprise different types of vesicles, and based on the size, morphol-
ogy, and mechanism of biogenesis, they are largely classified as: exosomes and 
ectosomes, also referred as shedding microvesicles (MVs) or microparticles 
(MPs) [4].

As for the apoptotic bodies, the researchers’ opinions are different; some 
of them think that they can be included in the EV category and others do not 
include them. Apoptotic bodies result from cells undergoing programmed cell 
death (apoptosis) and could be identified in EV probes [5]. The large cellular 
fragments resulted from apoptosis are phagocyted by neighboring cells and 
recycled; therefore, they should not be regarded as EVs involved in intercellular 
communication.

Exosomes (50–100 nm) have been described since 1980s as “exfoliated mem-
brane vesicles,” which may serve as a physiologic function occurring in many nor-
mal and neoplastic cells [6]. An ultrastructural study [7] showed that about 50 nm 
small vesicles are exocyted from multivesicular bodies (MVBs) after receptor- 
mediated endocytosis. For reticulocytes, exosomes’ exocytosis determines the loss 
of transferrin receptors during red cell maturation [8].

MVBs (Figure 1A–D) of 0.5–1 μm large vesicles containing 2–50 small intralu-
minal smaller vesicles belong to the endolysosomal compartment. This pleomorphic 
cellular compartment comprises early and late endosomes where a highly controlled 
molecular sorting mechanism drives MVBs to the lysosomes or to the extracellular 
space. During endosome maturation into late endosomes, inward budding from the 
limiting membrane of the endosome leads to the formation of intraluminal vesicles 
in MVBs [9]. Usually, MVBs fuse with lysosomes, the terminal compartment of the 
endocytic pathway, where they are digested and the final components are recycled. 
Some MVBs can fuse with the plasma membrane and their intralumenal vesicles 
are released from cells as exosomes. The process by which the fate of endosomal 
content is determined is not fully understood [10, 11]. Accumulating evidence 
suggests that the release of EVs often serves as an alternative disposal pathway to 
the overloaded lysosomes [12, 13]. This mechanism may be involved in a vascular 
calcification [14].

It is demonstrated that exosomes are not only cell specific but also they carry 
RNAs between cells and play major roles in intercellular communication [15]. How 
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RNAs reach the MVB vesicles is not clear, but it is supposed that cytosolic RNAs are 
taken up into intraluminal vesicles undergoing inward budding from the limiting 
membrane of the MVBs [9, 16].

Ectosomes (MVs or MPs) are slightly larger vesicles (100–500 nm) compared 
with exosomes and are also cell specific as they are released from plasma membrane 
by budding. Ectosomes do not require exocytosis as they are generated by outward 
budding of a plasma membrane domain, which enclose a cargo gathered at the 
cytosolic face. The detachment of the ectosomes from the donor cells involves 
contraction of cortical actin beneath the plasma membrane [17]. These plasma 
membrane-derived vesicles are also reported to carry RNAs and proteins as an 
effective mechanism for intercellular communication.

Multivesicular cargos (Figure 1A–D) have also been described as EVs with a 
particular appearance: clustered vesicles (80–200 nm) shielded by plasma mem-
brane [18]. This type of EVs has been described as mediating bone mineralization 
[19], vascular calcifications [20], or intercellular communication between telocytes 
[18], which often surround the vessels [21]. In our experience, endothelial cells 
(ECs) from diabetic kidney often release multivesicular cargos in the vascular 
lumen (Figure 1C). Possible mechanism of multivesicular cargo biogenesis based 
on electron microscopy images [18, 19] involves an initial aggregation of vesicles in 
the cortical cytoplasm which further will bulge a segment of the plasma membrane. 
Finally, gathered vesicles are released into the extracellular space as a cargo shielded 
by plasma membrane. The dissolution of the shielding membrane of the multive-
sicular cargo will release individual or grouped cytoplasmic-derived vesicles into 
the extracellular space.

Figure 1. 
Transmission electron microscopy of the extracellular vesicles in diabetic kidney. (A) Multivesicular body 
(MVB) with intraluminal vesicles in the cytoplasm of endothelial cell. (B) Numerous extracellular vesicles 
(square area) present between vascular smooth muscles cells (VSMCs) in vascular media. (C) Multivesicular 
cargos (MVCs) released by an endothelial cell (E) into the lumen of a peritubular capillary.  
(D) Multivesicular cargos (MVCs) released by a circulating lymphocyte (Ly).
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3. Function of extracellular vesicles in physiology

3.1 Physiological role of extracellular vesicles

EVs are connected to different physiological and pathological processes, such 
as tumor growth modulation, cytokine production, or cardiovascular disorders 
[22–24].

EVs contain lipids, and pools of proteins, some specific for the cell type 
generating them—MHC class I and II, and some which are present in most 
EVs—proteins from the plasma membrane, cytosol, and endosome. This latest 
feature suggests the shared biogenesis pathway for these EVs. On the surface 
of EVs, proteins similar with the ones from the originating cells can be found 
[25–28]. Different types of nucleic acids such as DNA, small RNA, ribosomal RNA 
(rRNA), microRNA (miRNA), long noncoding RNA (lncRNA), and mRNA are 
enclosed within the EVs, which transfer their content into recipient cells, induc-
ing transient or persistent phenotypic changes, which will modify their cellular 
functions.

According to Barros et al. [25], there are at least four mechanisms by which 
the EVs can influence the target cells: (1) direct contact between the proteins 
from the target cell and EV membrane, which changes the intracellular signal-
ing of the recipient cells; (2) cleavage of proteins on the EVs’ surface and further 
interaction between the protein fragments and receptor-proteins on the recipient 
cell; (3) fusion between EVs and target cell membrane, followed by EV content 
release within the recipient cell; and (4) internalization of EVs by phagocytosis or 
endocytosis.

3.2 Role of extracellular vesicles in immunological response

The immune response involves participation of innate and adaptive immune 
system to regulation of body homeostasis, defense, and surveillance, thus maintain-
ing the equilibrium between health and disease.

3.2.1 Activation of the helper T cells (CD4+)

Molecules of MHC class II complex are specific to antigen-presenting cells 
(APCs), such as dendritic cells (DC), macrophages, and B lymphocytes, which 
present internalized exogenous peptides for the activation of CD4+ T cells. B cells 
release functional EVs with increased amounts of MHC class II molecules coupled 
with peptides, which are able to generate T helper cell response. T cells are strong 
stimulators of the EVs’ synthesis by B cells due to activation of CD40, and IL-4 
receptors [29–31], and the B cell-derived EVs also contain molecules of MHC class I, 
components of B cell receptor (BCR)—CD19, immunoglobulins, and tetraspanins 
[30, 31]. Content of EVs derived from DC, with MHC class II—peptide complexes, 
contributes to amplification of adaptive immune response [32–34].

3.2.2 Activation of the cytotoxic T cells (CD8+)

Because all nucleated cells express MHC class I molecules, the nucleated cells-
derived EVs contain the MHC class I—endogenous/exogenous antigens complexes, 
thus giving the potential to activate the cytotoxic T cells [35]. These findings were 
confirmed for the first time by Admyre et al., who demonstrated that monocyte-
derived DC released exosomes capable of inducing antigen-specific immune 
response from peripheral blood-isolated CD8+ T cells [36].
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3.2.3 Immunomodulation induced by EVs

The production and release of EVs presenting on the surface factors which 
are capable of triggering apoptotic pathways, such as Fas ligand or galectin 9, can 
induce immunosuppression. On the other hand, platelet-secreted EVs can induce 
secretion of pro-inflammatory cytokines, such as IL-8, IL-1β, and IL-6, thus trig-
gering an inflammatory immune response [37].

4.  Extracellular vesicles as biological vectors modulating diabetic 
cardiovascular diseases

4.1 Role of extracellular vesicles in coronary artery disease

Individuals with type 2 diabetes mellitus develop cardiovascular disorders, 
including coronary artery disease, more frequently than healthy controls, mainly 
through the chronic, damaging exposure of the vascular system to hyperglycemia. 
Therefore, it is important to understand the exact mechanisms through which 
diabetes contributes to the development and severity of these complications.

EVs generated in patients with diabetes mellitus promote inflammation and 
contribute to the development of atherosclerotic lesions, stimulating monocyte 
adhesion and their infiltration in the subendothelial layer, promoting the migration 
and proliferation of vascular smooth muscle cells (VSMCs) and also the calcifica-
tion of the atherosclerotic plaque.

4.1.1 Extracellular vesicles and the coronary atherosclerotic plaque

Recent studies have shown that atherosclerotic lesions of all stages contain 
MVs. Higher levels of circulating MVs have been discovered in individuals with 
cardiovascular risk factors, such as smoking [38], dyslipidemia [39], diabetes 
mellitus [40], and arterial hypertension [41], probably through activation or from 
apoptosis of different cells being exposed to a damaging stimulus. Data extracted 
from in vitro studies suggest that MVs can have both pro-inflammatory and anti-
inflammatory effects, depending on the stimulus that induces their formation [42]. 
MVs increase the release of proinflammatory cytokines, mainly interleukin-6 and -8 
(IL-6 and IL-8), from ECs and leukocytes, promoting the adhesion of monocytes 
to the endothelium and their migration to the atherosclerotic plaque [42, 43]. Also, 
endothelial MVs can activate monocytes by transferring miR-10a and thus interfer-
ing with the nuclear factor-κB inflammatory pathway. Another effect of MVs is the 
decrease of the nitric oxide (NO) production by ECs, consequently impairing endo-
thelial vasodilating properties [44]. Endothelial-derived MVs and platelet-derived 
MVs increase endothelial permeability by delivering two enzymes (caspase 3 and 
Rho-kinase) to target cells and inducing apoptosis [45]. MVs promote adhesion 
of monocytes to the endothelium by increasing endothelial expression of adhe-
sion molecules, such as intercellular adhesion molecule-1 (ICAM-1), or adhesion 
molecule receptors, such as CD11a, on monocytes [46]. ICAM1 expression can also 
be regulated by miR-222 in MVs [42, 47].

Various MVs contribute to foam cell formation in the atherosclerotic plaque by 
stimulating lipid and cholesterol formation in macrophages. Macrophages and foam 
cells undergo afterward apoptosis, forming a core of extracellular lipids. Increased 
monocyte and macrophage apoptosis contributes to augmented MV release in the 
plaque. MVs of monocyte and macrophage origin are the largest population of MVs 
in human atherosclerotic lesions [48].
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Infiltration of LDL particles in the vascular wall during the atherosclerotic 
process can induce the formation and release of tissue factor-enriched MVs from 
the VSMCs, which in turn influence VSMC proliferation and migration [49].

EVs of different origins, with different miRNA content, contribute to VSMC 
proliferation and migration; for example, MVs with miR-223 induce a decrease in 
atherosclerotic plaque size by inhibiting VSMS proliferation and migration, while 
endothelial vesicles with miR-143 and miR-145 prevent VSMC dedifferentiation [50].

4.2 Role of extracellular vesicles in peripheral arterial disease

4.2.1 Atherosclerosis and vascular calcification in diabetes mellitus

Adipose tissue-derived EVs were shown to have immunomodulatory effects on 
macrophages which in turn, after contacting said EVs, secreted factors that inter-
fered with insulin signaling in human adipocytes [51]. Moreover, EVs released from 
adipocytes from obese individuals act in a paracrine manner on neighboring adi-
pocytes and impair insulin-mediated glucose transport [52]. In turn, the exosomes 
derived from insulin resistant adipocytes carry sonic hedgehog (SHH) protein that 
increases the expression levels of TNF-α, IL-1β, IL-6, VEGF-A, ICAM-1, MMP2, 
and MMP9 in the atheroma plaque and promotes vasa vasorum angiogenesis, 
leading to greater plaque burden and vulnerability [53]. Thus, EVs provide a link 
between obesity, low-grade inflammation, insulin resistance, and atherosclerosis 
progression.

EVs also play a key role in the cross talk between ECs and macrophages that 
can either act in the direction of vascular homeostasis or promote atherosclerosis, 
depending on their composition. It was shown that EVs secreted by Kruppel-like 
factor 2-treated ECs show anti-inflammatory actions, while oxidized-LDL-
treated ECs produce EVs with high levels of miR-155, directing macrophage 
differentiation toward pro-inflammatory M1 macrophages [54]. In M1, but not 
in M2 macrophages, the inflammasome is known to be activated [55] and the 
inflammasome signaling leads to the secretion of pro-inflammatory exosomes 
[56], further favoring atherosclerosis progression. Furthermore, atherosclerotic 
patients have high numbers of monocyte/macrophage-derived miR-150-rich EVs 
that enhance EC migration, a major component of atherosclerosis [57]. Thus, 
circulating endothelial microparticles (EMPs) were shown to be an independent 
risk factor for endothelial dysfunction which occurs early in atherosclerosis, and 
the fact that in type 2 diabetes mellitus their number is increased [58] and their 
miRNA composition is altered containing miRNAs mainly involved in angio-
genesis [59] proves the involvement of EVs in cardiovascular complications of 
diabetes mellitus.

However, exosomes from other sources can alleviate diabetes mellitus as shown 
at rats treated with exosomes from human umbilical cord derived multipotent mes-
enchymal stromal cells (MSCs) that have the ability to reverse peripheral insulin 
resistance and relieve β-cell destruction [60].

Atherosclerosis, old age, diabetes, and hyperphosphatemia induce VSMC trans-
differentiation to osteoblasts [61] characterized as loss of SM22a and SMA markers 
and gain of Runx2, SP7, osteopontin, osteocalcin, alkaline phosphatase (ALP), tran-
scription factor Sox9, collagen II, and collagen X [62]. These trans-differentiated 
cells secrete 50–150 nm calcium-phosphorus-rich exosomes that serve as calcifica-
tion nuclei, in the same manner that osteoblast-secreted matrix vesicles lead to bone 
mineralization [63]. However, extracellular calcium leads to Fetuin-A uptake in 
VSMCs mediated by annexins, and high Fetuin-A levels in secreted exosomes pre-
vent further calcification [64]. This control mechanism is affected when Fetuin-A 
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levels are low due to chronic dialysis [65] and higher than normal plasma Fetuin-A 
levels can lead to insulin resistance and diabetes through the direct inhibition of the 
insulin receptor [66], thus only worsening the cardiovascular diseases (CVDs).

EVs found in intima and media of calcified vascular wall (Figure 2A–D) [14] 
seem to be different of matrix vesicle with role in physiological and pathological 
calcification [19]. Vascular cell-derived EVs may serve as a continuous source of 
damaging microcalcifications in atherosclerotic plaques [20]. These vesicles have 
been described as exosomes from endosomal compartment, plasma membrane-
derived ectosomes, and vesicles shielded by a plasma membrane (multivesicular 
cargos) that are released into extracellular space as a cargo [14]. As the first two 
types are intense investigated and described, the last type derived from multive-
sicular cargos is less investigated.

4.3 Role of extracellular vesicles in insulin resistance

The prevalence of type 2 diabetes is rapidly increasing worldwide, in parallel 
with the current obesity epidemic, posing a major healthcare expenditure burden. 
Obesity increases the risk for development of diabetes, cancer, and CVDs. In the 
course of events leading from obesity to type 2 diabetes, several mechanisms are 
currently outlined. Among them, low-grade systemic inflammation in adipose 
tissue of obese persons has been proposed as a possible link between insulin resis-
tance and altered functions of vascular cells by increased cytokines production. 
Furthermore, it has been shown that the molecules that are released by adipose 

Figure 2. 
Transmission electron microscopy of the diabetic arteries in diabetic kidney. (A) Large spaces with vesicular 
content [square marked area in (A) is magnified in (B)] increase the vascular wall thickness. (B) Numerous 
extracellular vesicles accumulated between vascular smooth muscles cells (VSMCs) and small calcifications 
(c) may be seen. (C) Concentric amorphous deposits (d) are located between endothelium (E) and vascular 
smooth muscle cells (VSMCs). (D) Higher magnification of square marked area in (C) shows also numerous 
vesicles in the extracellular space (#) between vascular smooth muscle cells (VSMCs).
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tissue cells into circulation are enclosed in vesicles. EVs derived from adipose tissue 
may play a role in the paracrine cross talk between adipocytes and macrophages in 
adipose tissue in obesity [51], and in endocrine manner for transmission of signals 
to other cells from cardiovascular system [67]. There are the studies that support 
the idea that EVs are important mediators for metabolic organ cross talk. Thus, it 
was hypothesized that insulin-secreting beta (β) cells and insulin-sensitive tissues 
release exosomes that can be transferred to other metabolic organs, or to immune or 
endothelial cells. In this way, in an autocrine or paracrine manner, exosomes influ-
ence glucose homeostasis and insulin resistance [68].

When circulating miRNA profile of lean and obese individuals was compared, 
those miRNAs differentially expressed were predicted to regulate inflammatory 
and fibrotic signaling pathways [69]. Moreover, in obesity, exosomes from adipose 
tissue-derived MSCs have reduced pro-angiogenic properties due to decreased 
content in miR-126, VEGF, and MMP-2. A differential EV proteomic profile has also 
been observed between obese diabetic and obese nondiabetic rats [70]. In a recent 
study, the lean mice treated with exosomes from obese mice developed glucose 
intolerance and insulin resistance. In addition, using exosomes transfected with a 
specific siRNA targeting PPARα, the phenotype induced by obesity-associated miR-
NAs was recapitulated. Importantly, it was demonstrated that obesity-associated 
exosomal miRNAs modulate glucose and lipid metabolism in mice [71].

In type 1 diabetes, the imbalances between effector T cells and regulatory T cells, 
as well as dendritic cell presentation of islet auto-antigens, play an important role in 
the destruction of islet β cells. It has been shown that MVs derived from endothelial 
progenitor cells (EPCs) combined with islets can activate angiogenesis, decrease 
leucocyte-endothelial interaction, and improve pancreatic β cell function [72]. 
Another study revealed that insulinoma-released exosomes or MPs are immunos-
timulatory and can activate autoreactive T cells spontaneously developed in non-
obese diabetic mice [73]. Exosomes could also serve as triggering factors for specific 
autoimmunity events leading to diabetes, as shown in another study where in NOD 
mice exosomes released by islet-derived MSCs trigger autoimmune responses [74]. 
Thus, specific biological roles of EVs are dependent on functional state and the type 
of cells from which the EVs are released.

5.  Extracellular vesicles as clinical biomarkers, therapeutic targets, and 
biomedical tools in diabetic cardiovascular diseases

5.1 Extracellular vesicles as clinical biomarkers

Early recognition of prediabetes and diabetes is critical for the prevention or the 
successful treatment of diabetes-induced cardiovascular complications.

The traditional markers used in clinical practice, such as glycated hemoglobin 
and glucose determinations, are detected only when diabetes is already established 
and cannot precisely predict an individual’s risk of developing diabetes [75].

Biomarkers for early detection of the disease and identification of individuals 
at risk of developing complications would greatly improve the care of diabetic 
patients.

The study of EVs is opening new horizons for their potential application not 
only as therapeutic tools but also as clinical biomarkers for monitoring disease 
progression. Even if most clinical data are derived from the studies of tumor 
patients, increased levels of EVs have been detected in body fluids in a variety of 
cardiovascular and inflammatory pathologies, obesity, atherosclerosis, diabetes, 
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and metabolic syndrome—biomarkers of both incidence and progression diabetic 
retinopathy in diabetic patients.

Owing to their association with the onset, progression, and pathogenesis of type 2 
diabetes, EVs are emerging as a new and attractive class of biomarkers for prognosis, 
diagnosis, progression/severity, and management of diabetes.

EVs are detectable in most of the body fluids, including blood, and their expres-
sion pattern appears to provide valuable information about the functional state of 
their parental cells [76].

In the study by Sun et al. [77], levels of urinary CD63-positive exosomes were 
found increased at the early stage of renal injury in diabetic nephropathic subjects.

On the other hand, circulating MPs, in particular platelet-derived microparticles 
(PMPs) and EMPs, have been found elevated in a wide range of thrombotic disor-
ders, with an interesting relationship between their levels and disease pathophysiol-
ogy, activity, or progression [78, 79]. EMP plasma levels have been associated with 
several CVDs and risk factors. Circulating PMPs are also shown to be involved in the 
progressive formation of atherosclerotic plaque and development of arterial throm-
bosis [80, 81], especially in diabetic patients [59]. Indeed, diabetes is characterized 
by an increased procoagulant state and by a hyperreactive platelet phenotype, 
with enhanced adhesion, aggregation, and activation. Elevated MP levels, such 
as TF-positive MPs, have been shown to be one of the procoagulant determinants 
in patients with type 2 diabetes mellitus [82]. Also, it was demonstrated that EVs 
participate in the transport of cytokines and angiogenic factors in diabetic patients 
with ocular complications [83]. Moreover, a recent study showed that distribution 
of pro- and anti-angiogenic miRNAs in patients with type 2 diabetes is in close 
touch with the upregulation or downregulation of miRNAs in the plasma fraction 
enriched in ectosomes (MVs or MPs) [84]. This topic has been widely discussed in 
a paper by Alexandru et al. [84], in which MPs and MPs-associated miRNAs were 
presented as active players in vascular complications in diabetes.

More than that, since urinary EVs (UEVs) have been described in diabetic 
nephropathy (DN), they immediately became to be proposed and a biomarker in 
kidney complication [85, 86]. Patients with DN have exceptionally high rates of 
cardiovascular morbidity and mortality; thus, there is an emerging need to find the 
link between the risk of DN and CVD progression.

Owing that urine is an easily accessible fluid sample, UEVs can be obtained in 
bulk, which make them emerging as a valuable source for disease stage-specific 
molecular signatures potentially useful in diagnostics. Therefore, UEVs has been 
proposed to be a novel biomarker in diagnostics, prognosis, and disease progression 
in diabetic kidney complications [87, 88].

Similar to CVDs, in DN, the profile and concentration of proteases and prote-
ases inhibitors is changing in UEVs. For example, Musante et al. [89] have found 
that cathepsins (A, C, D, L, and XZP) are significantly increased in UEVs isolated 
from DN patients. Cathepsins are included to the class of lysosomal proteases and 
their proteolytic activity is related to ECM remodeling [90]. The proteomic study 
confirmed that in diabetic UEVs, serine proteases and their inhibitors, including 
SERPINA1 and SERPINA3, are present [90].

Besides protein cargo, also miRNA UEVs content have some specific features, 
strongly related to CVD pathomechanism. Barutta et al. showed a differential 
expression of 22 exosomal miRNAs between micro- and normoalbuminuric 
patients with DN [91]. Among them, miR-130a has been found to play a critical role 
in cardiac fibrosis by directly targeting peroxisome proliferator-activated receptor-γ 
(PPAR-γ) [91]. Interestingly, miR-155 was significantly reduced in UEVs from DN 
patients. This miR is significantly expressed and secreted in Krüppel-like factor 5 
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(KLF5)-overexpressing VSMCs and it is considered as a potent regulator of endo-
thelium barrier function through regulating endothelial targeting tight junction 
protein expression. In murine model of atherosclerosis, VSMCs-derived exosomes 
mediated the transfer of miR-155 from VSMCs to ECs, which led to an increased 
endothelial permeability and enhanced atherosclerotic progression [92]. These data 
suggest the possible role of UEVs in kidney remodeling, which can bring the new 
insight into vascular complications and vascular risk in diabetes.

5.1.1 Therapeutic potential of extracellular vesicles

According to results from studies from the last 5 to 10 years, EVs could play an 
important role in different cardiac regenerative therapies and could also be used as 
therapeutic targets and vectors in cardiovascular medicine.

Platelet-derived vesicles induce vascular endothelial growth factor (VEGF)-
dependent angiogenesis and stimulate postischemic revascularization after chronic 
ischemia [93]. Also, plasma-derived exosomes activate Toll-like receptor 4 on 
cardiomyocytes and thus protect the myocardium from ischemia-reperfusion injury 
[94]. MSCs-derived EVs could be an alternative to stem cell transplantation after 
myocardial ischemia by transfer of specific miRNAs through embryonic stem cell 
EVs [95].

Different cardiovascular medications can influence the level of circulating MVs. 
Antiplatelet agents (ticlopidine and abciximab) inhibit platelet activation and 
also the release of platelet-derived MVs [96–98]. Antihypertensive agents (such as 
angiotensin II receptor inhibitors, beta blockers, and calcium channel blockers) 
lower the circulating levels of platelet- and monocyte-derived MVs [99]. The effects 
of statin treatment on circulating MVs of platelet and endothelial origin are still 
unclear [100, 101].

Statins and antihypertensive medication are able to modify the properties of 
in vivo-generated endothelial MVs and their effect on the expression of endothelial 
adhesion molecules, inhibiting the adhesion of monocytes to ECs and improving 
endothelial function [102].

In other words, MVs are now regarded as novel therapeutic targets to monitor 
the therapeutic response to treatments in diabetic macrovascular complications. 
The beneficial effects of several drugs, such as statins, antiplatelet agents, anti-
oxidants, angiotensin II receptor blockers, and calcium-channel blockers, have 
been reported to be partially due to their effects on reduction of both MV numbers 
and/or procoagulant factors [103]. Moreover, the cardiovascular benefits of anti-
hyperglycemic drugs used to treat type 2 diabetic patients, such as, glibenclamide 
[104], acarbose [105], miglitol [106], and gliclazide [107], might be at least partially 
attributed to the anti-atherothrombotic effects of medication, through the decrease 
of procoagulant MV levels and platelet-activating factors. Pioglitazone treatment 
reduced the level of circulating endothelial-derived-MVs and increased the level 
of EPCs and the endothelial-derived MVs/EPCs ratio, improving the imbalance 
between endothelial damage and repair capacity [108]. Moreover, in our studies on 
atherosclerotic animal model and patients with hypertension and dyslipidemia, we 
showed that administration of irbesartan, an AT1 receptor antagonist, decreases 
the levels of circulating MVs, and also of specific MVs (endothelial-, platelet-, and 
leukocyte-derived MVs), and increases EPC levels, preventing the appearance of 
vascular endothelial dysfunction [78]. The mechanisms underlying this response 
include the reduction/increase of a number of specific membrane receptors 
exposed by MPs (TF, P-selectin, E-selectin, PSGL-1, Rantes), respectively, by EPCs 
(β2-Integrins and α4β1-integrin), the augmentation of endothelium-mediated 
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vasodilation and the reduction of protein expression of VEGF/stromal cell-derived 
factor-1α (SDF-1α) [109].

In addition to their role as drug targets, EVs are an attractive drug delivery 
vehicle. The use of EVs as therapeutic vectors could be done through bioengineer-
ing, either by modifying the cytosolic content of the vesicles which could be 
transferred to the target cells in order to influence cell metabolism, or by loading of 
EVs with molecules to be delivered to target cells. Studies regarding the use of EVs as 
therapeutic vectors in CVDs are few and are only on animal models.

EVs present some individual features, which make them promising therapeutic 
tools, and emphasize EV-based therapies as a promising alternative to cell therapy 
in cardiovascular medicine. Using EV-based therapeutics avoids biological issues 
associated with cell-based strategies, such as stress-induced necrosis or aberrant 
differentiation [110].

Thus, EVs have a particular stability over time conferred by their membranous 
structures that make them real “off-the-shelf” tools allowing careful maintenance 
of stability, integrity, and biological activity during their manufacture, storage, 
and subsequent administration [111]. Moreover, EV lipid bilayer coat protects their 
bioactive cargo from degradation when they circulate from one cell to another. 
The small size of EVs, compared to whole cells, also offers therapeutic benefits, 
such as decreased macrophage phagocytosis and vascular occlusion, and easier 
injection [110]. Additionally, EVs have innate biocompatibility, low toxicity and 
immunogenicity, and selective uptake that make them an excellent delivery vehicle 
for therapeutics [112].

With all these features, at this time, EVs represent attractive nanocarriers for 
drugs as well as therapeutic small molecules, nucleic acids, and proteins.

In order to enhance the EVs’ therapeutic capabilities and applicability, meth-
odologies have been developed for loading them with non-native cargo and also, 
several targeting strategies for systemically delivery. The two main categories of 
current strategies are: (i) approaches focused on cellular modification and  
(ii) methods focused on direct EV alteration [113].

The most common therapeutic approaches that have used EVs are: (i) to deliver 
small RNAs attempting to reverse pathological miRNA-based communication with 
anti-miRNA oligonucleotides or (ii) to stimulate protective communication with 
synthetic miRNA mimics [114, 115]. More specific delivery of anti-miRNAs or 
miRNA mimics to target cells is realized by engineering vesicles with cell-selective 
surface proteins [116], which should reduce off-target effects. The ability to load 
EVs with miRNAs suggests the possibility of using EVs to deliver miRNA-based 
therapeutics in CVDs. The field of miRNA-based therapies is advancing rapidly, 
and research focused on circulating EVs and their miRNA content has revealed 
diverse and important roles [112].

However, not many studies have focused their objective in the use of EVs 
as therapeutic tools against CVDs. In this regard, in a mouse model of type 1 
diabetes, it was shown that MSCs-derived EVs delayed the onset of type 1 dia-
betes through modulation of IL-1β-mediated pancreatic B-cell damage [117]. 
Moreover, EVs secreted by induced pluripotent stem cells deliver cardioprotec-
tive miR-21 and miR-210, preventing cardiomyocyte apoptosis in the ischemic 
myocardium [118].

More information exists in the literature concerning the individual subsets of 
EVs: exosomes and MVs as therapeutic targets and biomedical tools. For instance, 
it was reported that cardiomyocytes exert an anti-angiogenic function in type 
2 diabetic rats through exosomal transfer of miR-320 into ECs [119]. Further 
research showed that exosomes derived from cardiomyocytes overexpressing 
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heat shock protein 20 (Hsp20) protect against in vitro high glucose-triggered cell 
death as well as in vivo diabetes mellitus-induced cardiac adverse remodeling, 
suggesting that Hsp20-engineered exosomes might be a novel promising therapy 
[120]. Exosomes from human fibrocytes stimulated with platelet-derived growth 
factor-BB for 7 days and transforming growth factor-β for the following 3 days 
displayed both, in vitro and in vivo, wound healing properties in diabetic db/db  
mice [121]. Although it has been shown that this pharmacological treatment 
of human fibrocytes increased expressions of miR-126, miR-130a, miR-132, 
miR124a, miR-125b, and miR-21 into exosomes, the exact mechanism implicated 
in these effects is still unknown. In addition, administration of mouse brain endo-
thelial cell-derived exosomes, loaded with miR-146a by chemical transfection 
method, into the brain’s ventricle attenuates dementia-like pathology in diabetic 
db/db mice [122].

Several experimental data and preclinical models have demonstrated the 
excellent potential of stem cell-derived exosomes to be used as therapeutic tools 
in CVDs [111]. Thus, exosomes enriched with miR-22 secreted by MSCs follow-
ing ischemic preconditioning was reported to have a significant benefit in cardiac 
recovery after myocardial infarction, by targeting the methyl CpG binding protein 
2 [123]. Exosomes derived from human MSCs, carrying miR-21-5p, mediates effects 
on cardiac contractility and calcium handling, likely via PI3K signaling, opening 
new research ways in optimizing future stem cell-based cardiotherapies [124]. 
Furthermore, it was shown that exosomes secreted by human cardiosphere-derived 
cells enriched in miR146a inhibited apoptosis and promoted proliferation of cardio-
myocytes, improving in this way angiogenesis. In another study, it has been showed 
that in cardiomyocytes cultured in a hypoxic environment, GATA-4 overexpressing 
MSCs-derived exosomes contribute to increased cardiomyocyte survival, reduced 
cardiomyocyte apoptosis, and preserved mitochondrial membrane potential [125]. 
Importantly, the use of exosomes isolated from MSCs for the reduction of inflam-
matory state during type 1 diabetes mellitus is mentioned into an Egyptian clinical 
trial (phase II-III, NCT02138331) [126].

In addition, it has been demonstrated that abnormal miRNA expression in MVs 
is involved in neoangiogenesis: (i) diminished expression of miRNA-200b reduces 
VEGF levels [127] and (ii) augmented expression of miR-29b regulates certain 
apoptotic genes and increases VEGF levels [128]. These data suggested that acting 
on these miRNA levels in MVs may control cell proliferation in diabetic retinopathy. 
Likewise, MVs cargo with miR-126 play an important role in angiogenesis and 
vascular integrity [129], while administration of the miR-126-enriched MVs to 
ApoE−/− mice could reduce the development of aortic plaques of atherosclerosis 
[130]. Importantly, it has been shown that MVs derived from EPCs, carrying spe-
cific miRNAs, activate angiogenesis through phosphatidylinositol 3 kinase/protein 
kinase B signaling pathway [129]. MVs derived from human acute monocytic leuke-
mia cell line (THP-1 cells) treated by inflammatory factors contain miR-150 which 
may be involved in EC migration [226]. In a recent study, we showed that MVs of 
healthy origins promote EPC proliferation, adhesion, and migration, supporting 
reestablishment of EPC ability to incorporate in damaged endothelium and working 
in concert with existing ECs to form blood vessels [131]. These beneficial effects 
of MVs on late EPC dysfunctionality in atherosclerosis could be explained by the 
ability of MVs to transfer specific miRNA (miR-10a, miR21, miR-126, miR-146a, 
and miR-223) into recipient cells and by insulin-like growth factor- 1 expression 
activation [228].

Data summary concerning exosome and MV charge and their therapeutic effects 
are presented in the Table 1.
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Exosome 

charge

Exosome source Recipient Therapeutic effects Reference

miR-320 Rat 

cardiomyocytes

Cardiac endothelial 

cells

Decreases 

angiogenesis in type 2 

diabetes

[119]

Hsp20 Mouse 

cardiomyocytes

Endothelial cells Improves cardiac 

function and 

angiogenesis in 

diabetes

[120]

miR-126, 

miR-130a, 

miR-132, 

miR124a, 

miR-125b, 

miR-21

Human fibrocytes Dermal fibroblasts, 

keratinocytes

Accelerate diabetic 

wound healing

[121]

miR-146a Mouse brain 

endothelial cell

Brain’s ventricles Attenuates dementia-

like pathology in 

diabetes

[122]

miR-21, 

miR-210

iPSCs Cardiomyocytes Rescue ischemic 

cardiomyocytes

[118]

miR-22 hMSCs Cardiomyocytes Enhances cardiac 

function

[123]

miR-19a hMSCs Cardiomyocytes Restores cardiac 

contractile function 

and reduces infarct 

size

[125]

miR-21-5p hMSCs iPSCs-derived 

cardiomyocytes 

and iPSCs-derived 

fibroblasts

Increases engineered 

cardiac tissue 

contractility via PI3K 

signaling

[124]

MV charge MV source Recipient Therapeutic effects Reference

miR-126 ECs Vascular cells from 

ApoE−/− mice

Reduces the 

development of 

aortic plaques of 

atherosclerosis

[130]

mRNAs EPCs hMECs Activates 

angiogenesis through 

phosphatidylinositol 3 

kinase/protein kinase 

B signaling pathway

[129]

miR-150 THP-1 cells hMECs Modulates endothelial 

cell migration

[129]

miR-10a, 

miR21, 

miR-126, 

miR-146a, 

miR-223

Plasma from 

healthy hamsters

Late EPCs Promote EPC 

proliferation, 

adhesion and 

migration in 

atherosclerosis

[131]

iPSCs, induced pluripotent stem cells; hMSCs, human mesenchymal stem cells; ECs, endothelial cells; EPCs, endothelial 
progenitor cells; hMECs, human microvascular endothelial cells; and THP-1 cells, human acute monocytic leukemia 
cell line.

Table 1. 
Exosome and MV charge components and their therapeutic effects in diabetes and CVDs.
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6. Progress and challenges in extracellular vesicle field

Although research into EV field is gaining ground, some challenges need to be 
overcome before using them in the clinic, such as: (i) optimization of EV isolation 
procedures, especially the time of protocols, decrease of amount of samples, and 
the selective isolation of distinct EV subtypes; (ii) the large-scale production in 
good manufacturing conditions; and (iii) increase of the specificity of engineered 
EVs vis-à-vis target cells to avoid the possible side effects [126].

Additionally, much still remains to be revealed regarding the role of EVs in 
cell-cell communication both in health and diabetic cardiovascular disorders. 
Specifically, understanding the effects of the chronic inflammatory environment 
in diabetes on the packaging and release of endothelial-EVs and their following 
interactions with cardiomyocytes could be useful [112]. Advancing the knowledge 
regarding the cellular source and destination of EVs in CVDs will allow exploration 
of the specific cellular interactions, while understanding EV organ-tropism will 
help to target specific tissues, improving the efficiency of miRNA-based therapies.

Even so, with many problems remaining to be resolved, as we mentioned above, 
prior EV-based therapeutics might be clinically used to treat CVDs. Anywise, the 
many studies underline their potential as successful therapeutic targets in combat-
ting the heavy millstone of metabolic disease [112].

7. Conclusions

Overall, our chapter strongly suggests that EVs may function as significant 
regulators of both physiological and pathological conditions and demonstrates their 
universal role in the relationship between diabetes and cardiovascular disease. Their 
unique properties as biological vectors modulating diabetic cardiovascular diseases, 
including atherosclerosis, coronary artery disease, and peripheral arterial disease, 
are also highlighted.

Undoubtedly, elucidation of terminology, biogenesis, biological content, and 
function of EVs contributes to better understanding of the complexity of their role 
in influencing the different processes affected in diabetic cardiovascular diseases. 
Consequently, we envisage that for EVs used as clinical biomarkers, therapeutic 
targets, and biomedical tools in diabetes and associated complications, there is a 
need for developing a molecular system of EVs based on their lipidomic, metabo-
lomic, and miRnomic signature. Once these issues are clarified, preventative and 
therapeutic strategies can be implemented and further developed.

Despite the fact that existing literature discussed in this chapter describes the 
EV importance in diabetic cardiovascular diseases, it also leaves some significant 
questions unanswered. Thus, it becomes increasingly complicated to establish an EV 
structure either beneficial or harmful, to clarify their role either good or bad, in both 
health and disease. Incontestably, more research evaluating such properties is neces-
sary to establish EVs’ value as clinical biomarkers, therapeutic targets, and biomedical 
tools based on concrete scientific results for diabetic cardiovascular disease treatment.
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